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Machine Learning (FKIML)

A Modular Framework for Injecting Vague
- Human Expertlse into Neural Networl
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Purely Data-Driven Models Are Brittle
Where Knowledge is Critical

Despite their power, standard neural networks face F8is orlleritica
persistent challenges when trained exclusively on T Data-Sparse [ corner case j
empirical data, especially in high-stakes domains. Region :
True Function 5
i Data Scarcity: Models often fail on rare but \ g S o e
// critical events (e.g., safety-critical “corner cases”) o o .' [ corner case ]
* that are underrepresented in training data.

Lack of Interpretability: “Black box” models can
—*.’—* drift into unrealistic or unsafe decision regions
without adhering to known domain principles.

The Need for Expertise: How can we inject ‘ee*® NN Prediction
@ vague, heuristic, and linguistically-expressed
Q human knowledge (“high temperature”, “moderate >

risk”) into a rigid numerical framework?
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FKIML: A Standard Neural Network Guided by an External Fuzzy "Teacher"

Instead of embedding fuzzy logic inside the network, FKIML uses a conventional Neural Network
regularized by an external, fixed Fuzzy Logic Controller (FLC). The FLC acts as a source of prior
knowledge, and the NN learns to align its predictions with both the data and the FLC's expert rules.

{ )
Standard Neural Network (NN)

YNN
’ - - === _.1 )
@ | Backpropagation
, (updates NN only)

: . V,
Crisp Inputs :
(e.g., Temperature, Vibration) 7 ~ .
Fixed Fuzzy Logic Controller | . )
e _ YFLC Combined Loss
/X><\ Function
\ J

FKIML

Modular design. The NN remains a standard architecture.
The FLC is a separate, non-trainable knowledge source.

ANFIS (Classic Neuro-Fuzzy)

Integrated design. Fuzzy rules and membership functions are
embedded as trainable layers within the network architecture.
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Situating FKIML in the Knowledge-Informed Machine
Learning Landscape

KIML integrates domain knowledge to improve model robustness and efficiency. FKIML
extends this paradigm to handle knowledge that is vague, linguistic, and imprecise—a
common form of human expertise.

| Approach | Type of Knowledge | | Enforcement | Example |

PINNSs Hard Physics (PDEs) | Hard/Soft Penalty | |Heat Equation |

Logic-Informed Symbolic Logic Logical Loss |First-Order Logic
Rules |

|Bayesian Deep Probabilistic Priors | Distributional | Gaussian Priors on

Learning - Parameters |

&1 NotebookLM



The Mechanism: An Integrated Loss Function
Balancing Data and Knowledge

Data Fidelity. The standard supervised —— Knowledge Alignment. The fuzzy

loss. Measures how well the NN output regularization term. Measures the

y_nn matches the ground truth y_true. deviation between the NN output
y_nn and the FLC’s expert output
Y_FLC-

Liotal = Ldata + A * quzzy

| The Trade-Off Parameter. A hyper-
parameter that controls the balance.
A=0is a plain NN. A larger X enforces
stricter adherence to the fuzzy rules.

Gradients flow from both loss components, ‘nudging’ the NN’s parameters to
learn from both the data and the softly-encoded expert rules.
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Two Complementary Strategies for Knowledge Integration

Option 1: Knowledge-Alignment Regularizer

The NN is trained to match the ground truth,
while a second loss term penalizes it for
disagreeing with the FLC. The FLC acts as a soft
constraint or teacher.

Ltﬂtal & LNN (?NN ) Ytrue) +A¥ quzzy(?NN: ?FLc)

Use Case:

Ideal when FLC encodes safety margins or
heuristics that must be respected, even if they
aren't perfectly accurate.

Option 2: Pseudo-Label Mixing

A blended target is created by interpolating
between the ground truth and the FLC'’s output.
The NN is then trained on this single
‘pseudo-label’.

Ytarget = (1-B) * Yirye T B * Yrrc Where B = map(]).
Then: Ltﬂtal & MSEG’NNJ Ytarget)

Use Case:

Offers a very direct and interpretable way to
balance trust between empirical data and
expert rules.
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Proof-of-Concept: Predicting Machine Risk with

Sparse, Critical Data

Experiment Setup

» Task: A synthetic dataset where a model must
predict machine Risk’ from ‘Temperature (T)
and 'Vibration (V)'.

