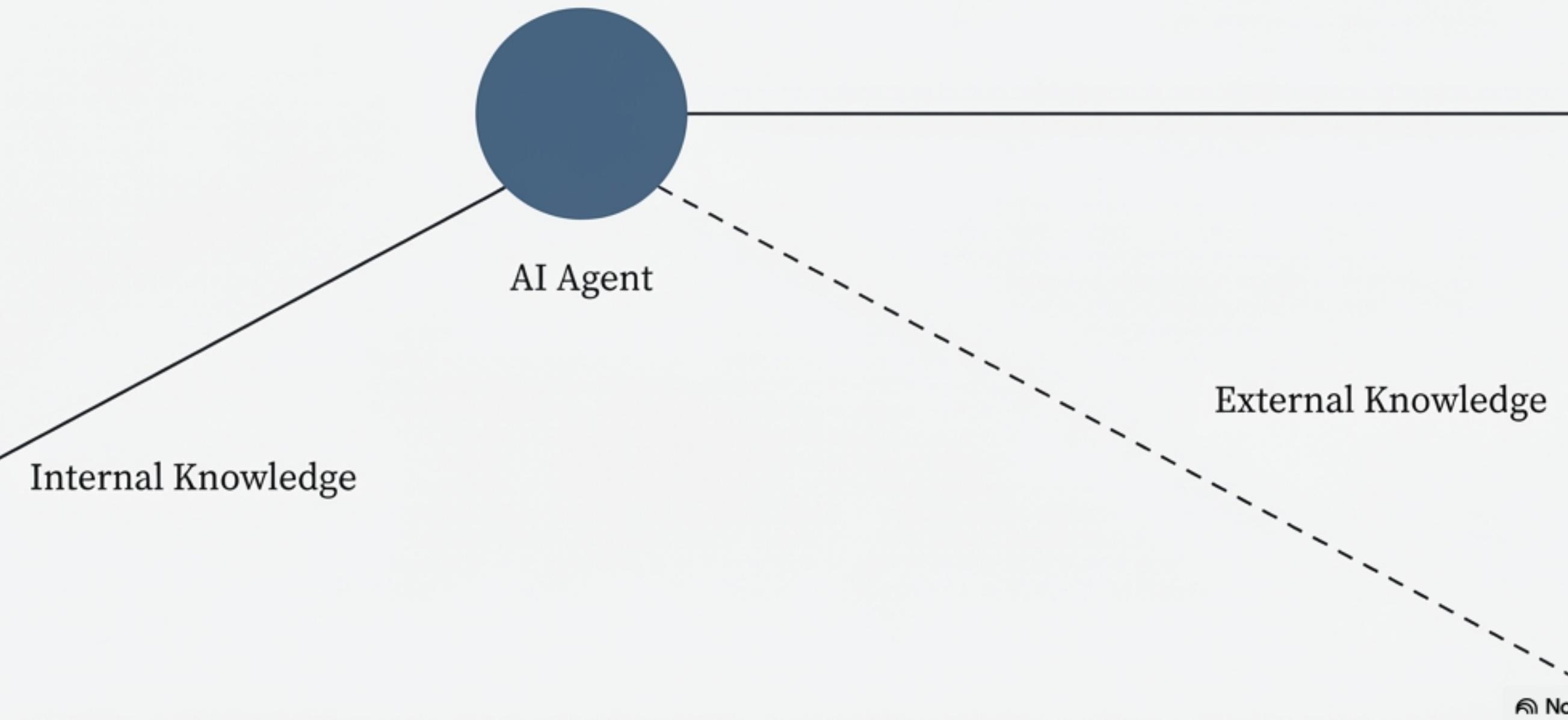


From Asking to Learning: The Evolution of a Knowledge-Seeking AI

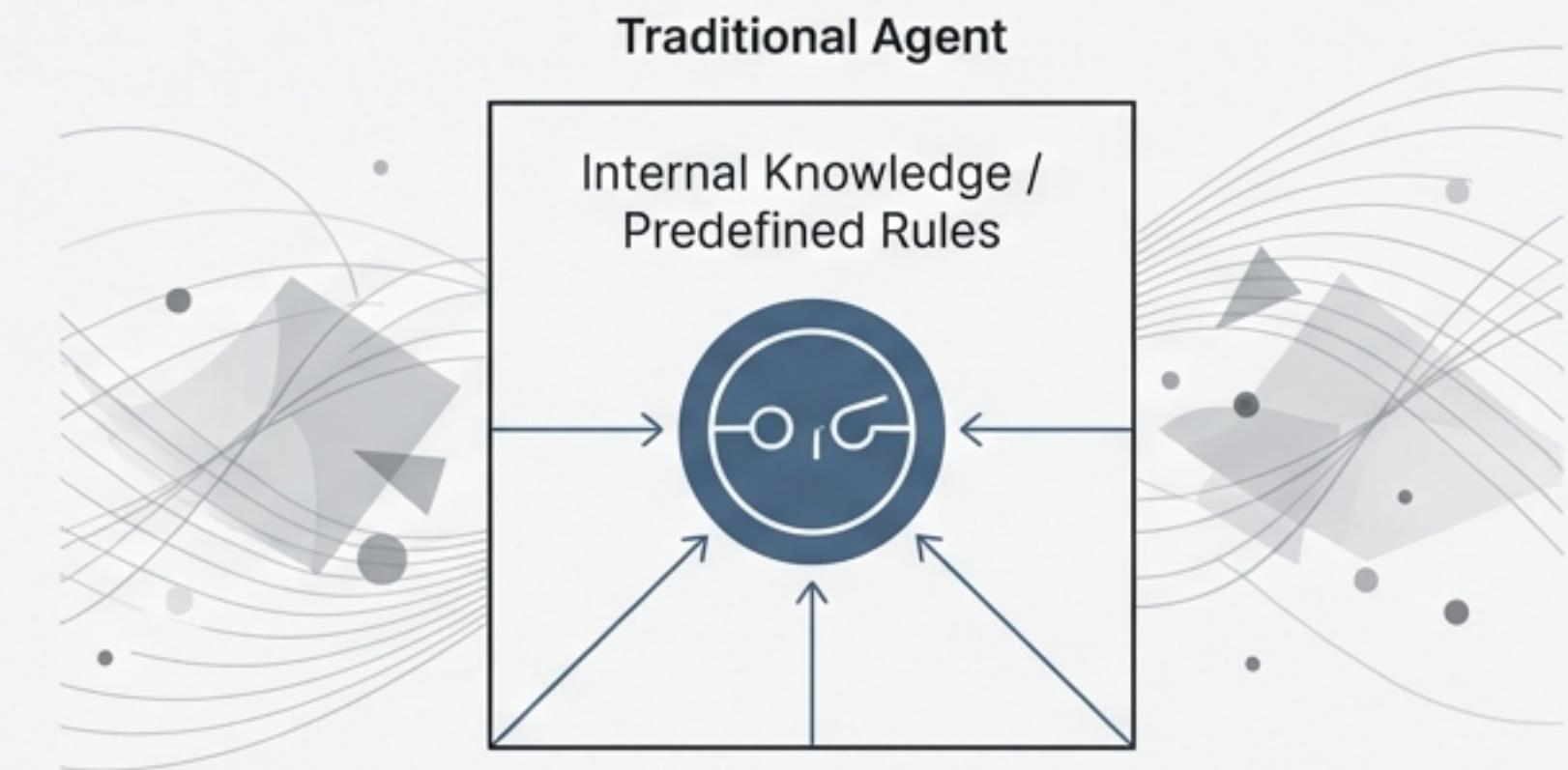
A deep dive into the OPRA framework, a new paradigm for autonomous agents that dynamically integrate external expertise to master complex environments.



Traditional Agents Are Bound by What They Already Know

Autonomous AI agents typically rely on internal models and pre-programmed knowledge.

Reactive models (“Observation-Action”) are fast but inflexible, while deliberative models (“Belief-Desire-Intention”) can