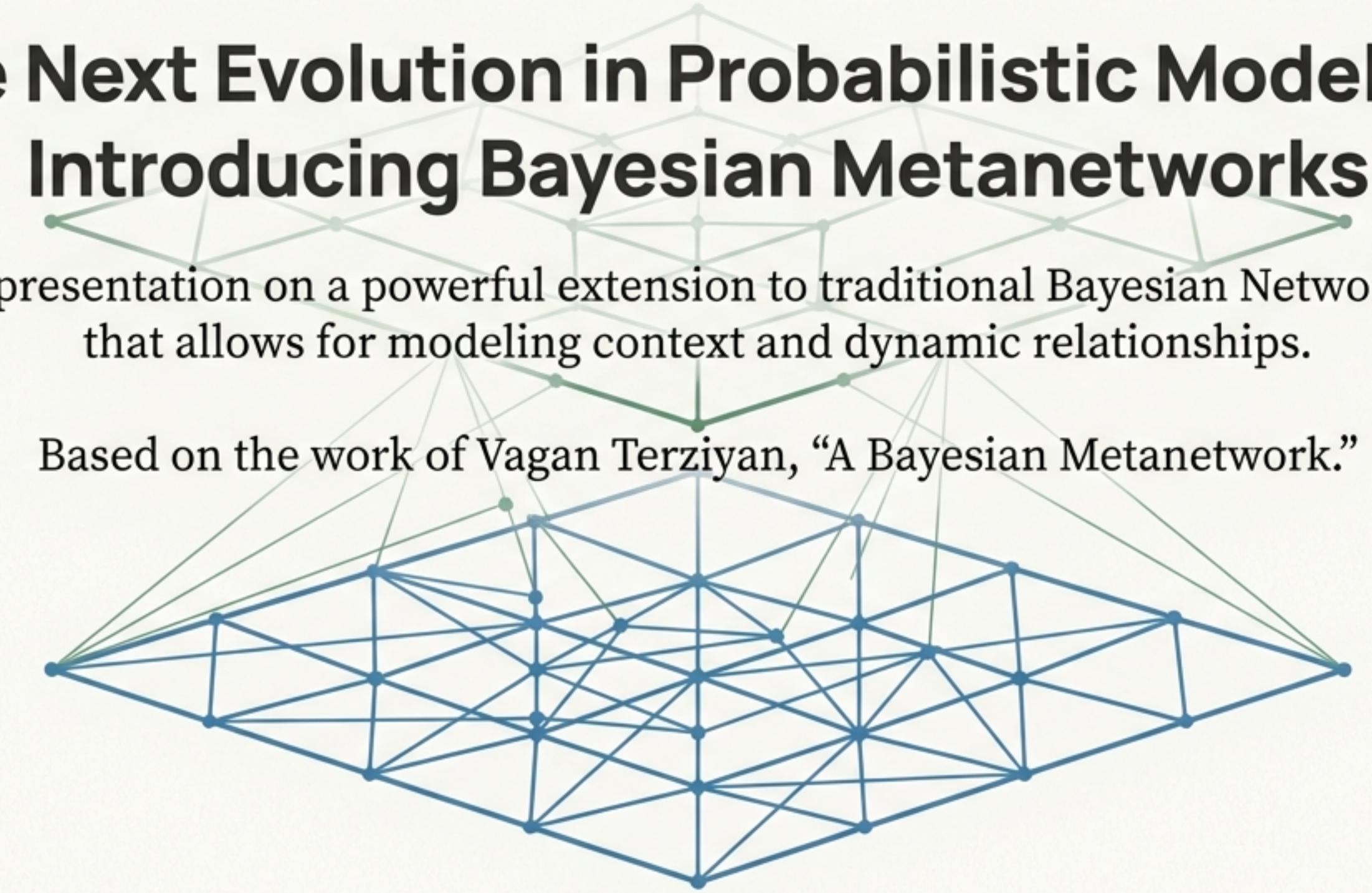


The Next Evolution in Probabilistic Modeling: Introducing Bayesian Metanetworks

The background of the slide features two abstract network diagrams. The top diagram is a sparse network with a few green nodes and many light gray connections. The bottom diagram is a dense network with many blue nodes and a complex web of blue connections forming a hexagonal pattern.

A presentation on a powerful extension to traditional Bayesian Networks
that allows for modeling context and dynamic relationships.

Based on the work of Vagan Terziyan, “A Bayesian Metanetwork.”