» The Challenge: The "High-High" (HH) corner
(where T > 0.8 and V > 0.8) represents
a critical, high-risk state. However, training
data in this region is intentionally made
sparse.

« The Hypothesis: A plain NN will underfit the
HH region due to lack of data, while FKIML can
use a fuzzy rule to improve performance on
these critical cases.
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Capturing Expert Knowledge in a Multi-Rule Fuzzy Logic Controller

The Fuzzy Rule Base Membership Functions (MFs)

Expert intuition is encoded into Linguistic variables like ‘Medium’ and ‘High’ are defined by
a Mamdani-type FLC with three =~ mathematical functions. We evaluated three families:

rUIES: Gaussian = Temperature (Gaussian = Vibration piT.VY) map — Gaussian

* Rule 1: IFTis High ANDVis .~ e . i
High, THEN Risk is High. ™ — q
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The Verdict: FKIML Sacrifices Minor Global Accuracy for Major Gains on Critical Cases

As the knowledge-weighting parameter A" increases, the error on the critical “High-High” (HH) cases drops
significantly, while the overall error on all data increases only modestly. This demonstrates a controllable trade-off.
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Visualizing the Impact: FKIML Learns the Critical Risk Corner

A plain NN, trained on sparse data, fails to capture the sharp increase in risk in the HH corner.
FKIML, guided by the fuzzy rule, correctly learns this critical behavior.
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Membership Function Design Is Key to a
Favorable Trade-Off

The shape of the membership functions (MFs) impacts the learning dynamics. Piecewise-linear (Triangular,
Trapezoidal) and smooth (Gaussian) MFs provide different trade-offs between global accuracy and rule consistency.
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Offers a balanced ‘sweet spot’ with Provides the most focused guidance for
strong early gains. the best trade-off in this experiment.

In these experiments, Triangular and Trapezoidal MFs provided the most promising trade-offs,
showing strong improvement on critical cases while remaining robust.
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Robustness Check: Multi-Seed
Analysis Confirms Consistent Gains

Protocol: To ensure results are statistically reliable, the entire
experiment—from data sampling to A selection via a validation set—
was repeated across five independent random seeds. The
improvement in HH-region performance is consistent, and the
optimal A is consistently non-zero.
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Loss Formulation Matters: Pseudo-Label Mixing (Opt 2)
Excels for Critical Cases

* Option 1 (Consistency Loss): Provides a gentle regularization but is less effective at forcing the model to
learn the HH corner, especially with Gaussian MFs.

* Option 2 (Pseudo-Label Mixing): More aggressively steers the NN towards the FLC's target in rule-active
regions. This consistently results in lower HH error, particularly with Triangular and Trapezoidal MFs.

Mean Test HH MSE (mean =+ sd)
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Summary: FKIML is a Simple, Modular, and
Powerful Framework

Modular & Simple: Integrates with any standard NN via a single auxiliary loss term. No
complex architectural changes are needed.

Interpretable by Design: Expert knowledge is kept in a separate, fixed FLC, remaining
transparent and auditable, unlike in ‘black-box’ integrated systems.

Tunable Trade-Off: The A parameter provides explicit, granular control over the balance
between fitting the data and adhering to expert rules.

Proven Effective: Demonstrates statistically significant improvement in robustness on
rare, knowledge-critical ‘corner cases’ where data-driven models typically fail.

A Clear Alternative to ANFIS: Offers a more flexible and modern approach to blending
neural and fuzzy systems, compatible with deep learning pipelines.
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The Horizon: Applications and Future Research

Potential Applications Open Research Questions
FKIML provides a promising bridge between + How can we best compose and weight
imprecise human reasoning and numerical Al in multiple, potentially conflicting fuzzy rules?

domains rich with heuristic knowledge.

- Can FKIML frameworks be made fully

(ej) Healthcare: Integrating clinical guidelines architecture-agnostic (e.g., for Transformers,
(“older patients usually require...”). GNNs)?

Industrial Control: Encoding soft safety + How can we develop adaptive A schedules
rules (“avoid high pressure when possible”). for more efficient training?

expert assessments (“algae growth tends to
accelerate...”).

Reinforcement Learning: Using fuzzy
rewards to reflect vague preferences.

g Environmental Modeling: Capturing
bl
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