plan but struggle with novelty and uncertainty. In dynamic, complex, or partially observable environments—common in Industry 4.0—these agents are limited. When predefined rules are absent or insufficient, their effectiveness breaks down.



A New Paradigm: The Observation-Prompt-Response-Action (OPRA) Loop

We propose an alternative schema that allows an agent to dynamically integrate external knowledge into its decision-making process.

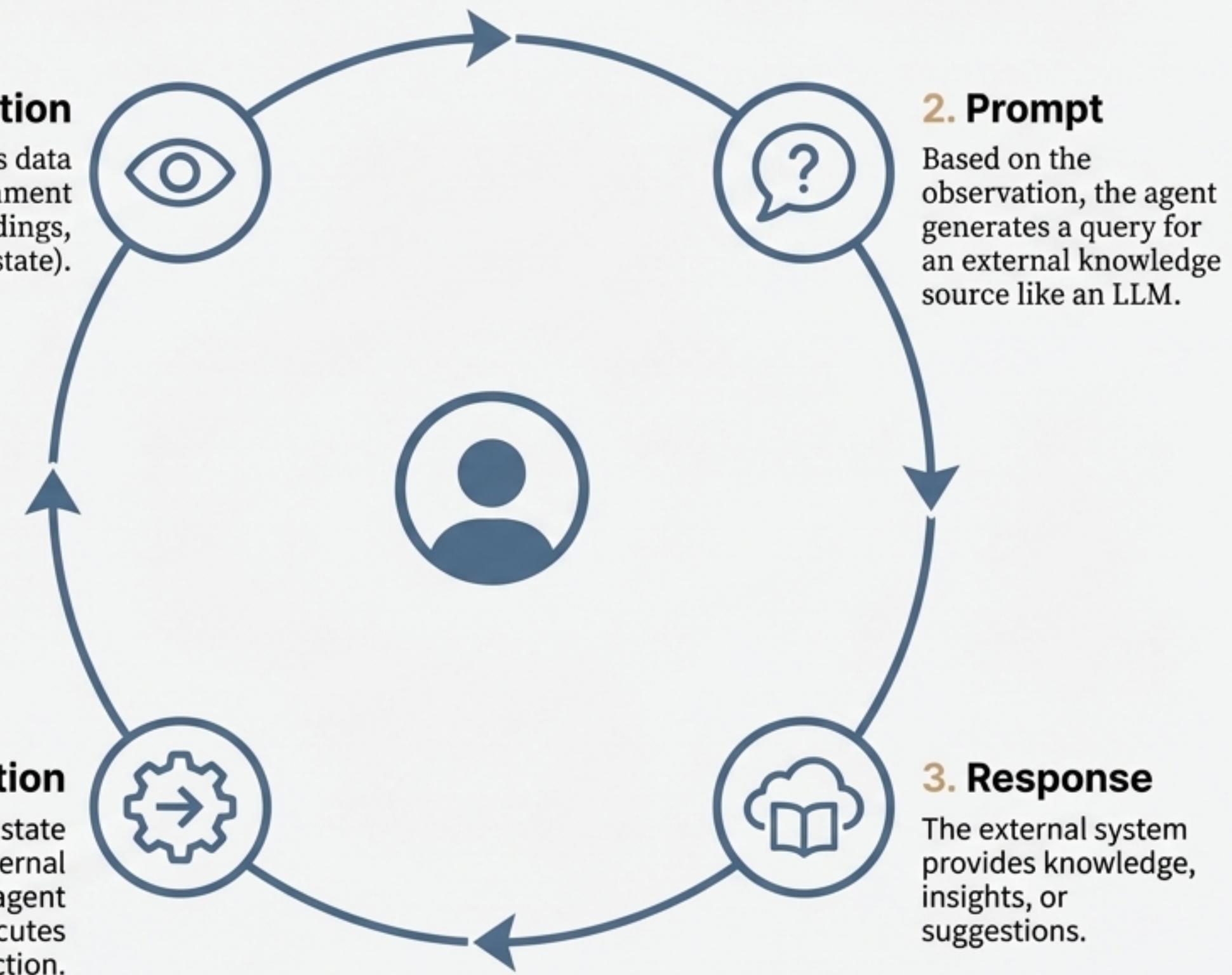
Instead of being limited to its internal state, the agent can actively seek guidance.