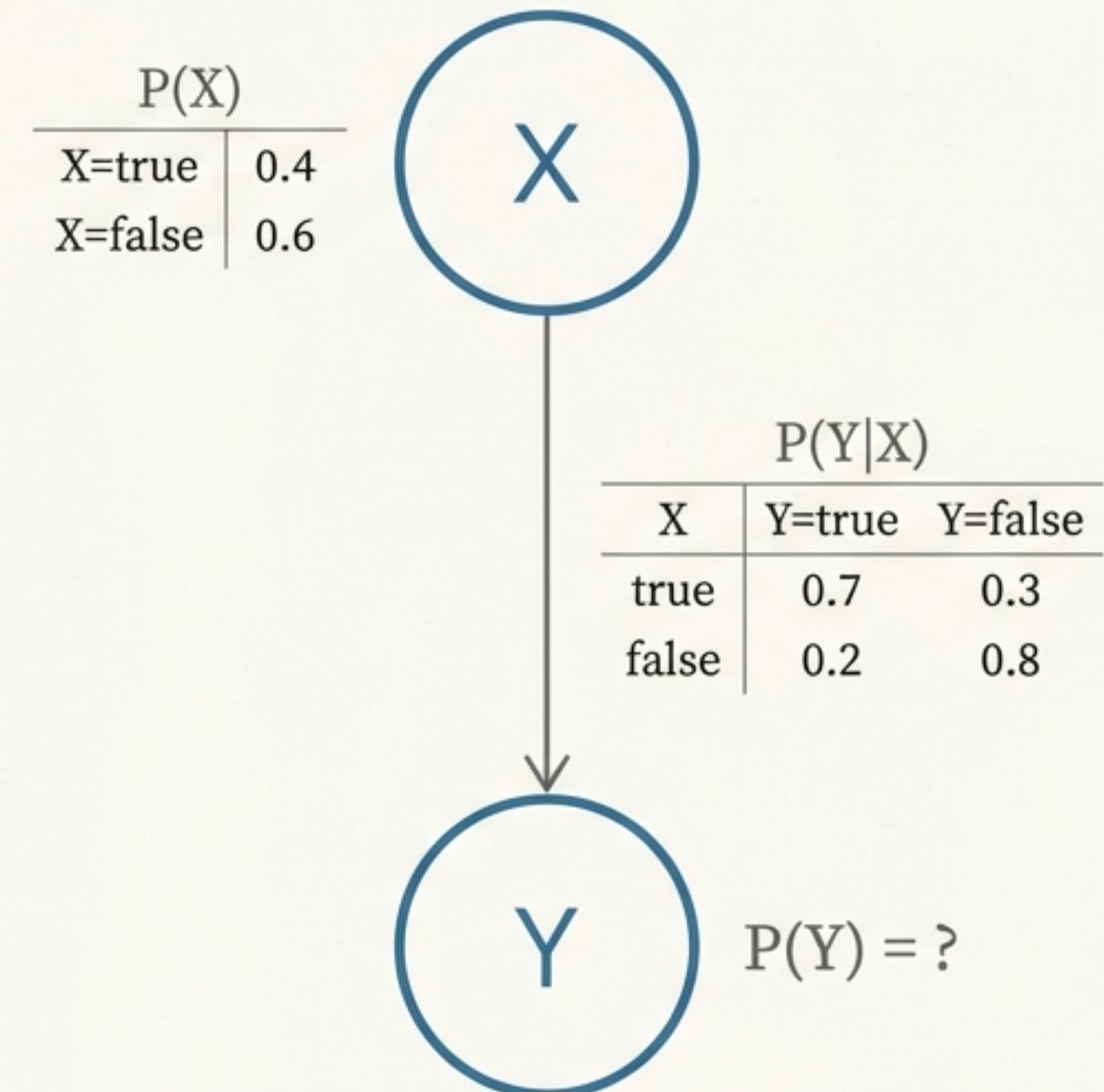
We Begin with a Powerful Foundation: The Bayesian Network

A Bayesian Network (BN) is a proven tool for encoding and reasoning about probabilistic relationships between a set of variables.

It consists of two parts:

1. A Structure (S): A directed acyclic graph where nodes represent variables and arrows represent conditional dependencies.
2. Parameters (P): A set of local probability distributions for each variable, typically in the form of conditional probability tables (CPTs).

Inference in a BN calculates the probability of an event, given evidence. For example, we can calculate $P(Y)$ given $P(X)$ and the relationship $P(Y|X)$.



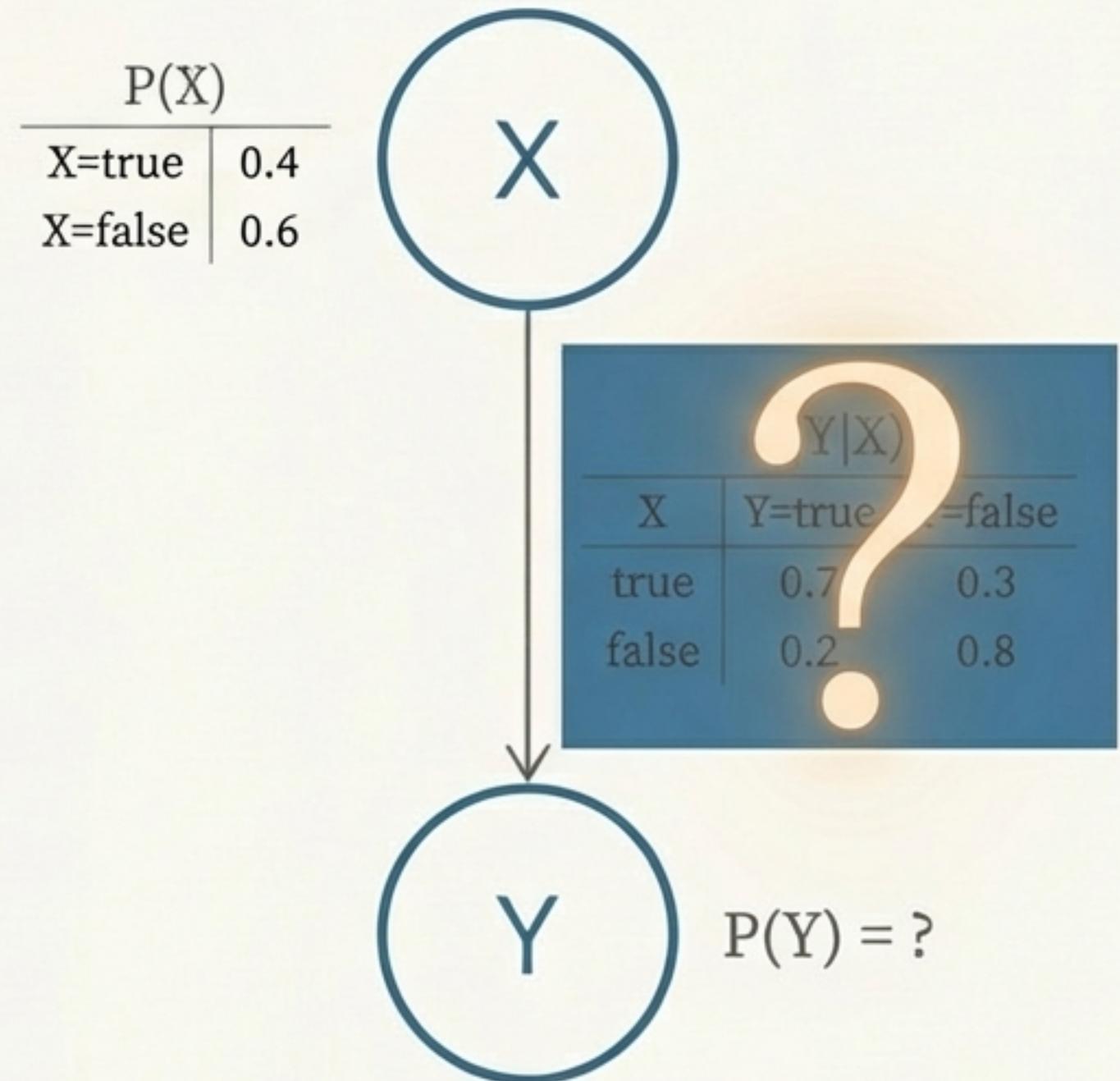
The Core Limitation: Standard BNs Assume a Static World

