
 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 1

UBIWARE Deliverable D1.1:

The Central Principles and Tools of
UBIWARE

November, 2007

Date Nov 6, 2007
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Artem Katasonov, Olena Kaykova, Oleksiy Khriyenko,

Oleksiy Loboda, Anton Naumenko, Sergiy Nikitin
Work component WP1-WP5
Deliverable Code D1.1
Deliverable Owner IOG, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 2

Abbreviations
A2A – Agent to Agent (communication)

A2H – Agent to Human (communication)

ACL – Agent Communication Language

API – Application programming interface

APL – Agent Programming Language

COIN – Configurability and Integration

FIPA – Federation for Intelligent Physical Agents

GUI – Graphical User Interface

GUN – Global Understanding eNvironment

HRAP – Human-Resource AdaPter

HTML – Hypertext Markup Language

IOG – Industrial Ontologies Group

OWL – Ontology Web Language

R2R – Resource to Resource (communication)

RDF – Resource Description Framework

S-APL – Semantic Agent Programming Language

SSA – Semantic Search Assistant/Facilitator

SURPAS – Smart Ubiquitous Resource Privacy and Security

UI – User Interface

W3C – World Wide Web Consortium

XHTML – Extensible HyperText Markup Language

XML – eXtensible Markup Language

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 3

Table of Contents

Abbreviations.. 2
Introduction... 4
1 UbiCore – Core Distributed AI platform design... 6

1.1 Agent Programming Languages (APLs)... 7
1.2 Semantic Agent Programming Language (S-APL) .. 8

2 UbiBlog – Managing Distributed Resource Histories .. 19
2.1 General approach .. 20
2.2 External querying.. 20
2.3 Other communicative acts... 22

3 SURPAS – Smart Ubiquitous Resource Privacy and Security....................................... 23
3.1 UBIWARE security implications ... 24
3.2 Security threats in UBIWARE.. 28
3.3 Security questions in industrial cases ... 33
3.4 SURPAS Research Framework .. 38
3.5 SURPAS Conceptual Semantics for access control.. 40
3.6 SURPAS Architecture .. 52
3.7 SURPAS in industrial use cases ... 63
3.8 Conclusions... 71

4 Principles of the Configurability... 72
4.1 Configurability in UBIWARE .. 73
4.2 Conclusions and Outlook.. 84

5 General Vision of 4I Technology and Its Application in UBIWARE 85
5.1 Intelligent Resource Visualization.. 86
5.2 4I (FOR EYE) TECHNOLOGY... 91
5.3 4i (FOR EYE) Technology in UBIWARE ... 97
5.4 Application of 4i (FOR EYE) Technology: Semantically enhanced browsing across
multimedia contents. ... 100
5.5 Conclusions... 104
5.6 Dissemination of the results.. 105

Bibliography ... 106
Appendix A: UBIWARE WP7 Status .. 110

Introduction... 110
A.1 Metso Automation case... 111
A.1.1 Background.. 111
A.1.2 Opportunities ... 111
A.1.3 Working Plan... 111
A.2 Fingrid case... 113
A.2.1 Background.. 113
A.2.2 Opportunities ... 113
A.2.3 Special requirements ... 114
A.2.4 Working Plan... 114
A.3 ABB case .. 116

Appendix B: UBIWARE Publications List .. 117

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 4

Introduction

Recent advances in networking, sensor and RFID technologies allow connecting physical
world objects to the IT infrastructure, which could enable realization of the “Internet of
Things” vision. However, as the systems become increasingly complex, traditional solutions
to manage and control them reach their limits and pose a need for self-manageability. Also,
the heterogeneity of components, standards, data formats, etc, creates significant obstacles
for interoperability in such complex systems. Achieving the interoperability by imposing
some rigid standards and making everyone comply would not lead to an open ubiquitous
environment. Therefore, there is a need for some middleware to act as the glue joining
heterogeneous components together. The promising technologies to tackle these problems are
the Software Agents for management of complex systems, and the Semantic Web, for
interoperability, including dynamic discovery, data integration, and inter-agent behavioral
coordination.

The project aims at a new generation middleware platform (UBIWARE) which will allow
creation of self-managed complex industrial systems consisting of distributed, heterogeneous,
shared and reusable components of different nature, e.g. smart machines and devices, sensors,
actuators, RFIDs, web-services, software components and applications, humans, etc. The
middleware will enable various components to automatically discover each other and to
configure a system with complex functionality based on the atomic functionalities of the
components.

This project builds on the foundation laid in the SmartResource project (2004-2006).
SmartResource analyzed the central concepts related to our vision, and resulted in some pilot
tools and solutions. In turn, UBIWARE will result in a complete and self-sufficient
middleware platform. In addition to treating the central issues related to flexible semantic
agent-based integration and coordination of heterogeneous components, it develops
appropriate solutions in supporting but mandatory areas such as security, human interfaces
and other.

The research efforts are combined with agile software development processes. Software
prototypes will be iteratively developed during the whole project lifecycle based on real data,
real needs and changing requirements of industrial partners. The result will be both the basic
software tools for the UBIWARE platform and several industrial prototypes based on these
tools.

Work in this project is divided into seven work-packages which are running in parallel:
1. Core Distributed AI platform design (UbiCore)
2. Managing Distributed Resource Histories (UbiBlog)
3. Smart Ubiquitous Resource Privacy and Security (SURPAS)
4. Self-Management, Configurability and Integration (COIN)
5. Smart Interfaces: Context-aware GUI for Integrated Data (4i technology)
6. Middleware for Peer-to-Peer Discovery (MP2P)
7. Industrial cases and prototypes.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 5

Work-packages 1 through 6 include both research and development tasks. The research
results from the work-packages are to be reported through the integrating deliverables, one
per project year. This deliverable D1.1 integrates the research results of the first project year.

It was decided not to perform the work is the WP6 during the first project year (due to
limitation in resources). Therefore, D1.1 integrates results from WP1 through WP5. This
deliverable includes a separate chapter for the results of every work-package involved. Due
to the nature of topics addressed, D1.1 is titled “Central principles and tools of UBIWARE”.
The two following research deliverables, D2.1 and D3.1, will address “Individual resources
and inter-resource communication in UBIWARE” and “Multi-resource orchestration in
UBIWARE”, correspondingly.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 6

UBIWARE Deliverable D1.1:
Workpackage WP1:

Task T1.1_w1:

1 UbiCore – Core Distributed AI platform
design

SEMANTIC REPRESENTATION OF BEHAVIOR MODELS

Workpackage leader: Artem Katasonov

The main objectives of the UbiCore are the following. It has to give every resource a
possibility to be smart (by connecting a software agent to it), in a sense that it would be able
to proactively sense, monitor and control own state, communicate with other components,
compose and utilize own and external experiences and functionality for self-diagnostics and
self-maintenance. It has to enable the resources to automatically discover each other and to
configure a system with complex functionality based on the atomic functionalities of the
resources. It has to ensure a predictable and systematic operation of the components and the
system as a whole by enforcing that the smart resources act as prescribed by their
organizational roles and by maintaining the “global” ontological understanding among the
resources. The latter means that a resource A can understand all of (1) the properties and the
state of a resource B, (2) the potential and actual behaviors of B, and (3) the business
processes in which A and B, and maybe other resources, are jointly involved

The part of the work in this work-package, reported in this document, aimed at answering the
following research questions:

• How the language for roles’ scripts, developed in SmartResource project, has to
evolve to enable the full spectrum of possibilities that is found in Agent Programming
Languages (APLs) – to become, in addition to other benefits, a Semantic APL?

