Hyper-flexible Convolutional Neural Networks

Beyond Brittle: Forging Robust Al by Rethinking
Iits Mathematical Core

Vagan Terziyan, Diana Malyk, Mariia Golovianko, Vladyslav Branytskyi
Faculty of Information Technology, University of Jyvaskyla, Finland
Department of Artificial Intelligence, Kharkiv National University of Radio Electronics, Ukraine

As published in Neural Networks, Volume 155, 2022.
& NotebookLM



Powerful, Yet Brittle: The Hidden
Vulnerability of Standard CNNs

INPUT IMAGE + ADVERSARIAL PERTURBED IMAGE
Standard CNN classifies PERTURBATION X Standard CNN misclassifies as
correctly with 98% confidence. ‘guacamole’ with 99% confidence.

State-of-the-art CNNs can be decisively fooled by tiny, human-
imperceptible changes. This fundamental lack of robustness is a critical
barrier to their thneir deployment in high-stakes, real-world scenarios.
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The Root Cause is Mathematical Rigidity

MAX POOLING

The network learns weights for a fixed operation,
but it cannot learn the operation itself.

Most CNN components—convolution, pooling, activation—rely on fixed mathematical functions. The
network is highly tuned to the training data for that specific function, making it inflexible and prone to
hidden overfitting. The mathematical essence of each component remains the same, regardless of the task.
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The Solution: From Fixed Operations to Flexible,
Learnable Functions

What if the network could learn the optimal mathematical operation for
the task? We introduce two families of generalized mean functions
that make this possible.

Generalized Lehmer Mean (GLM) Generalized Power Mean (GPM)
A two-parameter (a, ) function that can A similar two-parameter ('y', ') function
smoothly transition between MIN, AVG, and offering a rich and distinct spectrum of
MAX operations and a continuous spectrum aggregation behaviors.

of behaviors in between.

> mathematical behavior for each component, moving beyond fixed logic to

7 By making these parameters trainable, the network itself discovers the ideal
achieve a new level of adaptability.
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A Universe of Functions
In a Single Equation
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These surfaces show the output of GLM (top) and GPM (bottom) for the input vector (-2, -1, 0, 6). By learning to navigate this
surface via the trainable parameters (a, B or y, 8), the network can select the perfect functional behavior for its needs.
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Application 1: Generalized Pooling Adapts to the Signal

X Fixed Pooling Fails Generalized Pooling Succeeds
input feature map after max pooling input feature map GLM-based Pooling
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input feature map after max pooling input feature map GLM-based Pooling
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input feature map after average pooling input feature map GLM-based Pooling

Unlike fixed methods, Generalized Pooling is sensitive to the distribution of values within the filter. It can learn to
ignore outliers, average when needed, or select the strongest signal, leading to more robust feature extraction.
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Upgrading the Entire CNN Stack with Learnable Components
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The principle of mathematical flexibility can be applied to every core component. This creates a ‘Hyper-Flexible'
architecture where not just weights, but the fundamental operations themselves are learned and optimized end-to-end.
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The Proving Ground: Testing Flexibility on CIFAR-10

Dataset & Architecture The Competitors
Inputimage  Block bl Block b2 Block b3 Classifier ﬁ%ﬁ Standard CNN: Uses fixed
(3, 32, 32) (64, 16, 16) (128, 8,8) Regularization (256, 4, 4) (10) M a x POO'

Diopoul[0.15)

e 1 Flexible CNN: Uses LPPool
(Power Mean with 1 trainable

=3 parameter).
et s Hyper-Flexible CNN: Uses
Generalized Lehmer Pooling
Dataset: CIFAR-10 (60,000 32x32 color images in 10 (GLP) with 2 trainable
classes). parameters.

We compare these models to measure the impact of flexibility on both standard classification
accuracy and robustness against targeted adversarial attacks.
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Result 1: Flexibility Delivers a Clear Accuracy Advantage

Accuracy (%)

Test Accuracy on CIFAR-10

84.24%

85.26%

Standard (MaxPool)

+1.02% In‘i‘ﬁrovement

@ MaxPool LPPool @ GLPPool
M\ VALIDATION
b

0.6

0.4
5 10 15 Epochs

The validation loss for the GLP-based
model (red) is consistently lower,
indicating more stable and effective
learning throughout training.

Hyper-Flexible (GLP)
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Result 2: Where Flexibility Truly Shines—Resisting
Adversarial Attacks

Accuracy Under Projected Gradient Descent (PGD) Attack
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As the attack intensity increases, the performance gap widens dramatically. While the standard model
becomes unusable, the hyper-flexible model maintains significantly higher accuracy, demonstrating
Inherent resilience.
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The Flexibility Dividend: Advantage Grows
Exponentially Under Pressure

Performance Advantage of GLP vs. MaxPool During Attack
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The more hostile the digital environment, the greater the return on mathematical
flexibility. This is a fundamental principle for building truly resilient Al.
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The Principle of Flexibility Extends Across the Architecture

Generalized Convolution (GLC) Generalized Neurons (GLN)
Replacing standard convolution with its Even the basic neuron can be generalized.
flexible counterpart also boosts A Multi-Layer Perceptron built with
performance, with the greatest impact GL-Neurons and SoftMax activation
seen in the network’s deeper layers. achieved 93.3% accuracy on the Iris
dataset, significantly outperforming a
standard MLP’s 86.7%.
Standard CNN: 84.24%
CNN with GLC in block 3: 84.42% a,f3

CNN with GLC in all blocks: 84.88%
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Beyond Pattern Matching: Tackling Unconventional Problems

Unconventional MNIST CLASS._1 (Hidden Definition): no vertical AND no horizontal AND
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Could a standard CNN, built on fixed MAX and SUM operations, learn to
classify based on abstract, hidden logic like the absence of a feature? Its
architecture is optimized for presence, not absence.

A hyper-flexible CNN is uniquely equipped for such challenges. It could learn to behave like MIN pooling to detect the absence of
features or discover novel convolution behaviors to match abstract rules—something impossible for a rigid architecture.
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From Fixed Math to Learned Capabilities

1. The Problem Defined 2. A New Paradigm

Standard CNNs are We introduce Generalized
mathematically rigid, making Lehmer/Power Means

them brittle and highly (GLM/GPM)—parameterized
vulnerable to adversarial functions that allow CNN
attacks. components (Pooling,

Convolution, Neurons) to
*learn* their own optimal
mathematical behavior.

3. The Proof Delivered

Hyper-flexible architectures
demonstrate a modest
accuracy gain on clean data
but a massive,

compounding advantage in
adversarial robustness,
proving the fundamental value
of learned flexibility.
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Explore the Future of Flexible Al

Future Directions

e Develop specialized training procedures to unlock the full potential of hyper-flexible models.
e Test performance on more complex datasets with non-obvious, hidden labeling logic.

 Apply generalized means to the backpropagation process itself for more adaptive learning.

r e x= s

Access the code, replicate the experiments, and build the
next generation of robust neural networks.

https://github.com/Adversarial-Intelligence-
Group/flexnets
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