1. Observation

The agent collects data about its environment (e.g., sensor readings, game state).

4. Action

Using its internal state plus the new external knowledge, the agent selects and executes an action.



2. Prompt

Based on the observation, the agent generates a query for an external knowledge source like an LLM.

3. Response

The external system provides knowledge, insights, or suggestions.

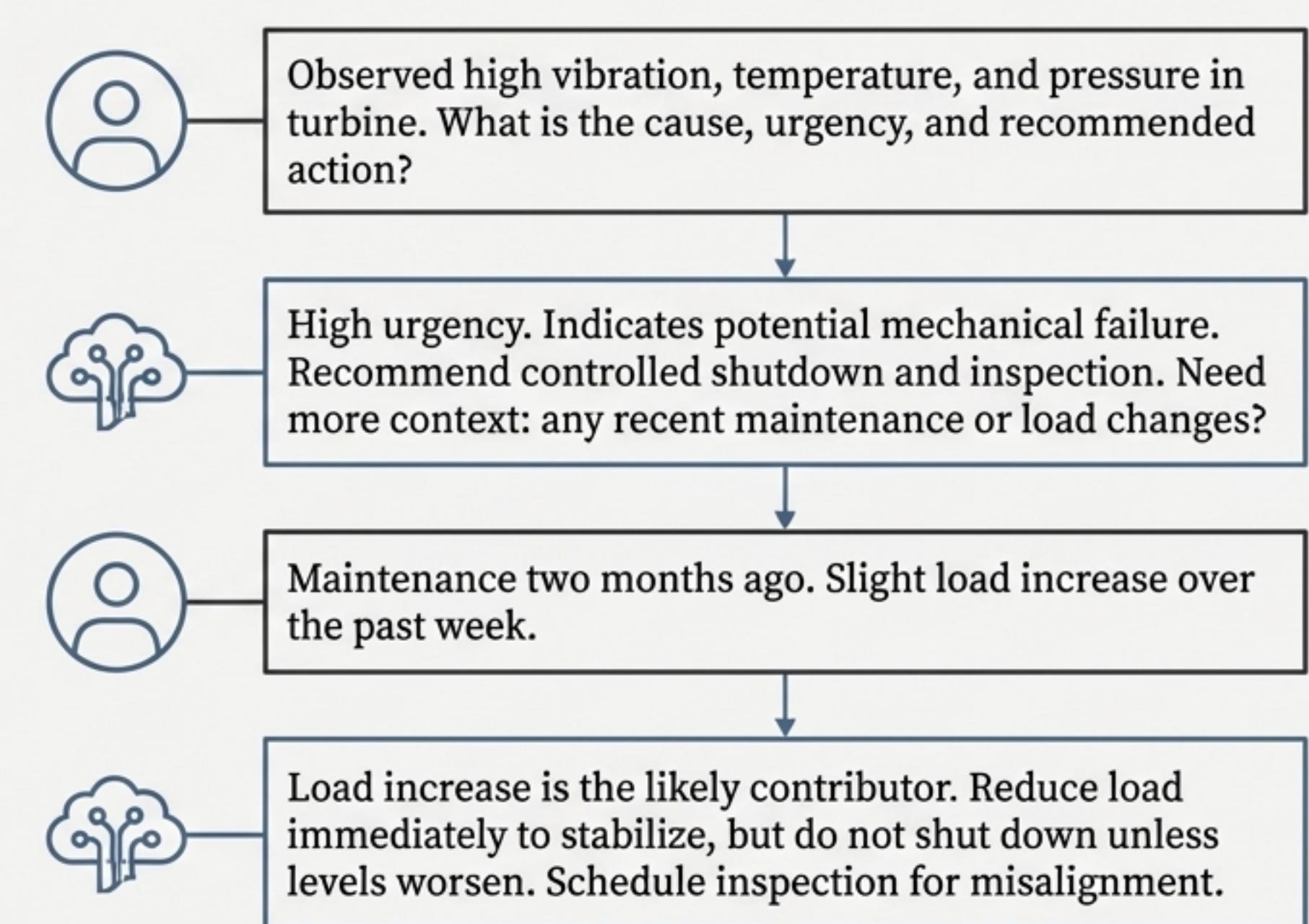
OPRA in Action: Autonomous Predictive Maintenance