• How to implement the separation between a role’s capabilities (individual
functionality), and the business processes in which this role can be involved (complex
functionality)?

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 7

1.1 Agent Programming Languages (APLs)

Several Agent Programming Languages (APLs) has been developed by researchers working
in internal architectures and approaches to implementation of software agents. Examples of
such languages are AGENT-0 (Shoham, 1993), AgentSpeak(L) (Rao, 1996), 3APL (Dastani et
al., 2004) and ALPHA (Collier et al., 2005).

All of those are declarative rule-based languages and are based on the first-order logic
of n-ary predicates. All of them are also inspired by the Beliefs-Desires-Intentions
architecture (Rao and Georgeff, 1991). For example, an agent program in ALPHA consists of
declarations of the beliefs and goals of that agent and declaration of a set of rules, including
belief rules (generating new beliefs based on existing ones), reactive rules (invoking some
actions immediately) and commitment rules (adopting a commitment to invoke an action).
Sensors (perceiving environment and generating new beliefs) and actuators (implementing
the actions to be invoked) are then pieces of external code, namely in Java.

Based on the review of the above-mentioned languages, we list the following
important features of them, which should also be realized in UBIWARE’s language for
specification of behavior models:

• Ability to specify beliefs (something that the agent believes to be true) and
goals (something that the agent does not believe to be true but wants to
eventually become true).

• Ability to describe behavior rules, i.e. actions taken when a certain condition
is met (can be either presence or absence of certain beliefs, or presence of
certain goals). Ability to have as the result of firing rule all of following:

o adding/removing beliefs
o engaging sensors and actuators
o creating commitments (actions to be executed later)

• Ability to describe plans, i.e. predefined sequences of actions.
• Ability to describe commitments that are:

o executed when certain condition is met
o dropped when certain condition is met (or is not met anymore)

Agent-oriented approach postpones the transition from the domain concepts to the machine
concepts until the stage of the design and implementation of individual agents. The
advantage of using an APL is that the transition is postponed even further, until the
implementation of particular perceptors and actuators. This advantage seems to be, however,
the only one that is considered. We did not encounter in literature approaches that would
extend the role of APL code beyond the development stage. APL code is assumed to be
written by the developer of an agent and either compiled into an executable program or
interpreted in run-time but remaining an agent’s intrinsic and static property. APL code is not
assumed to ever come from outside of the agent in run-time, neither shared with other agents
in any way.

Such export and sharing of APL code would, however, probably make sense.
Methodologies for design of agent-based systems like OMNI (Vazquez-Salceda, 2005)
describe an organizational role with a set of rules, and an APL is a rule-based language. So,

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 8

using an APL for specifying a role sounds as a natural way to proceed. The difference is that
APL code corresponding to a role should naturally be a property of and controlled by the
organization, and accessed by the agents’ enacting the role potentially even in the run-time.
Run-time access would also enable the organization to update the role code if needed.

The second natural idea is that the agents may access a role’s APL code not only in
order to enact that role, but also in order to coordinate with the agents playing that role. As
one option, an agent can send to another agent a part of its APL code to communicate its
intentions with respect to future activities (so there is no need for a separate content
language). As another option, if a role’s code is made public inside the organization, the
agents may access it in order to understand how to interact with, or what to expect from, an
agent playing that role.

However, when thinking about using the existing APLs in such a manner, there are at
least two issues:

• The code in an APL is, roughly speaking, a text. However in complex systems, a
description of a role may need to include a huge number of rules and also a great
number of beliefs representing the knowledge needed for playing the role. Also, in a
case of access of the code by agents that are not going to enact this role, it is likely
that they may wish to receive only a relevant part of it, not the whole thing. Therefore,
a more efficient, e.g. a database-centric, solution is probably required.

• When APL code is provided by an organization to an agent, or shared between agents,
mutual understanding of the meaning of the code is obviously required. While using
first-order logic as the basis for an APL assures understanding of the semantics of the
rules, the meaning of predicates used in those rules still needs to be consistently
understood by all the parties involved. On the other hand, we are unaware of tools
allowing unambiguous description of the precise semantics of n-ary predicates.

As a solution to these two issues, we see creating an APL based on theW3C’s Resource
Description Framework (RDF). RDF uses binary predicates only, i.e. triples (n-ary predicates
can be represented nevertheless, of course, using several approaches). For RDF, tools are
available for efficient database storage and querying, and also for explicit description of
semantics, e.g. using OWL. Our proposition for such an RDF-based APL is the Semantic
Agent Programming Language (S-APL).

1.2 Semantic Agent Programming Language (S-APL)

1.2.1 S-APL Axioms
• Everything is a belief. All other mental attitudes such as desires, goals, commitments,

behavioral rules are just complex beliefs.
• Every belief is either a semantic statement (subject-predicate-object triple) or a linked

set of such statements.
• Every belief has the context that restricts the scope of validity of that belief. Beliefs

have any meaning only inside their respective contexts.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 9

• Statements can be made about contexts, i.e. contexts may appear as subjects or/and
objects of triples. Such statements give meaning to contexts. This also leads to a
hierarchy of contexts (not necessarily a tree structure though).

• There is the general context G, which is the root of the hierarchy. G is the context for
global beliefs (as opposed to local ones). Nevertheless, every local belief, through the
hierarchical chain of its contexts, is linked to G.

1.2.2 S-APL Notation

The notation that is selected for use in S-APL is a subset of Notation3
(http://www.w3.org/DesignIssues/Notation3.html). This notation was developed Tim
Berners-Lee (inventor of WWW, founder of W3C, and the one who coined the Semantic
Web concept). Notation3 was proposed by Berners-Lee as an alternative to the dominant
notation for RDF which is RDF/XML. Notation 3 is a language which is more compact and
probably better readable than RDF/XML, and is also extended to allow greater
expressiveness.
 One feature of Notation3, which in a sense goes beyond the standard RDF, is the
concept of formula that allow Notation3 graphs to be quoted within Notation3 graphs using
{ and }. There is no definition what is the precise semantics of formulae. In S-APL, however,
we avoid the issue by fixing that a formula is a Container that holds a set of reified
statements. Under this convention, S-APL documents remain compliant to the standard RDF
data model and can be translated into RDF/XML is a need would arise (this of course would
lead to a significant increase in the document length).
 The description of S-APL notation follows:

• A statement is a white-space-separated sequence of subject, predicate and object
• Dot (.) followed by a white space separates statements of the same level, i.e. S P O .

S P O
• Semicolon (;) followed by a white space allows making several statements about the

same subject, i.e. S P O ; P O
• Comma (,) followed by a white space allows making several statements having

common subject and predicate, i.e. S P O , O
• { } denotes reification, it may appear as the subject or the object of a statement and

has to include inside itself one or more other statements, e.g. S P { S P O } or { S P O }
P { S P O }. Reification always implies a context; however, the relation is not
necessarily 1-to-1. E.g. {S P O} P O ; P O implies that the statement in {} is linked to
two different contexts defined as given.

• Colon (:) is used to specify an URI as a combination of the namespace and the local
name, i.e. ns:localname There can be default namespace, the colon is used anyway,
i.e. :localname.