In a classic BN, the relationships between variables—the conditional probabilities—are fixed. The table for $P(Y|X)$ is defined once and does not change.

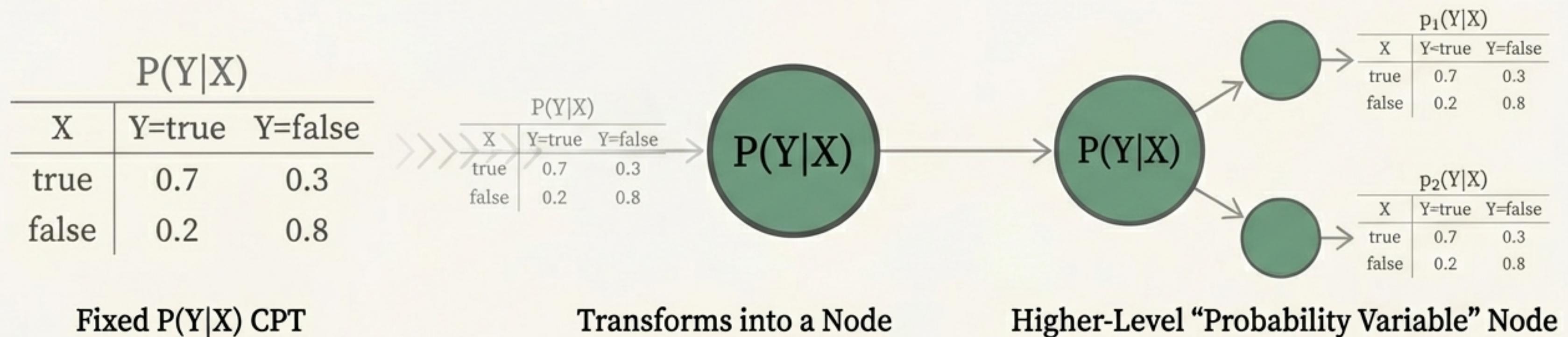
However, in many real-world systems, the rules themselves can change depending on the **context**.

Contextual Attributes are variables that don't directly cause an outcome, but instead influence the probability distributions within the predictive model.

This raises a critical question: How do we model a system where the probabilistic relationships are themselves variable?



The Metanetwork's Core Idea: Treat Probabilities as Variables



The Bayesian Metanetwork makes a fundamental shift: it treats the parameters of a BN as random variables themselves.

This means a conditional probability distribution, like $P(Y|X)$, is no longer a single, fixed table.