An industrial agent monitors a power plant turbine and observes abnormal sensor readings:

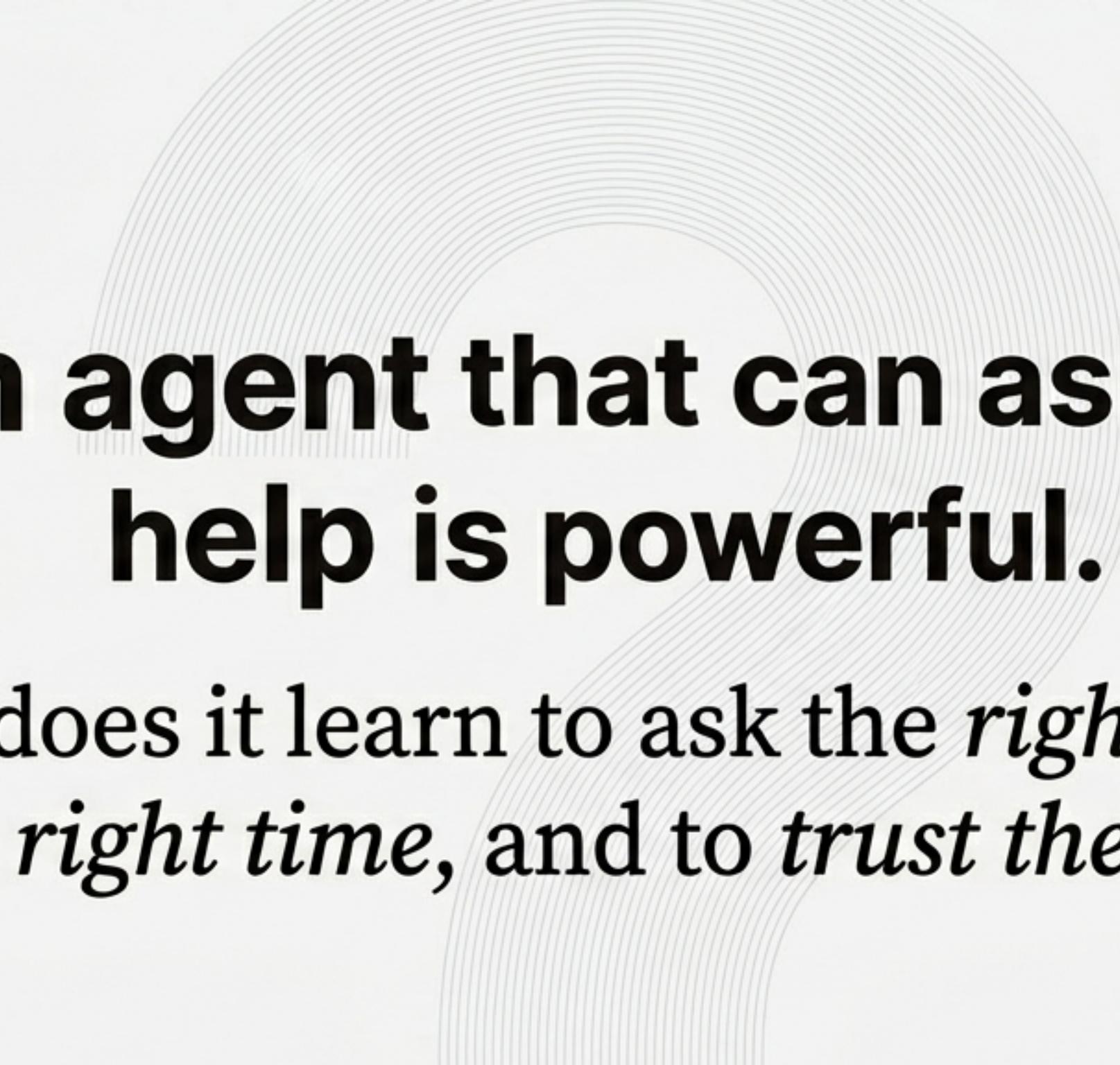
Vibration: **15 mm/s**
(Normal: 1-10)

Temperature: **110 °C**
(Normal: 80-100)

Pressure: **30 bar**
(Normal: 25-28)



Outcome: The agent avoids a costly, unnecessary shutdown while proactively addressing a critical risk.