• @prefix prefix: namespace links a prefix to a namespace.
• URIs given directly are to be inside < >, i.e. <http://someaddress>.
• Literals containing whitespaces are to be inside “ “, i.e. “some literal” .
• Comments are java-style, i.e. /* */.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 10

1.2.3 Descriptive constructs

Note: “gb” namespace is used for the resources that are defined in the language’s ontology.
The default namespace is used for all the other resources, which are assumed to be defined
somewhere else.

Simple belief:

:John :Loves :Mary
{:John :Loves :Mary} gb:is gb:truth

These two are equivalent and the language interpreter may transform the latter into the
former to simplify the agent engine’s job. The latter is introduced for syntactic purposes, to
allow linking a statement to both the current context and some its sub-context (see below
about gb:existsWhile).

Belief with a context:
 {:John :Loves :Mary} :accordingTo :Bill

Goal / desire:
 gb:I gb:want {:John :Loves :Mary}

Unconditional commitment to an action:
 {gb:I gb:do java:ubiware.shared.RequestSenderBehavior}

 gb:configuredAs
{x:receiver gb:is :John .
 x:content gb:is “bla bla” .

 gb:Success gb:add {:John :was :notified}
}

When the agent’s engine finds such a belief in G, it executes the specified action and
removes the commitment. This is done only if the prefix is either java: or default (:).

If action has no parameters, it is to be either {gb:I gb:do :Stop}
gb:configuredAs {} or {gb:I gb:do :Stop} gb:configuredAs
gb:null.

In the configuration part, one may use special statements to add or remove beliefs.
The subject can be gb:Start, gb:End, gb:Success, and gb:Fail. The predicate is
either gb:add or gb:remove. See more on how beliefs’ removal exactly works, see below
in “Unconditional commitment to removing a belief”.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 11

Sequential actions / plan:

{gb:I gb:do ...} gb:configuredAs
{ ... gb:Success gb:add {gb:I gb:do ...} }

Unconditional commitment to removing a belief:
 gb:I gb:remove {:John :Loves :Mary}

When the agent’s engine finds such a belief in G, it removes the specified belief and then
removes the commitment itself.

The object of such a condition, presents a pattern that is used for the removing beliefs
through matching it with G. The details of this procedure follow (all applies also to removal
through “gb:Success gb:remove {...}”):

• If several beliefs are given, e.g. {:John :Loves :Mary. :Mary :Loves :John}, and some
of those match G while some other do not, those matching ones are removed. In other
words, this case is equivalent to specifying several separate commitments gb:I
gb:remove {:John :Loves :Mary}. gb:I gb:remove {:Mary :Loves :John }.

• The commitment is considered fulfilled and thus it therefore removed even if no
matching belief was found and thus nothing was actually removed.

• If a hierarchical belief structure is given, e.g. {:John :Loves :Mary. :John gb:want
{ {:Mary gb:do …} gb:configuredAs {…} } } :accordingTo :Bob, the following
statements will be physically removed: :John :Loves :Mary and {} gb:configuredAs
{}. In other words, the statements are removed which do not refer to contexts at all or
which have contexts as both the subject and the object.

• One can use *, e.g. :John :Loves *. In result, all the matching beliefs
like :John :Loves :Mary, :John :Loves :Grandpa and even :John :Loves {…} will be
removed.

• One can use variables, but only inside one statement, e.g. ?x :Loves ?x, or in a
statement and its sub-statements, e.g. ?x gb:want {:Mary :Loves ?x}. Variables
SHOULD not be used in statements of the same level, e.g. :John :Loves ?x. ?x
gb:is :Girl, because reducing the set of matching values through following statements
will not affect the set of beliefs removed in the preceding ones.
E.g. :John :Loves :Grandpa will be removed anyway, even while there is no
belief :Grandpa gb:is :Girl.

Note that contexts for rules, goals, and goals under work are protected against removal (both
direct and through garbage collection). This means that e.g. gb:I gb:remove {gb:I
gb:want *} will have no effect. If one wants to drop all the goals, one has to use gb:I
gb:remove {gb:I gb:want {* * *}} instead.

Conditional commitment:

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 12

 {:John :Loves :Mary} =>
{gb:I :state :busy .
 {gb:I gb:do a:SendMail} gb:configuredAs {...}
}

=> is the shorthand for gb:implies. When the agent’s engine finds such a belief in G and
finds out that the conditions (if several, seen as AND-connected) in the subject context are
met, it adds to G all the beliefs specified in the object context. After that, the conditional
commitment is removed.

Exclusive condition (gb:falseIf in the SmartResource’s language):
 {:John :Loves :Mary .

 gb:I gb:doNotBelieve {:John :hasBeen :notified}
} => {...}

The context defined as “gb:I gb:doNotBelieve {}” is a special “virtual” context which is the
complement of G, i.e. it includes all the possible beliefs that are not part of G.

Goal as a condition:

{ gb:I gb:want {:John :Loves :Mary} } => {...}

Action that attempts achieving a goal (gb:achievesGoal in the SmartResource’s
language):

{ gb:I gb:want {:John :Loves :Mary} } >> {...}

>> is the shorthand for gb:achievedBy. When the agent’s engine executes such a
statement, it treats it the same way as gb:implies (=>), but in addition it moves the
corresponding goal to some special context for goals under work (may be a backend context
without a definition, thus not linked to G).

Prerequisites (gb:trueIfGoalAchieved achievesGoal in the SmartResource’s
language):

 { {...} => {...} } gb:requires {...}

When the agent’s engine finds such a belief in G, it evaluates first the conditional
commitment in the subject context. If it is to be executed, the engine checks the conditions in
the object context. If they are all met, the commitment is executed. If some are not met, they
are wrapped as “gb:I gb:want {}” (i.e. as goals) and added to G.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 13

Commitment with a guard condition:
 { {...} => {...} } gb:is gb:truth ;

 gb:existsWhile {...}

When the agent’s engine finds an gb:existsWhile belief in G and finds out that a condition in
the object context is not met, it removes from G all the beliefs specified in the subject context.
Normally, this is to be used as mechanism for dropping unachievable or not-relevant-
anymore commitments. However, this can also be used for specifying beliefs that depend on
some other beliefs.

Behavioral rule:

{ {...} => {...} } gb:is gb:Rule

Unlike conditional commitments (those in G), rules belonging to the context defined as “{}
gb:is gb:Rule” will not be removed after an execution.
 Nothing prevents, however, use of gb:existWhile to define rules that are removed
upon some condition.

Rule belonging to a role:

{ {...} => {...} } gb:is gb:Rule ;
 gb:belongs :OperatorRole

Agent playing a role:
gb:I gb:haveRole :OperatorRole
gb:Nothing gb:haveRole :ExpertRole

Rule / conditional commitment that creates a rule / conditional commitment:
 {...} => { {...} => {...} }

History of actions (informative):
 {

 { {gb:I gb:do :SendMail} gb:configuredAs {...} }
 gb:startTime “16.45”; gb:endTime “16.47”;

gb:result gb:Success
} gb:is :History

Quantified beliefs:
 :John :Loves ?

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 14

 {:John :Loves ?x} gb:forSome ?x

These two are equivalent and mean “John loves something”. ? is the shorthand for
gb:Something, while ?x is the shorthand for http://..gb_uri../variables#x.

 {:John :Loves ?x. ?x :Is :Girl} gb:forSome ?x

This one means “John loves some girl”.

