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Bayesian C-Metanetwork is a tool to manage conditional dependencies in Bayesian networks in different contexts.
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Bayesian inference is applied on each level of Bayesian Metanetwork starting from the highest one. 
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Fig. 1. The two-level Bayesian C-Metanetwork for managing 

conditional dependencies
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Fig. 2. The example of the Bayesian C-Metanetwork projected to 2-D space.

The nodes of the 2nd-level network correspond to the conditional probabilities of the 1st-level network P(B|A) and P(Y|X). The directed arc in the 2nd-level network corresponds to the conditional probability P(P(Y|X)|P(B|A)).
The C-Metanetwork in Fig. 2 has the following parameters:

· the attributes on the predictive level: A with values {a1,a2,…,al}; B with values {b1,b2,…,bm}; X with values {x1,x2,…,xn}; Y with values {y1,y2,…,ys};

· the probabilities on the predictive level: P(A), P(X);

· the conditional probabilities on the predictive level (and at the same time attributes on the contextual level):

· P(B|A) which is a random variable with the set of values {p1(B|A), p2(B|A),…, prr(B|A)};

· P(Y|X) which is a random variable with the possible values {p1(Y|X), p2(Y|X),…, pkk(Y|X)} and is also considered as an attribute node on the contextual level of the Bayesian Metanetwork;

· the conditional probability on the contextual level: P(P(Y|X),P(B|A)), which defines Bayesian conditional probability between two contextual attributes P(B|A) and P(Y|X).
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Bayesian R-Metanetwork is a tool to manage relevancies of variables in Bayesian networks in different contexts (to model appropriate feature selection).
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Fig. 3. The two-level Bayesian R-Metanetwork for modelling relevant feature selection
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Fig. 4. The relevance definition for Bayesian R-Metanetwork.
We consider relevance value as a probability of importance of the variable to the inference of target attribute in the given context. In such definition relevance inherits all the properties of the probability as shown in Fig. 4. 

The Bayesian R-Metanetwork in Fig. 4 has the following parameters:

· the attributes: X with the values {x1,x2,…,xn}; Y with the values {y1,y2,…,ym}.

· the probabilities: P(X), P(Y|X);

· the relevance predicate:

((X) = “yes”, if parameter X is relevant;((X) = “no”, if parameter X is not relevant;

· the relevance value: (X = P(((X) = “yes”).
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Modelling User Preferences

in Mobile E-Commerce

Profiling and Filtering

of the Web-content for Mobile Users

Mobile user's profile has some predictive and contextual features. 
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Constraints and requirements of mobile    environments on a filtering technique:

· restrictions on computational resources of a portable device;

· restrictions on time of a connection and amount of data transferred (a customer pays for every additional second or byte of information during a connection);

· limitations on size of a mobile terminal. 
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Predictive features (learned or defined within user's preferences) will be placed on the basic predictive network level and they will be used to predict user’s behaviour to be able to push him carefully selected and wanted filtered products and services. 

Contextual features will be placed on the control network level. They will be used to predict appropriate conditional dependencies between preference features of user's profile (the basic network level) regarding the current context. 
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- Profiling and Filtering in E-Commerce

- Adaptive Web-Sites 

- Modelling of Information Systems with Multi-Level Uncertainty 
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you don’t need to relearn the whole model when some changes occur, it can be enough to relearn the one level






you don’t need to relearn the whole model when some changes occur, it can be enough to relearn the one level



in the case when complex one-level model can be decomposed on two or more easy structures, Naive Bayes for instance 

and





the accuracy of Bayesian Metanetwork will be higher than the accuracy of the traditional Bayesian network when the environment indirectly affects the probabilistic process, which is modelled by predictive network. We gain in the accuracy because use more precise models in every context and do not use averaging through all the context.

The problem of profiling and filtering is important particularly for mobile information systems where wireless network traffic and mobile terminal’s size are limited comparing to the Internet access from the PC. Dealing with uncertainty in this area is crucial and many researchers apply various probabilistic models. The main challenge of this paper is the multilevel probabilistic model (the Bayesian Metanetwork), which is an extension of traditional Bayesian networks. 








The extra level(s) in the Metanetwork is used to select the appropriate substructure from the basic network level based on contextual features from user’s profile (e.g. user’s location). Two models of the Metanetwork are considered: C-metanetwork for managing conditional dependencies and R-metanetwork for modelling feature selection. The Bayesian Metanetwork is considered as a useful tool to present the second order uncertainty and therefore to predict mobile user's preferences





Definition. The Bayesian C-Metanetwork is a set of Bayesian networks, which are put on each other in such a way that conditional dependencies of every previous probabilistic network depend on the local probability distributions associated with the nodes of the next level network. 
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Definition. The Bayesian R-Metanetwork is a set of Bayesian networks, which are put on each other in such a way that relevancies of variables of every previous probabilistic network depend on the local probability distributions associated with the nodes of the next level network. 
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