An agent that can ask for help is powerful.

But how does it learn to ask the *right questions*, at the *right time*, and to *trust the advice*?

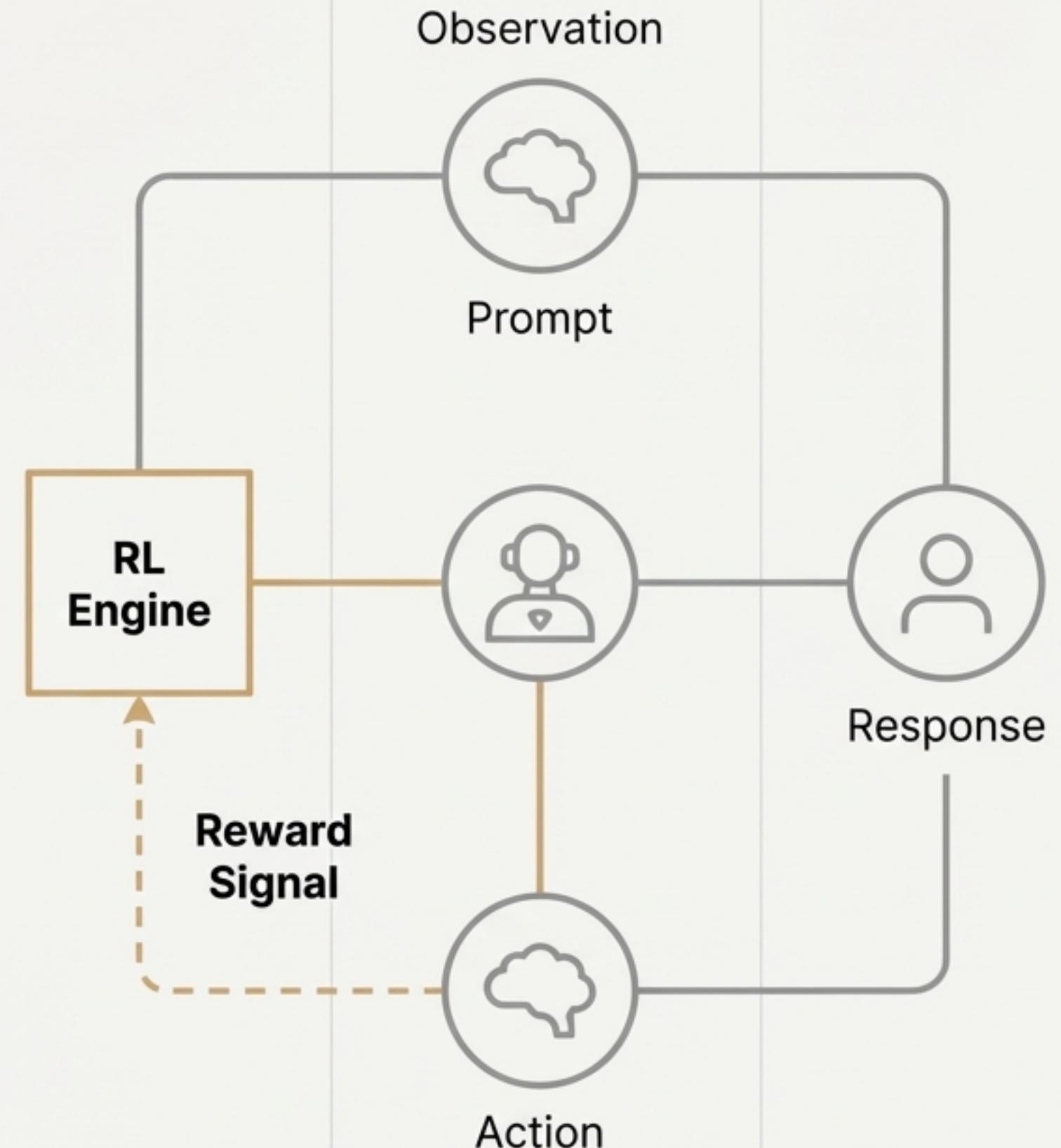
This requires a new level of intelligence.

The Next Evolution: Teaching the Agent to Learn with OPRA-RL

The OPRA-RL framework integrates Reinforcement Learning (RL) with the OPRA loop. By combining the dynamic knowledge acquisition of OPRA with the self-learning mechanisms of RL, we enhance the agent's adaptability and performance.

The agent now learns an optimal policy that balances two key factors:

1. **Internal Learning**: Improving its own actions through trial-and-error interaction with the environment.
2. **External Knowledge Acquisition**: Learning how to effectively query external systems to fill knowledge gaps.



The Architecture of Learning: A Multifaceted Reward Function

$$rt = rt_{env} + \lambda * rt_{Kext}$$

To learn effectively, the agent is rewarded not just for good outcomes (rt_{env}), but for good *questions* (rt_{Kext}). The knowledge reward incentivizes the agent to improve its querying skills based on five key principles:

Prompt Relevance

Does the prompt align with the agent's goal?

Response Relevance

Does the response help advance the goal?

Actionability

Does the response reduce uncertainty and guide action?