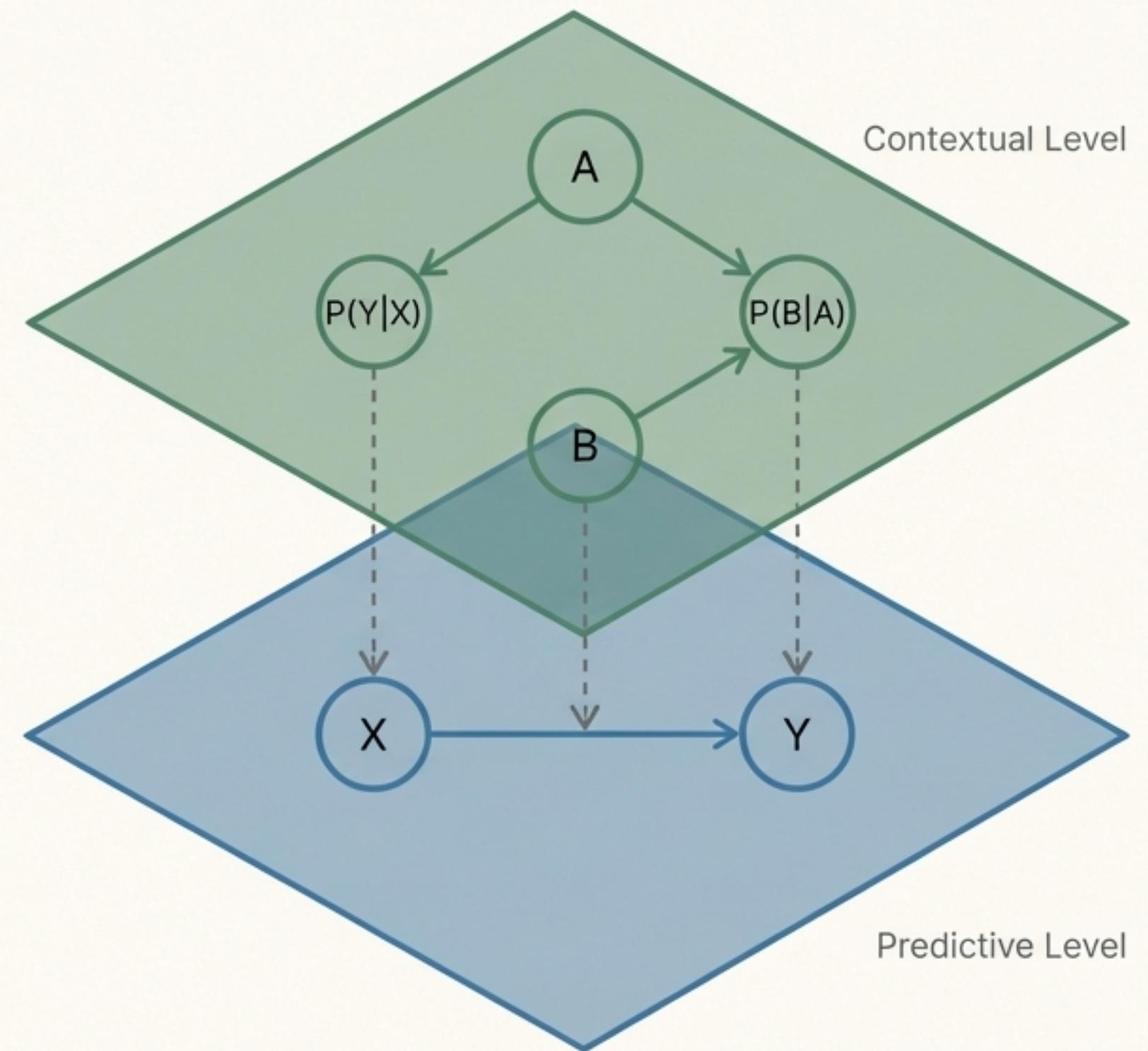
Instead, $P(Y|X)$ becomes a node in a higher-level network. It has its own set of possible values (e.g., different probability tables) and its own probability distribution. This allows us to model dependencies between these probabilities and other variables—the context.

A Network of Networks: The Two-Level Metanetwork Structure

A Bayesian Metanetwork is a set of BNs layered on top of each other. In the simplest case, there are two levels:

1. Predictive Level (Base BN): This is the standard Bayesian network that models the relationships between predictive and target attributes (e.g., $X \rightarrow Y$).
2. Contextual Level (Meta-BN): This is a higher-level network whose nodes represent the probability distributions of the predictive level. It models how context influences those distributions.

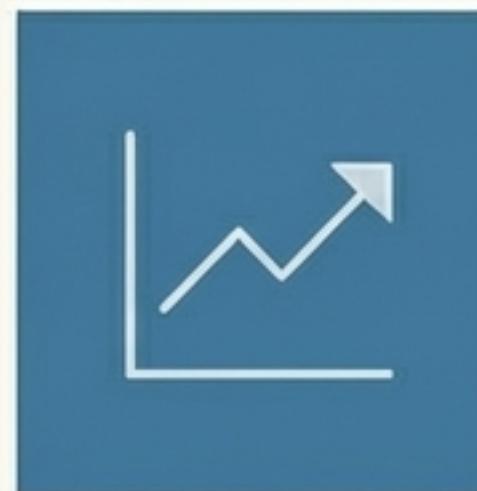
Inference is performed on both levels to arrive at a final probability.



Grounding the Theory: An Example of Wellness, Work, and Country

To understand how a Metanetwork functions, let's consider a concrete scenario.

We want to determine the probability of someone's wellness. The core assumption: The relationship between being hardworking and becoming rich is not universal. It depends on the context of the country one lives in.



Target Attribute (Y):
Wellness

`Rich`, `Poor`

Predictive Attribute (X):
Work Ethic

`Hardworking`, `Lazy`

Contextual Attribute (Z):
Country of Residence

`USA`, `Ukraine`, `TheRestWorld`

The Predictive Level: Two Possible ‘Rules’ for Wellness

At the predictive level, we don't have one single Conditional Probability Table (CPT) for $P(\text{Wellness}|\text{Work Ethic})$. Instead, we hypothesize two possible relationships, or “worlds”: $p1(Y|X)$ and $p2(Y|X)$.

In world $p1$, being hardworking has a very strong correlation with being rich (0.8). In world $p2$, the correlation is weaker, and being lazy has a 50/50 outcome.

The question is: which ‘world’ are we in? This is determined by the context.