 { {?x :Is :Man} => {?x :Is :Mortal} } gb:forAll ?x

This one means “Every man is mortal”.

1.2.4 Querying constructs

The left side of => statements contains specification of beliefs to be matched against G.

Direct matching:

{:John :Loves :Mary} :accordingTo :Bill

Matching with variables:

{:John :Loves ?x} :accordingTo ?y

Such a query will be evaluated as true if there can be found some values of ?x and ?y so that
the belief is present in G. In this case, the variables will be bind to the first found matching
values, and, if the right side of => refers to these variables, these values will be used.

{{:John :Loves ?x} :accordingTo ?y. ?x gb:is :Girl} =>
 {gb:I gb:do java:SendMail} gb:configuredAs
 {x:receiver gb:is ?x...}

The right side of => can also refer to three special variables, values for which are not taken
from the beliefs but rather generated by the agent’s engine: ?AgentName - the name of the
agent, ?Today - the present date in the format “dd.mm.yyyy” and ?Now in the format “h:m:s”.

Variables in the right side of => are substituted with their values as using
String.replaceAll. Therefore, DB/?AgentName/received/?model.sapl is a legal expression
using two variables: ?AgentName and ?model. This is in contrast to the left side of => where
a whole resource (subject, predicate or object of a statement) can only be a variable.

Rules / conditional commitments that apply to all matching values:

{ ?x :Loves ?y } => { {...?x...?y...} gb:All ?x }

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 15

{ ?x :Loves ?y } =>
{ {{...?x...?y... } gb:All ?x} gb:All ?y } }

Normally, the rule / conditional commitment is executed for the first found matching
combination of variables’ values. The use of gb:All as shown in the first example above will
lead that the rule will be executed for every matching value of ?x (taking first found value
for ?y, if several values for ?y fit the same value for ?x) . In the second example, the rule is
executed for every matching combination of the variables.

Matching with *:

:John :Loves *

This means “John loves something”. In principle, this is almost the same
as :John :Loves ?x, only that in saves the agent’s engine from bother of recording the
matching value for ?x. * is shorthand for gb:Anything.

Matching with variables standing for sets of statements:

?x :accordingTo :Bill

In this case, ?x is to be bind physically to the ID of the context and logically to the whole
underlying graph. Therefore, the above means “all the information that Bill provided”.

Special predicates (to realize e.g. FILTER of SPARQL):

Some predicates can be used, normally with variables as subjects, which are to be evaluated
by the agent’s engine rather than matched against G. Those include:

?x != 5
?x > 5
?x < 5
?x >= 5
?x <= 5
?x gb:regex “S.*h”

The first four are shorthands for gb:gt, gb:lt, gb:gte, gb:lte.

1.2.5 Agent’s capabilities

In the SmartResource script language, it was only possible to use a RAB (a piece of Java
code) in place of an action to be executed when a rule fires. Due to higher expressiveness of

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 16

this language, it is also possible to have some abstract capabilities as actions. If the object of
gb:do has a predefined namespace (with e.g. prefix java:), it refers to a RAB:

 {...} => { { gb:I gb:do java:ubiware.shared.SendEmail }

 gb:configuredAs {...} }

Otherwise (http: prefix), it refers to an abstract capability:

{...} => { { gb:I gb:do ex:SendEmail }
gb:configuredAs {...} }

A capability needs an interface rule, which will either directly prescribe the actions
constituting the capability, or generate some beliefs or goals that would trigger the rules
constituting the capability, e.g:

{ { gb:I gb:do ex:SendEmail } gb:configuredAs
 {:Receiver gb:is ?r . :Content gb:is ?c} } >>
{ gb:I gb:want {?c :SentTo ?r} }

Using >> instead of => has the same effect as for goals, i.e. the commitment is dropped if
when the rule fires.

This elegantly solves the issue of separation between a role’s capabilities (individual
functionality), and the business processes in which this role can be involved (complex
functionality). While one S-APL document may define a set of capabilities belonging to a
rule, a completely different document may, if needed, describe the rules for engaging those
capabilities and, in so, specify a business process in which the role may be involved.

1.2.6 S-APL run-time cycle

Figure 1.1 presents a simplified view of run-time cycle that the UBIWARE agent’s behavior
engine will need to implement to act based on S-APL behavior models.
 In each iteration, the engine is to perform the following:

• First, check and remove all goals that match with G.
• Then, check all gb:existsWhile conditions found in G and remove the beliefs, whose

existsWhile conditions are not met.
• Then, check all the gb:implies, gb:achievedBy, and gb:requires conditions found

both is G (conditional commitments) and in the context {…} gb:is gb:Rule
(behavior rules). If some conditional commitments or rules are executed, the result is
that some new beliefs are added to G. In addition, executed conditional
commitments are removed. At least at the current stage, the convention is that if
there are several executable rules in one iteration, all are to be executed.

• Finally, all the gb:configuredAs (action commitments) and gb:I gb:remove {}
(belief removal commitments) that are found in G are executed and then removed.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 17

• If any changes to beliefs were made, start new iteration. Otherwise, collect garbage
and block the run-time cycle until a new message arrives or some of running RABs
makes some modification to the beliefs.

Check all gb:existWhile conditions found in G

remove the beliefs

Check all =>, >>, gb:requires in both G and Rules contexts

add and remove the beliefs

Check all gb:configuredAs and gb:remove in G

add and remove the

Changes made to beliefs?
YES

NO

block()

Remove the goals that match with G

collect garbage

FIGURE 1.1 S-APL run-time cycle

As it stressed in the figure, actual modifications to the belief storage (adding and removing)
are to be done after all the checks on each of the three stages are completed. In this way, e.g.
the effect of execution of one rule could not prevent another executable rule from execution.

Garbage collection involves, in an iterative fashion:
• Removing all contexts that are not referenced, i.e. do not appear as the subject or the

object of any statement.

• Removing all statements that are not referenced, i.e. are not linked to any context

• Removing all empty contexts, i.e. not having any member statements.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 18

In result, any “hanging” sub-graph of beliefs will be removed as garbage. Therefore, it is
always enough to explicitly remove just the top statement, e.g. {} gb:configuredAs {}, and
let the garbage collector to remove the rest – the contexts appearing as the subject and the
object.

1.2.7 Conclusions

The advantages of S-APL are the following:

• Simple model (triples in hierarchical contexts) that allows implementing any feature
found in existing APLs.

• Expressive power is even greater than in existing APLs, because of full symmetry
(everything is a belief): e.g. rules upon execution can add other rules of any
complexity.

• Behavior specification is done using semantic predicates (e.g. implies, existsWhile)
o Formally defined in an ontology.
o Language is extensible with other such predicates.

• Reusable Atomic Behaviors and their parameters are also resources that can (and
should) be ontologically modelled.

• So, there is a basis for sharing all 5 ontologies: External world, Mental states of
agents, Properties of agents’ bodies (available sensors and actuators), Input properties
and Output properties (Bosse, T., Treur, J., 2000). Therefore, there is a basis for better
understanding among agents with a goal of better coordination and collaboration
among them.