Accumulation (Learning Gain)

Does the response improve the agent's long-term performance?

Efficiency

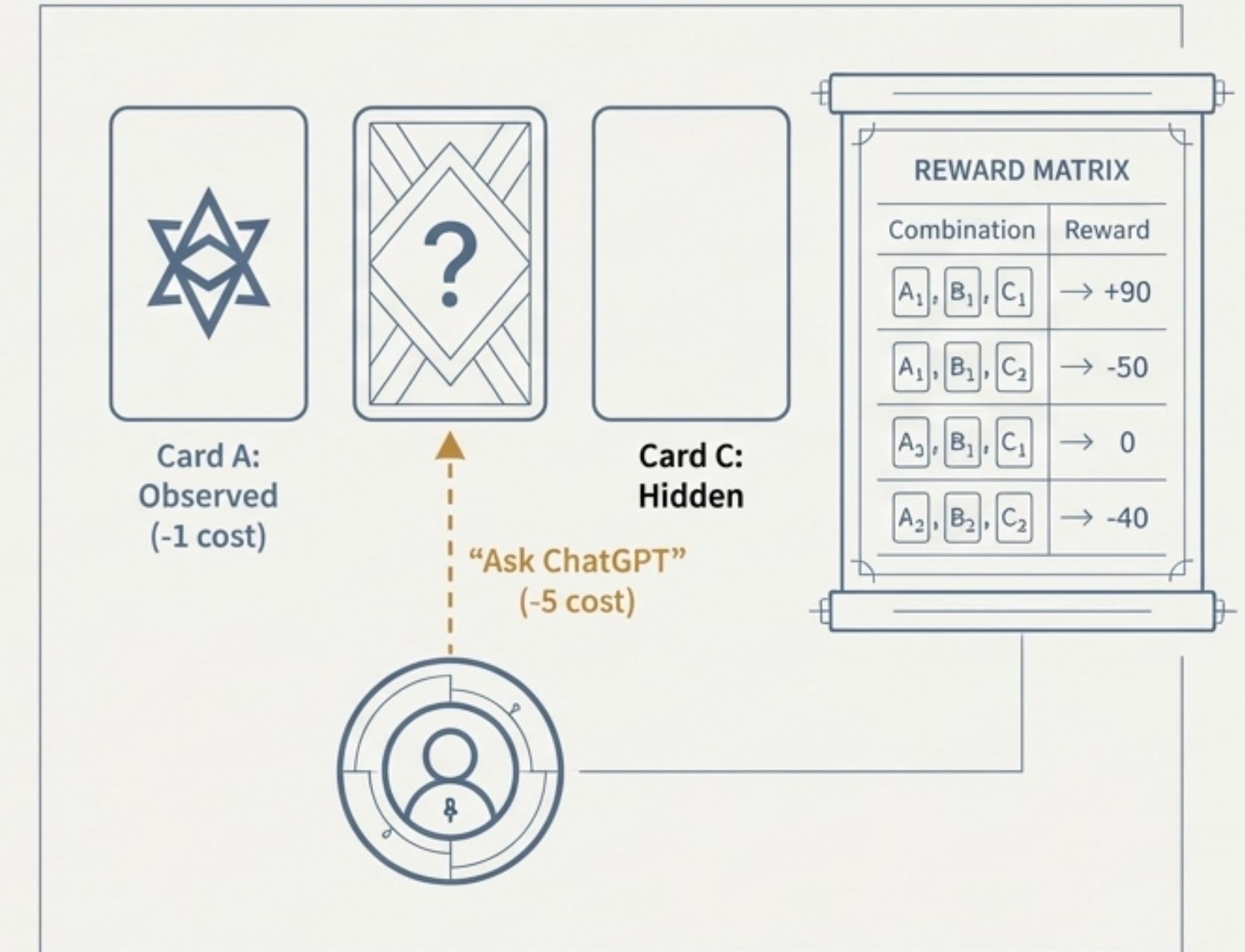
Was the knowledge acquired quickly, with minimal queries?

The Proving Ground: Strategic Decision-Making in OPRA-POKER

We designed a partially observable environment to simulate strategic decision-making under uncertainty and cost. The agent must balance the cost of gathering information against the potential reward of making an optimal decision.