$p1(Y|X)$ - Strong Correlation

	Hardworking	Lazy
Rich	0.8	0.1
Poor	0.2	0.9

$p2(Y|X)$ - Weaker Correlation

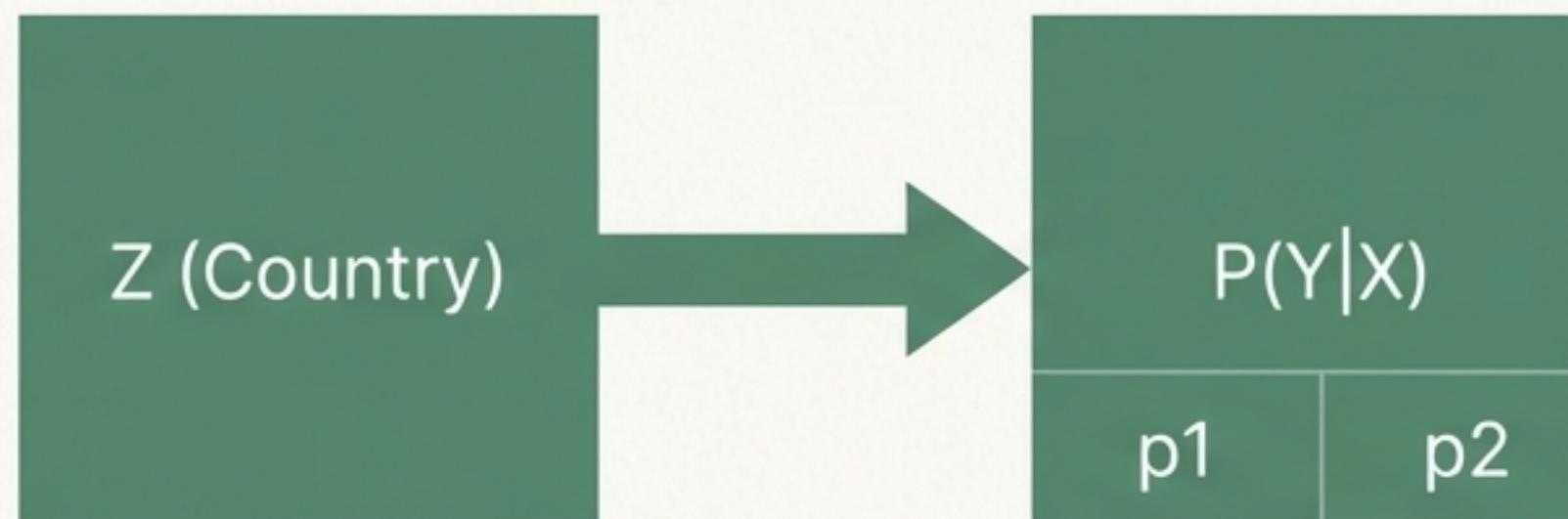
	Hardworking	Lazy
Rich	0.6	0.5
Poor	0.4	0.5

The Contextual Level: How “Country” Selects the Operating Rule

The contextual attribute, Country (Z), acts as a **node** in a **meta-network**. It influences the probability of $P(Y|X)$ taking on the state $p1$ or $p2$.

For example, in the ‘USA’, there is a 90% chance that the relationship $p1$ holds. In ‘Ukraine’, there is an 80% chance that $p2$ holds.

This models the idea that the socio-economic environment (context) changes the causal link between work ethic and wellness.



P(P(Y X) Z)			
	USA	Ukraine	TheRestWorld
p1(Y X)	0.9	0.2	0.7
p2(Y X)	0.1	0.8	0.3

From Two Levels to One Answer: Calculating the Final Probability

The final probability of wellness is a weighted average, informed by the context.

Step 1: Calculate the overall probability of each “rule”

$$P(p1) = (0.2 * 0.9) + (0.1 * 0.2) + (0.7 * 0.7) = 0.69$$

$$P(p2) = (0.2 * 0.1) + (0.1 * 0.8) + (0.7 * 0.3) = 0.31$$

Step 2: Calculate the final probability of being Rich

We apply these weights to the outcomes from each rule, considering the distribution of work ethic ($P(\text{Hardworking})=0.3$, $P(\text{Lazy})=0.7$).

$$\begin{aligned}\text{Final P(Rich)} &= (P(\text{Rich}|p1, \text{Hardworking}) * P(\text{Hardworking}) + P(\text{Rich}|p1, \text{Lazy}) * P(\text{Lazy})) * P(p1) + \\ &\quad (P(\text{Rich}|p2, \text{Hardworking}) * P(\text{Hardworking}) + P(\text{Rich}|p2, \text{Lazy}) * P(\text{Lazy})) * P(p2)\end{aligned}$$

$$\text{Final P(Rich)} = [(0.8 * 0.3) + (0.1 * 0.7)] * 0.69 + [(0.6 * 0.3) + (0.5 * 0.7)] * 0.31$$