To summarize the description of S-APL, below is the list of terms that are defined in the S-
APL ontology (gb:You and gb:answer are introduced in the next chapter):

gb:is gb:remove gb:lt (<)
gb:truth gb:configuredAs gb:gt (>)
gb:I gb:null gb:lte (<=)
gb:doNotBelieve gb:End gb:gte (>=)
gb:want gb:Start gb:regex
gb:do gb:Success gb:forSome
gb:implies (=>) gb:Fail gb:forAll
gb:achievedBy (>>) gb:belongs gb:All
gb:requires gb:haveRole gb:Anything
gb:existsWhile gb:missingModel gb:Something
gb:Rule gb:missingRAB gb:You
gb:add gb:inNot (!=) gb:answer

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 19

UBIWARE Deliverable D1.1:
Workpackage WP2:

Task T1.1_w2:

2 UbiBlog – Managing Distributed
Resource Histories

INTER-AGENT INFORMATION SHARING

Workpackage leader: Artem Katasonov

In UBIWARE, every resource is represented by a software agent. Among major
responsibilities of such an agent is monitoring the condition of the resource and the
resource’s interactions with other components of the system and humans. The beliefs storage
of the agent will, therefore, naturally include the history of the resource, in a sense “blogged”
by the agent. Obviously, the value of such a resource history is not limited to that particular
resource. A resource may benefit from the information collected with respect to other
resources of the same (or similar) type, e.g. in a situation which it faces for the first time
while other may have faced that situation before. Also, mining the data collected and
integrated from many resources may result in discovery of some knowledge important at the
level of the whole ubiquitous computing system. A scalable solution requires mechanisms for
inter-agent information sharing and data mining on integrated information which would
allow keeping the resource histories distributed without need to copy those histories to a
central repository.

The part of the work in this work-package, reported in this document, aimed at answering the
following research question:

• How to semantically markup the history of a resource in a system, in order to
make it reusable for other resources and at the system-level?

• What mechanisms are needed for effective and efficient sharing of information
between the agents representing different resources?

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 20

2.1 General approach

The general approach, which was selected in this work-task, is to avoid designing some
special protocols and languages for inter-agent information sharing, but rather to reuse as
much as possible the tools developed as part of the UbiCore (WP1).

Obviously, there is certain similarity in the following. On one hand, an agent always
needs to query its own beliefs base in order to evaluate the left sides of its behavior rules in
order to identify rules that are to be executed. On the other hand, when an agent asks another
agent for some information, it, in a sense, queries the belief base of that other agent.

Our approach is therefore to design the external querying process so it would be
almost the same as if the agent itself would query its belief base to check the conditions for
executing a rule. This also means that we plan to use the Semantic Agent Programming
Language (S-APL, see the previous chapter) not only as the means for prescribing the agents’
behaviors, but also as the inter-agents communication content language (to be used instead of
FIPA-SL or other languages of this type). The advantages of this should be obvious as the
symmetry and expressive power in the UBIWARE platform will be maximized. The agents
will be able to query each other not only for some facts (present or historical) about the
external world (the domain) but also, for example:

• Query if the other agent knows a plan for achieving a certain goal,
• Query if the other agent knows a rule that should be applied in a particular

situation.
We will not repeat here the details about S-APL that have already been described in the
previous chapter on WP1, and present only additional information.

2.2 External querying

The belief base of an agent can be queried externally, e.g. by other agents (of course subject
to security and other policies). The core of a query is the same as normal, i.e. the same as if
the agent itself would query its belief base to check the conditions for executing a rule. The
core of the query has to be wrapped with:

gb:I gb:want { {gb:You gb:answer {..query..} } }

As the response, the agent is to send a part of its belief base. Some examples follow.

Direct matching query:

Request, e.g.:

gb:I gb:want {gb:You gb:answer { :John :Loves :Mary } }

Response should be either of type

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 21

:John :Loves :Mary or
 gb:I gb:doNotBelieve {:John :Loves :Mary}

Matching with variables:

Request, e.g.:

gb:I gb:want { gb:You gb:answer { ?x :Loves ?y } }

Response should be either of type

:John :Loves :Mary (the first found matching combination of variables’
values) or

 gb:I gb:doNotBelieve {?x :Loves ?y}

Query for all matching values:

Request, e.g.:

gb:I gb:want { gb:You gb:answer {
 {?x :Loves ?y} gb:All ?x

 }}

Response should be either of type

:John :Loves :Mary. :Bill :Loves :Jane (all matching values for ?x
with some corresponding values for ?y) or

gb:I gb:doNotBelieve {?x :Loves ?y}

Matching with variables standing for sets of statements:

Request, e.g.:

gb:I gb:want { gb:You gb:answer {
 {:John :Loves :Mary} => ?x

 }}

Response should be either of type

{:John :Loves :Mary} =>
{gb:I :state :busy .
 {gb:I gb:do a:SendMail} gb:configuredAs {...}

} or
gb:I gb:doNotBelieve { {:John :Loves :Mary} => ?x }

In this example, an agent asks another agent for a rule of handling some situation. Other
similar complex queries are also possible and may be useful.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 22

Use of gb:I gb:want {...} in external querying may look unnecessary. However, this
allows distinguishing between gb:I gb:want {...} and e.g. :Boss gb:want
{...}, i.e. mediating a wish of another agent. Both cases may require exactly the same
action to be taken, however, may affect differently on whether the agent will comply with the
wish or not.

2.3 Other communicative acts

External request for action:

Agents can request other agents to perform some actions, corresponding either to abstract
capabilities or RABs (of course subject to security and other policies).

The core of the request is almost same as if the agent itself would command itself to
perform an action, only with gb:You in place of gb:I. In addition, the core is wrapped
with gb:I gb:want {}:

gb:I gb:want { {gb:You gb:do ...}

gb:configuredAs {...} }

Informing:

Both external queries and external requests for action are requests by their nature and
therefore should be contents of FIPA ACL messages with REQUEST performative.
 On the other hand, an ACL message with S-APL contents and INFORM performative
can be interpreted one agent informing the other one about something. An INFORM message

:John :Loves :Mary

informs that the speaker believes that John loves Mary. In principle, it also implies that
speaker wants the listener to believe the same fact. The latter meaning can be emphasized by
turning the message into a REQUEST with a wrapping

gb:I gb:want { gb:You gb:add {:John :Loves :Mary} }

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 23

UBIWARE Deliverable D1.1:
Workpackage WP3:

Task T1.1_w3:

3 SURPAS – Smart Ubiquitous Resource
Privacy and Security

ACCESS CONTROL

Workpackage leader: Anton Naumenko

Globalization of the economy, global and intercultural value chains, large-scale industrial
environments, cooperative systems for the international production, logistic and marketing
could hardly be imagined without the rapid evolution of information and communication
technologies (ICTs). Moreover, continuous advances of ICTs and their adoption in the
industrial world have been guaranteeing improvement and efficiency of industrial
technologies in the last decades. Recent advances in networking, sensor and RFID
technologies, etc allow connecting various physical world objects to the IT infrastructure,
which could, ultimately, enable realization of the “Internet of Things” and the ubiquitous
computing visions. However, the adoption of new ICTs in the traditional production
industries, e.g. the process industry, the machinery industry, etc, is relatively slow. It is
mainly because of the growing complexity of emerging ICTs, inadequate security
infrastructures, and the fact that the research in ICTs usually focuses on the industries with a
short cycle of innovations deployment, such as health care or banking, largely overlooking
the needs of the production industries.