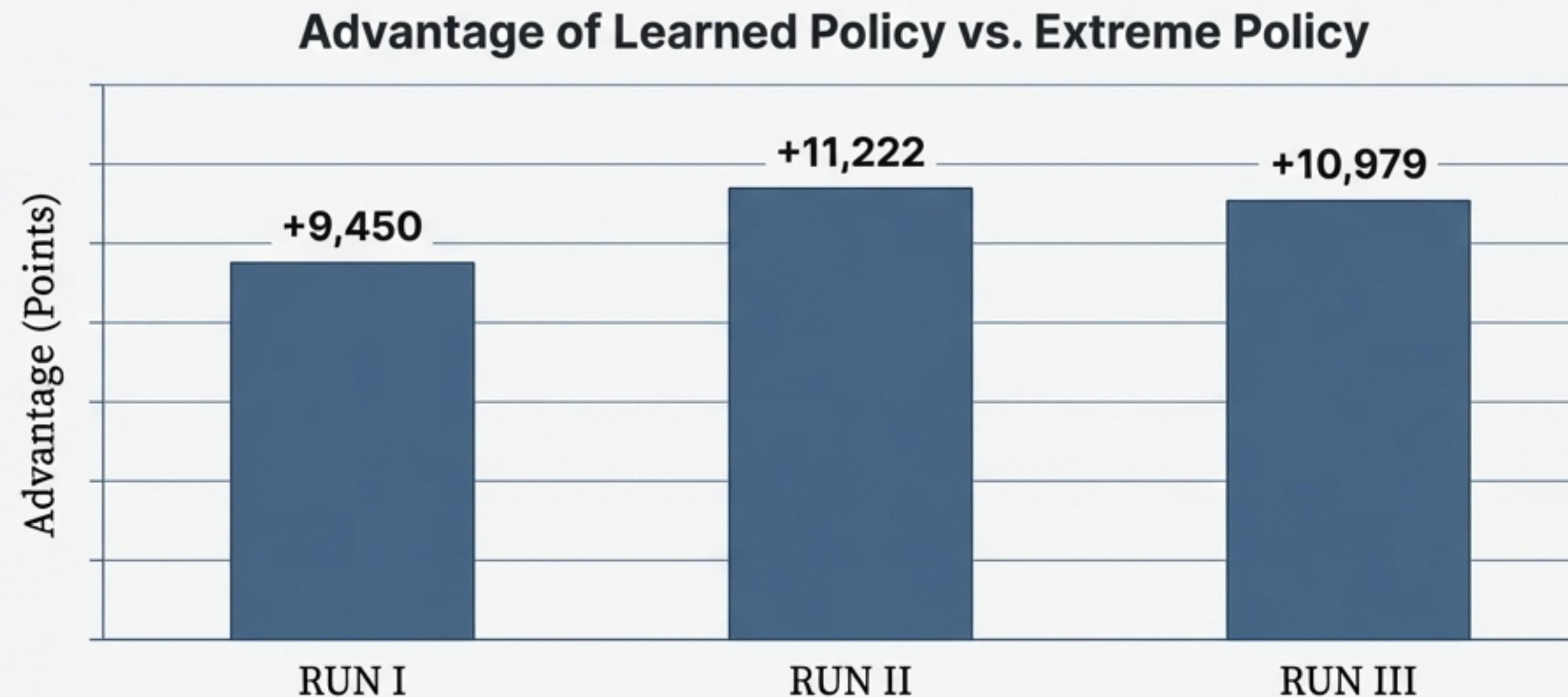
Game Logic:

- **State:** Three face-down cards (A, B, C) with hidden values. 8 possible combinations with rewards from -100 to +100.
- **Partial View:** The agent can see Card A for a low cost (-1). Card C is always hidden.
- **The Dilemma:** To learn about Card B, the agent must pay a higher cost (-5) to “Ask ChatGPT” for external advice.
- **Actions:** The agent must learn the optimal policy: “Open A,” “Ask ChatGPT,” “Open C,” “Open All at Once” (high cost), or “Skip” (small penalty).



The Verdict: The Learned Policy Consistently Outperforms the Baseline

The OPRA-Q-Learning agent was trained for 1000 episodes and its performance was measured against an “extreme policy” (always choosing the costly “Open All” action). We ran the experiment on three different randomly generated reward matrices. In every scenario, the agent learned a sophisticated strategy, demonstrating a significant advantage.



The agent learned **when** the cost of querying external advice was justified, mastering the trade-off between information gathering and risk management.

Deconstructing the Winning Strategy

Analysis of the experiments reveals that the most successful agents developed a cautious, information-efficient strategy that prioritized long-term planning. The best performance was consistently achieved with specific hyperparameter configurations:

$$\epsilon \leq 0.4$$

Low Exploration

Once a good strategy was found, the agent exploited it rather than taking random actions. This indicates it learned to trust its policy.