$$\text{Final P(Rich)} = [0.24 + 0.07] * 0.69 + [0.18 + 0.35] * 0.31$$

$$\text{Final P(Rich)} = [0.31] * 0.69 + [0.53] * 0.31 = 0.2139 + 0.1643$$

$$\text{Final P(Rich)} = \mathbf{0.3782}$$

$$\text{Final P(Poor)} = 1 - 0.3782 = \mathbf{0.6218}$$

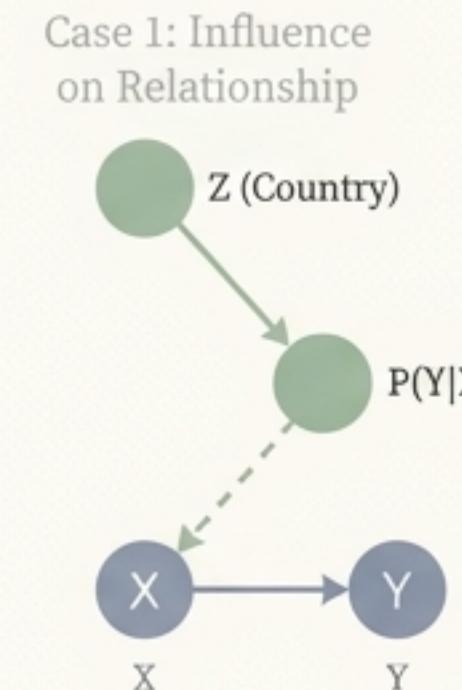
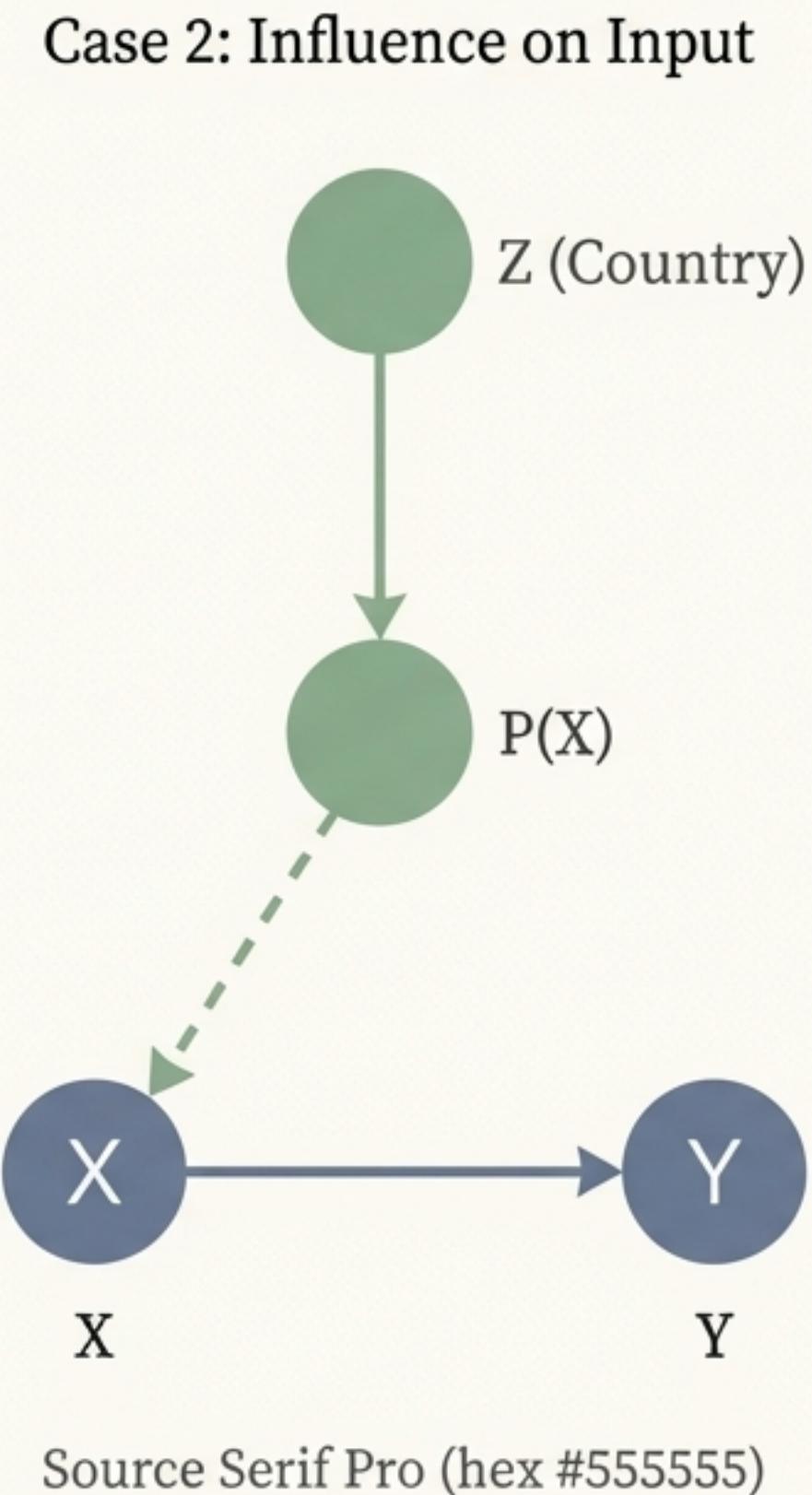
The final probability is intelligently blended based on the context.

The Model's Flexibility: Context Can Also Influence Inputs

The Metanetwork is not limited to modeling context's effect on conditional probabilities ($P(Y|X)$). It can also model how context affects unconditional probabilities.

In our example, the country of residence (Z) could influence the probability of someone being hardworking or lazy ($P(X)$).