In response to these problems, this chapter focuses on the security challenges in
UBIWARE. It presents the security threats, requirements, implications and access control
measures needed for UBIWARE in the context of its industrial adoption. Industrial cases,
outlined in the paper, align our research results on UBIWARE, as such, with the real world
needs and serves as a trigger and source of requirements for the research on security,

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 24

particularly. We describe our long-term vision for the security and privacy management in
emerging new types of environments, which we refer to as Smart Ubiquitous Resource
Privacy and Security (SURPAS). SURPAS is mainly based on the advances in the Semantic
Web, Multi-Agent Systems, and Ubiquitous Computing domains. Particularly, this chapter
presents the SURPAS research framework which guides our research towards SURPAS. It is
a consolidated formal system of research ideas and prototypes for the interoperable pro-
active context-aware self-protecting security management. The main components of the
SURPAS research framework are the conceptual semantics of security policies, functionality
of security mechanisms, including functional semantics, algorithms, abstract architecture,
and reference implementation, and adopting applications in different business domains (e.g.
industrial maintenance, subcontracting management, smart house, etc).

The rest of the chapter is organized as follows. Section 1 briefly discusses the security
implications of UBIWARE. Section 2 addresses the security threats in UBIWARE. Section 3
presents analysis of security concerns regarding industrial adoption of UBIWARE. Section 4
presents the SURPAS research framework. Sections 5 and 6 give a detailed description of the
SURPAS conceptual and functional semantics, respectively. Section 8 exemplifies our
research and development ideas using the industrial cases. Section 9 presents conclusions and
future research directions.

3.1 UBIWARE security implications

UBIWARE advances existing technologies to a qualitatively new level and brings to life new
complex industrial environments, where traditional approaches to manage security fall short.
Also, existing security measures for the technologies on which UBIWARE relies, e.g. multi-
agent, are not in a mature stage and still require significant elaboration to mitigate associated
risks. The security cannot be added to the UBIWARE platform later but the design decisions
regarding security have to be thoroughly correlated with the requirements, characteristics and
design of the platform, due to mutual impact on resulting features of UBIWARE. Thus, the
analysis of the major characteristics of UBIWARE and their implications on security is an
important activity, and has to be conducted throughout the development of UBIWARE.

3.1.1 Openness

Openness of environments has several dimensions and refers to a range of features. The
UBIWARE-supported industrial environments are open in a sense that they create, and are
created, by business networks. Every partner of such a network can both use the environment
(participate in different roles) and contribute some resources developing the environment
further. UBIWARE is built on the top of open standards and technologies developed by open
communities. Open industrial environments introduce more challenging security problems
due to a greater amount of risks and threats. For example, open-source agent platforms and
agents are easier to compromise and alternate for malicious behavior. Also, open
environments require complex reputation-based trust management solutions.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 25

3.1.2 Dynamics

Dynamics of the environments considered leads to unpredictable changes of their states, due
to complexity and ad hoc nature of relations between entities in these environments. This
challenges application of traditional techniques for achieving common security goals such as
availability, reliability and integrity. In addition, the dynamics complicates introducing
adequate techniques to ensure manageability and accountability.

3.1.3 Heterogeneity

Heterogeneity should be considered in the contexts of industrial environments and security
infrastructure itself. As to industrial environments, the heterogeneity of resources poses a
great variety of security requirements which UBIWARE has to meet. This variety of
requirements and the variety of available security solutions related to the technologies, on
which UBIWARE relies, complicate the construction of a consolidated security
infrastructure. Therefore, the interoperability becomes one of the most important factors.

3.1.4 Decentralization

Distributed nature of UBIWARE-supported industrial environments reduces privacy
concerns of partnering organizations because of local management of historical data
associated with the owned resources. The distribution of control also enhances survivability
of the whole system and is known to reduce network traffic and to overcome network
latencies (Harrison et al., 1995). However, the distribution of components complicates the
management of security, especially the logging for audit activities.

3.1.5 Collaborative

Collaborative or social nature of industrial environments correlates with several other
characteristics of UBIWARE. The major impact on security is that the communication has to
be secured for an efficient and trusted collaboration. This area of research in security has
traditionally been addressed. However, the unique features of agent technologies and high
demands of industrial applications still keep a place for elaboration.

Internationality of today’s industrial world requires that the policy languages have to
flexible and expressive enough to handle the diversity of cultures, legislations, and traditions
in international cooperation.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 26

3.1.6 Context-awareness

Context-awareness is the next important factor of UBIWARE and access control. Location,
time, resource’s activity, history, etc are typical contextual data. Authorization of incoming
requests may rely only on these contextual factors. For example, an access control decision
may deny new requests because of overloading a SmartResource agent without evaluation of
other information. In this example, an enforcement mechanism ensures availability of the
SmartResource agent, in contrast with the most common support of confidentiality. While we
cannot envision all possible contextual factors in UBIWARE, it is hard to define the border
of the access control system. Thus, the access control should be extensible enough to leave a
space for user-driven personalization or intelligent self-configuration of access control
policies and mechanisms. Context-awareness, extensibility, intelligence, and personalization
demand a great expressiveness of underlying access control models and languages for policy
specification.

3.1.7 Flexibility

Flexibility is vital for applicability and interoperability of access control solutions in the
heterogeneous UBIWARE environments. This flexibility of access control functionality
should reflect extensibility and expressiveness of access control models and languages. The
architecture of access control must follow component-oriented style of design. This is needed
in order to compose and to reconfigure required access control functionality for specific
usage scenarios using modular and flexible access control mechanisms and tools.

3.1.8 Extensibility and expressiveness

There is an obvious need to provide proper security measures in general and access control in
particular. The UBIWARE industrial cases demand to have expressive, flexible, pervasive
and ease-to-use means for authorizing access to the sensitive information and services. For
example, these industrial cases highlight an additional issue associated with UBIWARE In
the cases of power-network management and paper machinery maintenance, electrical
engineers and maintenance experts are not authorities that define access control policies.
Businesses and organizations that hire these people and commission their work should have
full or partial authority over access control process depending on concrete needs. Ultimately,
UBIWARE provides access to the content with the great variety of media types. Therefore,
access control solutions should support the major standardized formats of data representation.
It is desirable that access control solutions could be easily extensible for new and emerging
formats. Heterogeneity in UBIWARE has wider scope than just variety of data formats.
There are different wireless and wired network protocols, resources with different sets of
features and characteristics, different settings of computational environments, different
available security measures, and other.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 27

3.1.9 Self-management

The last important issue to consider is security of access control solutions. Access control
infrastructure should obviously be secure by design. For example, the guards are typically
designed in such a manner that requests cannot bypass them. The availability of security-
related components should be high. Accountability of access control mechanism must be
ensured by proper logging for audit practices and technologies. Manageability is also an issue
for the access control administration. These generic security goals could be further elaborated
under a concept of self-management of access control solutions. Self-management in terms
of security is self-protection that is a vision of pro-active context-aware autonomic security
mechanisms to detect, identify and protect against various types of threats (Kephart and
Chess, 2003)Error! Reference source not found., (Horn, 2001).

3.1.10 Human centricity

Access control guards for UBIWARE must be usable within limited capabilities of embedded
systems. Access control solutions should particularly bear with limited connectivity and low
transmission rates, battery power shortages, lower processing power and storage space,
limited means for user input/output interactions. There are also other limitations which are
not technical. Human users tend to simultaneously perform multiple tasks. Human users are
also prone to errors. Due to technical limitations, access control solutions as well as other
utility applications should introduce low overheads in terms of attention required, network
traffic, performance, storage, power consumption, etc.