$$\gamma \geq 0.7$$

High Discount Factor

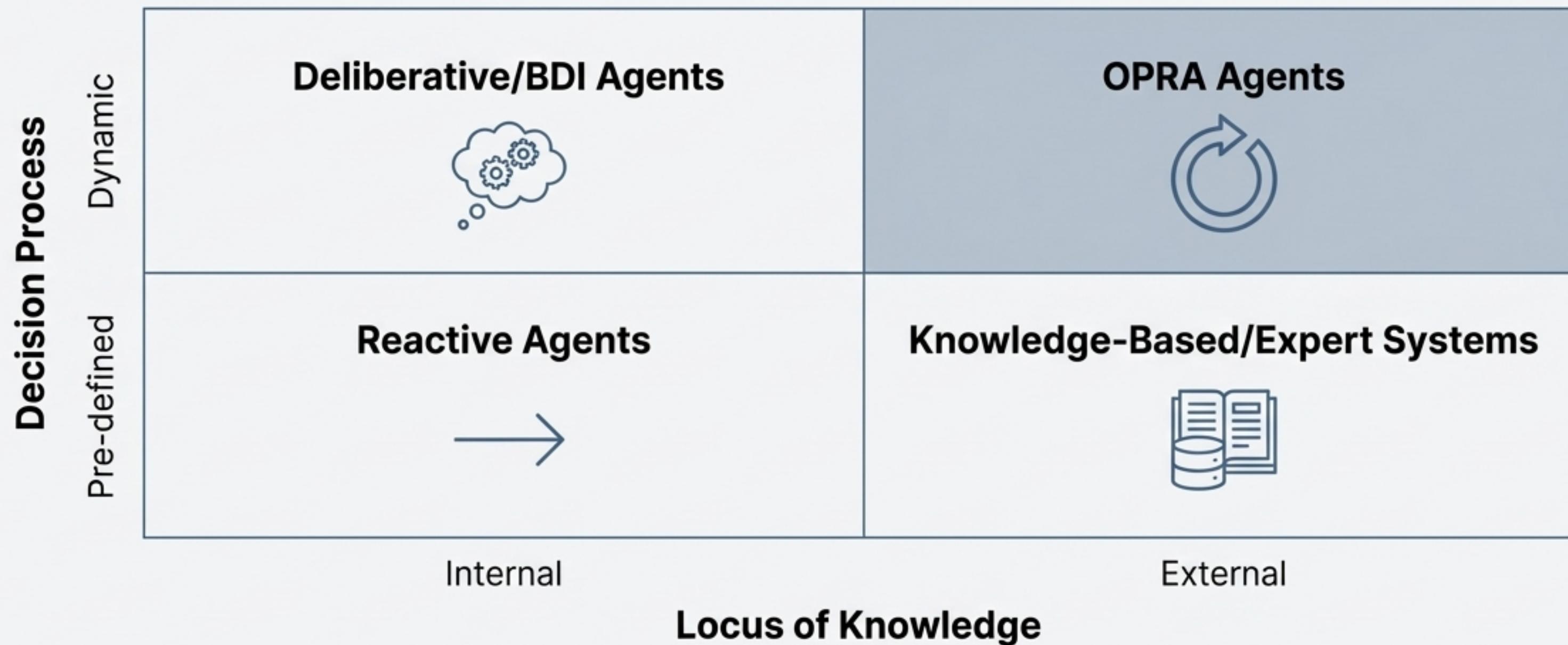
The agent prioritized long-term cumulative rewards over short-term gains, demonstrating strategic foresight.

Insight

This shows the framework doesn't just produce a result; it fosters the development of a robust and thoughtful decision-making process. The agent learns not to query wastefully but to invest in information strategically.

A Hybrid Architecture for a New Class of Agent

OPRA represents a paradigm shift by blending features of traditional agent architectures. It is neither purely reactive nor purely deliberative; it combines real-time observation with on-demand external reasoning.



The Roadmap Ahead: Fostering Trust and Transparency

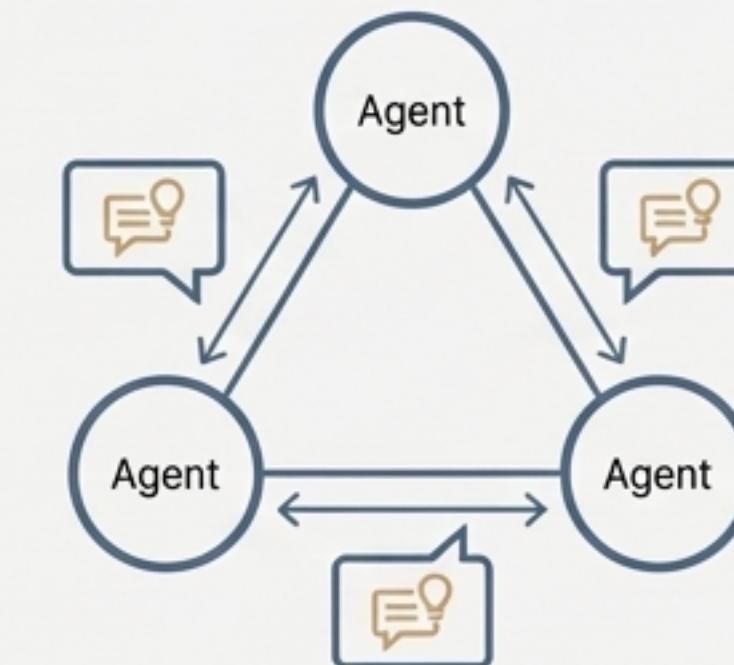
The evolution of the framework continues, with future extensions focused on enhancing interpretability—a critical component for human-AI collaboration and trust.

OPRA+

Introduces an "**Explanation**" step between "Response" and "Action". The agent must not only act on advice but also provide a context-aware justification for its decision, fostering user trust.

COPRA+

Integrates the explanation phase into the multi-agent context. Agents share not only data and responses but also the ***rationale*** behind their proposed actions, enabling more advanced coordination and collective intelligence.



From Following Rules to Seeking Knowledge

The OPRA framework represents a fundamental shift in designing autonomous systems. By enabling agents to dynamically fill knowledge gaps, learn to reason about their uncertainty, and strategically seek external expertise, we move beyond systems that merely execute pre-programmed instructions.

This is the foundation for creating smarter, more resilient, and truly knowledge-informed autonomous agents capable of tackling the complexity of the real world.