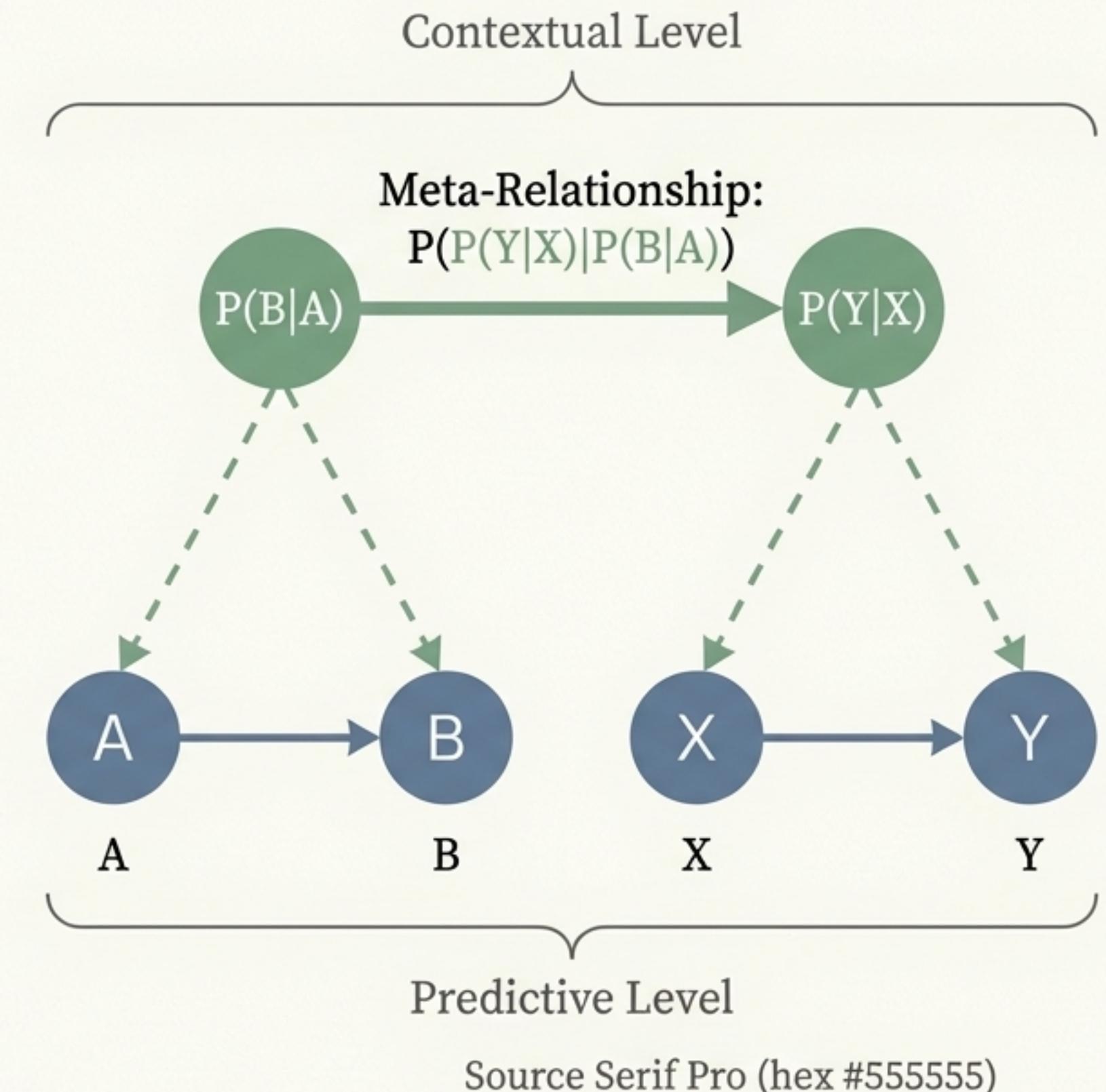
The mechanism is the same: the $P(X)$ distribution becomes a random variable at the meta-level, influenced by the context node Z .



The General Framework: A Formal Definition

Definition: A Bayesian Metanetwork is a set of Bayesian networks, which are put on each other in such a way that conditional or unconditional probability distributions associated with nodes of every previous probabilistic network depend on probability distributions associated with nodes of the next network.

This allows for complex, multi-level contextual dependencies. For example, the relationship between two contextual factors can itself be modeled in a higher-level network.

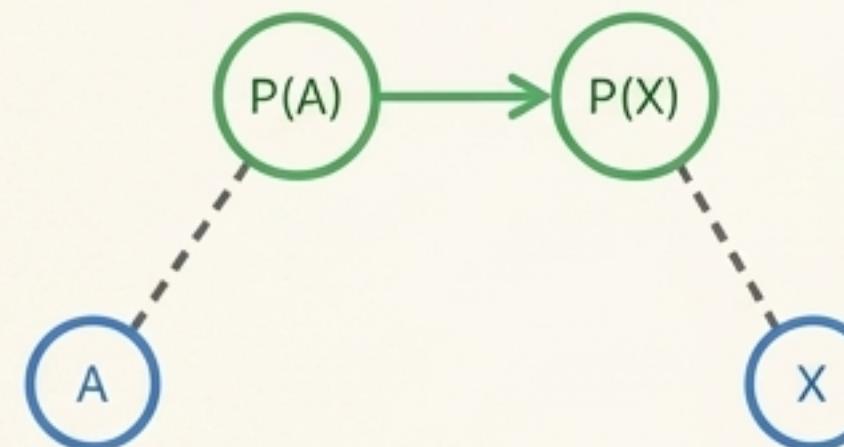


A Versatile Framework for Modeling Complex Systems

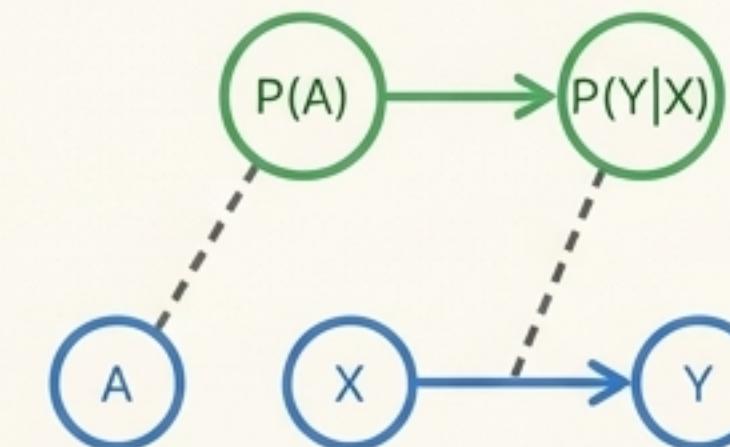
The Metanetwork architecture is highly flexible, allowing for various types of interactions between the predictive and contextual levels. Contextual factors can influence:

- Unconditional probabilities ($P(X)$)
- Conditional probabilities ($P(Y|X)$)
- A mix of both

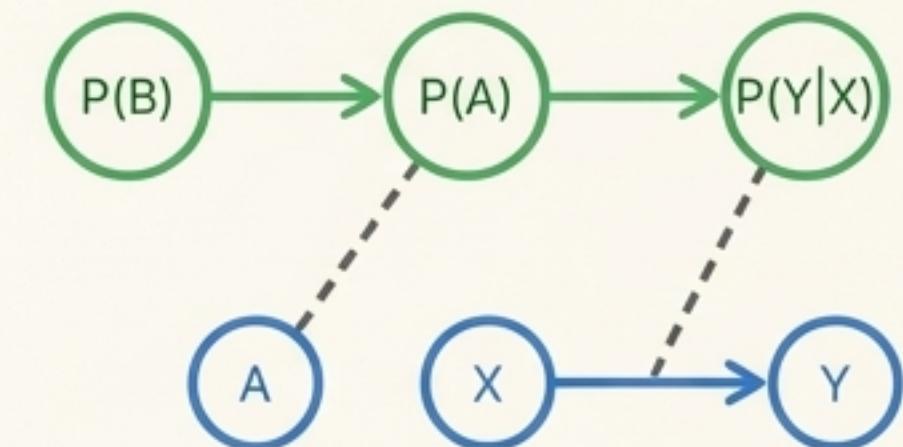
Furthermore, the contextual level can have its own complex network structure, modeling dependencies between different contextual influences.