3.1.11 Mobility

Mobility of agents and resulting security implications are well addressed in the literature [4-
6]. However, the UBIWARE security is impacted by the mobility of both resources and
agents, and also by the limitations of mobile devices and technologies. The mobility directly
affects the solutions for all the security goals and requires some tradeoffs between mobility,
performance and security.

3.1.12 Ambient intelligence

Ambient intelligence, ubiquity, and pervasiveness of information technologies have tighten
the digital and physical worlds to the extent when security becomes the ultimate issue. The
major implication of penetrating ICTs on security is that the risks and negative consequences
of security threats become higher than ever. On the other hand, the security infrastructure
itself has to become pervasive, interoperable and intelligent enough to naturally fit
UBIWARE.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 28

3.2 Security threats in UBIWARE

This chapter presents our review of the security threats in UBIWARE from the conventional
and architectural perspective.

3.2.1 Conventional perspective

The commonly followed categorization of security threats in computer science follows to the
high level security goals, i.e. confidentiality, integrity, availability, etc. This categorization
starts with the corresponding high level threats, i.e. disclosure of information or unauthorized
engaging of the service, corruption of information or service, and denial of service. Other
widely recognized generic security goals are confidentiality, availability, reliability,
manageability, accountability, responsibility, integrity, non-repudiation, anonymity, and
privacy.

MAS, as well as more traditional client-server information systems, has different types of
security threats, e.g. spoofing, unauthorized access, tampering, network eavesdropping,
denial-of-service attacks, man-in-the-middle attacks, intrusion and etc (Srirama and
Naumenko, 2007).

– Spoofing or masquerading is using a false identity in order to hide the original source
of an attack and to gain access as a legitimate entity.

– Unauthorized access “is gaining access into any computer, network, storage medium,
system, program, file, user area, or other private repository, without the express permission
of the owner. Unauthorized access is the same as theft.”1

– Tampering is malicious modification of an agent message in the network.
– Network eavesdropping is to monitor traffic for sensitive data such as plaintext

passwords by placing sniffers in the middle of the network.
– In the Man-in-the-middle attacks, the attacker captures the messages, changes the

contents or keeps the contents unchanged and replays them to the original target.
– Denial-of-service is a process of making a system, server or application unavailable.
– Intrusion is an “unauthorized act of bypassing the security mechanisms of a

system”2.
– Repudiation is a denial of having processed the data or having engaged with the

service by the entities in MAS.

3.2.2 Architectural perspective

For MAS like UBIWARE, there is a different classification of threats that is based on the
origins and targets of attacks (Jansen, 2000), (Jansen and Karygiannis, 1999). Widely

1 www.michigan.gov/cybersecurity/0,1607,7-217-34415---,00.html
2 www.tecrime.com/0gloss.htm

http://www.google.com/url?sa=X&start=0&oi=define&q=http://www.michigan.gov/cybersecurity/0,1607,7-217-34415---,00.html&usg=AFQjCNEaJSfg3J7HqjzBA9Al3XY8FirOpw

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 29

accepted classes of attacks are agent to agent platform, agent to agent, agent platform to
agent, and entity to agent platform. In addition to these classes we have to consider agent to
resource and resource to agent attacks that are specific for UBIWARE and SmartResource
platform particularly. We follow this categorization in our research because it is more
oriented to the architecture of UBIWARE. This architectural categorization couples more
tightly security and system designs. We consider what the meanings of conventional threats
are in each of the architectural classes of attacks.

3.2.2.1 Agent to agent platform
We will refer to threats of this category as agent-to-platform threats and attacks (TA2P).
These threats arise when a remote or local SmartResource agent performs malicious or
unintentionally harmful behavior against UBIWARE.

Id/Name Actors Description
TA2P1
Masquerading

SR agent A
SR agent B
new SR agent
SR platform

The agent A provides false identity of the Agent B or
not-existing (newly created, cloned) agent to the
agent platform. There are several reasons to do that:

1. Intention to acquire access rights of the agent
B in order to perform unauthorized access.

2. Intention to perform harmful actions under
false identity to be unaccounted for the
consequences.

3. Intention to decrease the reputation of the
agent B by compromising its identity.

4. Intention to get new identity in order to get rid
of old identity that is associated with the
previous malicious behavior.

5. Unintentional malfunctioning of the agent A.

TA2P2
Denial of
Service

SR agent A The agent A starts to consume resources of the agent
platform by requesting regular services with the high
rate of requests than allowed or possible. The agent A
exploits vulnerabilities in the agent platform in order
to limit its availability to other agents and agent
platforms. There are several reasons for that:

SR platform

1. Intention to terminate the agent platform or to
degrade the performance of the agent
platform.

2. Intention to get more resources than it is
prescribed for this agent by quota.

3. Unintentional invocation of services of the
agent platform with vulnerabilities.

TA2P3
Unauthorized

SR agent A
SR platform

The agent A accesses services and data of the agent
platform without proper authorization. The reasons

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 30

3.2.2.2 Agent to agent
We will refer to threats of this category as agent-to-agent threats and attacks (TA2A). These
threats arise when a SmartResource agent performs malicious or unintentionally harmful
behavior against other SmartResource agents.

access

are following:
1. The agent gets unauthorized permissions

because of the ambiguity in the security policy
2. Intention to access sensitive data exploiting

vulnerabilities of agent platform, caches,
communication channels, persistence storages,
in memory storages, etc.

3. Intention to engage unauthorized services with
faked proofs of privileges.

4. Unintentional unauthorized access

Id/Name Actors Description
TA2A1
Masquerading

SR agent A
SR agent B
new SR agent
SR agent C

The agent A provides false identity of the agent B or
not-existing (newly created, cloned) agent to the
agent C. The reasons for this threat are the same as
for the corresponding TA2P1 threat. The additional
reason might be to compromise the agent C by the
fact of communication between the agents B and C.

TA2A2
Denial of
Service

SR agent A
SR agent B

The agent A starts to consume resources of the agent
B by requesting services of agent B with the high rate
of requests or by sending an excessive amount of
messages of different type. The agent A might try to
exploit vulnerabilities of the agent B. The agent A can
also try to kill, suspend or move the agent B be
invoking corresponding functionality of the agent
platform. There are several reasons for that:

SR platform

1. Intention to terminate the agent B or to
degrade the performance of the agent B.

2. Unintentional invocation of services of the
agent B with defects.

3. Unintentional malfunctioning of
communication functionality of the agent A.

TA2A3
Unauthorized
access

SR agent A
SR agent B

The agent A accesses services and data of the agent B
without proper authorization. The reasons are the
same as for the threat TA2P3.

TA2A4 SR agent A The agent A denies its participation to factually

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 31

3.2.2.3 Agent platform to agent
We will refer to threats of this category as agent platform-to-agent threats and attacks
(TP2A). These threats arise when a SmartResource platform perform malicious or
unintentionally harmful behavior against SmartResource agents.

Repudiation SR agent B occurred transaction or communication with the agent
B. The reasons might be different for that:

1. The agent A deliberately claims false
information to be unaccounted for the results
of occurred transaction or communication
with the agent B.

2. The agents A and B have different views on
the events because of the ambiguous business
processes or communication protocols.

3. Accidental repudiation when proper
implementation of transaction management
and communication protocols are not in place
as well as logging for audit solutions.