Contextual Influence on
Unconditional Probabilities



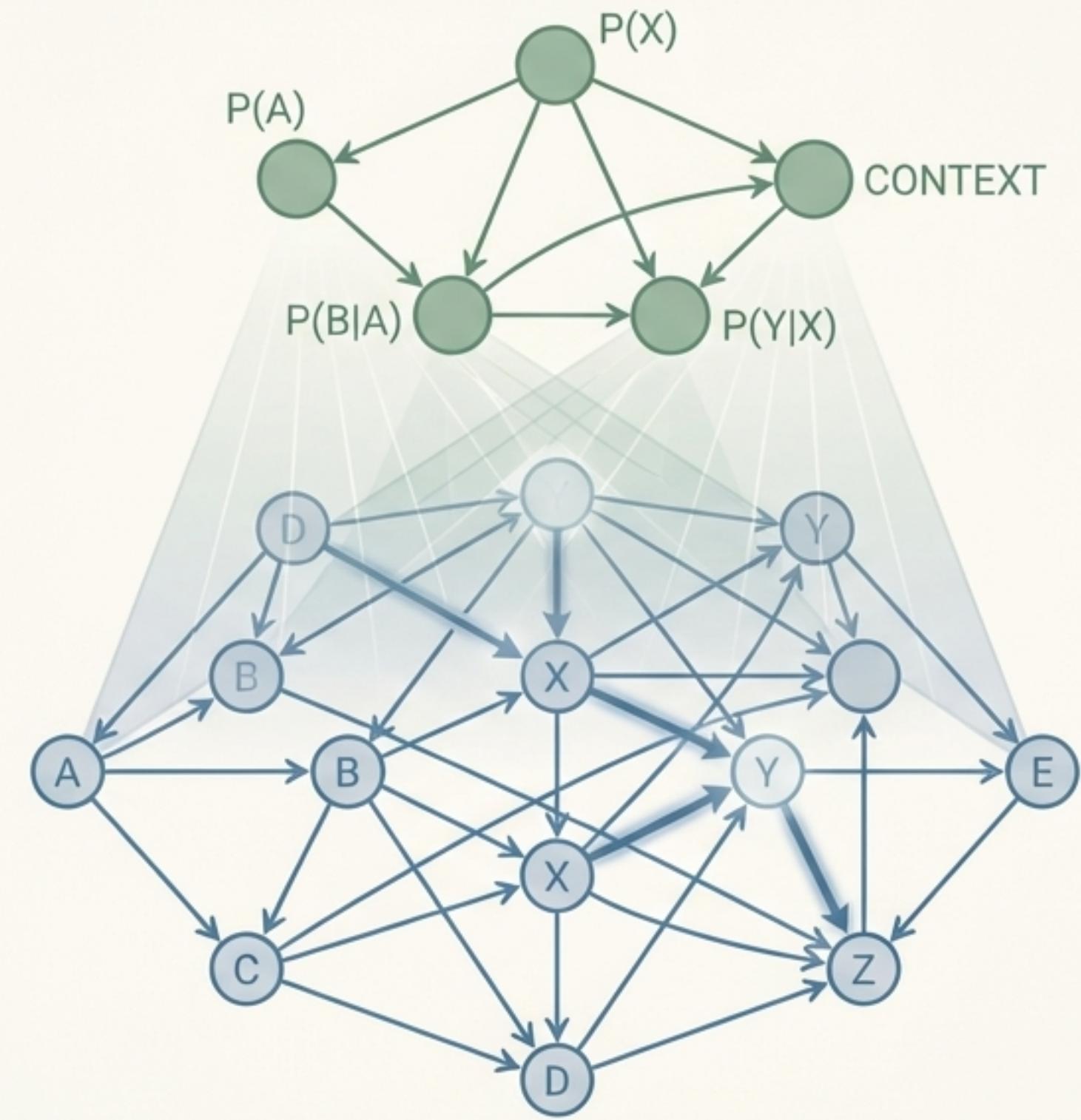
Unconditional Probability
Influencing a Conditional One



Complex Contextual
Interdependencies

Conclusion: A Leap Forward in Context-Aware Modeling

- Standard BNs are powerful but assume a static reality. Their parameters are fixed.
- The Bayesian Metanetwork treats probabilities as dynamic variables. This allows the model to adapt to changing contexts.
- It provides a ‘network of networks’ structure. A contextual meta-level BN governs the parameters of a predictive base-level BN.
- This approach offers a robust and flexible framework for building more nuanced and realistic probabilistic models of complex systems.



The Path Forward: Learning and Application

The Bayesian Metanetwork concept opens up new avenues for research and application. Key areas for future work include:

- Developing Advanced Learning Algorithms: Creating methods to learn Metanetwork structures and parameters directly from data with multilevel uncertainty.
- Proving Efficiency in Real-World Scenarios: Applying the framework to complex, dynamic domains.

Early applications have already shown promise in modeling context-sensitive mobile user preferences, demonstrating the practical value of this approach.