Id/Name Actors Description
TP2A1
Masquerading

SR platform A
SR platform B

The platform A provides false identity of the platform
B to the agent B. The reasons for this threat are
following SR agent B

1. Intention to acquire reputation or access rights
of the platform B.

2. Intention to perform harmful actions against
agent B under false identity to be unaccounted
for the consequences.

3. Intention to decrease the reputation of the
platform B by compromising its identity.

4. Intention to compromise the platform B by the
fact of communication between the platform B
and agent B.

5. Accidental malfunctioning of the platform A.

TP2A2 SR platform A The platform A terminates, suspends or moves the
agent B, unfair fully allocates resources to the agent
B, creates burden of requests for the agent B, provides
services with unacceptable delays, does not follow
service level agreements, etc. There are several
reasons for that:

Denial of
Service

SR agent B

1. Intention to terminate, suspend or move the
agent B.

2. Intention to degrade the performance of the

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 32

agent B without authorization for that from the
agent B.

3. Intention to keep the agent B from fulfilling
some critical tasks.

4. Unintentional invocation of services of the
agent B with defects.

5. Unintentional malfunctioning of the platform
A.

TP2A3
Unauthorized
access

SR platform A
SR agent B

The platform A accesses services, code, state and data
of the agent B without proper authorization. The
reasons are following.

1. Intention to get unauthorized permissions
because of the ambiguity in the security
policy.

2. Intention to access sensitive data exploiting
vulnerabilities of the agent B or using direct
access to agent’s code and state.

3. Intention to engage unauthorized services with
faked proofs of privileges.

4. Unintentional unauthorized access.

TP2A4
Eavesdropping

SR platform A
SR agent B

The platform A intercepts and monitors confidential
communication activities, code, state and data of the
agent B. The reasons are following:

1. Intention to collect sensitive and confidential
information of the agent B.

2. Intention to monitor relations of the agent B to
other agents and platforms.

3. Intention to collect information about other
entities that the agent B may have.

4. Intention to avoid repudiation by the agent B.
5. Unintentional retention (logging) of sensitive

and confidential information

TP2A5
Alteration

SR platform A
SR agent B

The platform A modifies the communicating
messages, code, state and/or data of the agent B.

1. Intention to corrupt messages, code, state
and/or data.

2. Intention to tamper messages, code, state
and/or data.

3. Intention to correct malfunctioning code or
inconsistent messages, data or state.

4. Unintentional alternation.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 33

3.2.2.4 UBIWARE to resource and resource to UBIWARE
We will refer to threats of these categories as UBIWARE-to-resource (TU2R) and resource-
to-UBIWARE (TR2U) threats and attacks. The TU2R threats arise when a SmartResource
agent or other entities of the UBIWARE platform perform malicious or unintentionally
harmful behavior against resources which should be served by this agent and UBIWARE
instead. This kind of threats is the most dangerous because it threatens real-world resources.
As UBIWARE serves and the agent represents its resource, the TU2R threats are similar to
the TP2A threats. The TR2U threats arise when a resource intentionally or accidentally
performs harmful behavior against its SmartResource agent or UBIWARE in general. These
threats include masquerading, denial of service, unauthorized access, repudiation and
alternation.

3.2.2.5 Repositories to agent
The possibility for SmartResource agents to load their roles and RABs from different
external sources should be also taken into account. The agents may unintentionally provide
threats playing some role or using some RAB from the malicious pool of roles or RABs.
Repositories might be responsible only for the provisioning of malicious roles and RABs
when they do not use sufficient mechanisms for testing and verification of roles and RABs
upon their publishing to repositories by original attacker. Things become even more
complicated when security policies and security mechanisms can be loaded from external
sources by agents.

3.3 Security questions in industrial cases

This chapter reveals security concerns in the UBIWARE industrial cases: decentralized
management of power networks and proactive machinery maintenance in paper industry.

3.3.1 Decentralized management of power networks

In this section, we exemplify industrial impact, business benefits and security issues of
UBIWARE using a case study in the domain of distributed power network management
(Naumenko et. al., 2007) that we performed in collaboration with ABB company
(Distribution Automation unit). We present four scenarios of potential new applications that
could be created based on UBIWARE and discuss the security implications. ABB is a global
vendor of hardware and software for power networks. The power networks themselves are
owned, controlled and maintained by some local companies. It is noticeable that the control
systems of different companies are not integrated.

However, the information exchange between sub-networks may be very important for
fault localization, network reconfiguration, and network restoration when a fault happens on
the border of sub-networks. This is our first scenario: introducing an inter-organizational
smart middleware solution like UBIWARE could solve this issue. Existence of adequate

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 34

security mechanisms are a prerequisite though. A challenging research question is how to
elaborate flexible and expressive framework for the distributed, collaborative and policy-
based management of security. FIGURE 3.1 shows this first scenario.

FIGURE 3.1 Security of information exchange between sub-networks

The second scenario in our vision is related to a new business model that ABB could
implement. At present, all ABB expertise gets embedded into hardware or software systems
and sold to the customers as it is. A new business model would be to start own Web-services
providing implementation of certain algorithms, so the ABB customers will utilize those
algorithms online when needed. ABB will be always able to update algorithms, add new, and
so on. Noticeable that, if semantically defined, such Web-service can potentially be utilized
across the globe even by the customers who never purchased any of ABB hardware or
software. Regarding security, this means that UBIWARE must handle secure provisioning of
(semantic) web services, which is still an open research question. We have already targeted
issues related to the access control policies in (semantic) Service-Oriented Architecture
(Naumenko and Luostarinen, 2006) and provisioning of Web services in mobile
infrastructures (Srirama and Naumenko, 2007). However, there are still problems related to
the secure communication, privacy and trust management. FIGURE 3.2 illustrates security
questions and this scenario.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 35

FIGURE 3.2 Security for web service-based business model

The third scenario in our vision is integration of contextual data with the currently used data
such as the network structure and configuration, feeder relay readings, etc. Such integration
can be used for evaluating existing threats for the power network, facilitation of fault
localization, extending the operators’ view of the power network, etc. Basically, integration
of contextual information from external sources requires different approaches to trust
management depending on the used techniques and purposes of integration. Thus, the major
question related to security is how to formally compute reputation and trust for the external
contextual services because these issues influence the confidence in predicted risks, fault
locations, etc. FIGURE 3.3 illustrates security question in the third scenario.

The last scenario is transferring the knowledge of human experts to automated systems,
by means of various data mining tools. For example, now it is always a decision of a human
expert which of the existing fault localization algorithms will perform the best in the context
of the current configuration of the power network and the nature of the fault. Such decisions
made by an expert, along with the input data, could be forwarded to a learning Web-service.
After a sufficient learning sample, this Web-service could start to be used in some situations
instead of the human expert, e.g. in situations when a faster decision is needed or when the
expert is unavailable. Considering humans as objects of access control in machine-to-human
interactions is an interesting research question. The data mining algorithms perform better on

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 36

larger sample sets when they are collected for all equipment of power networks. A question
is then how to treat the privacy concerns of the owners of different sub-networks.

FIGURE 3.3 Security for the external contextual services

3.3.2 Proactive machinery maintenance services

This section describes the current situation with and business needs for security in the cluster
of Metso’s companies. The cluster of Metso’s companies, Metso Paper Inc. and Metso
Automation Inc., specializes in pulp and paper industry processes, machinery, equipment,
control systems, related know-how and after sales services. The Metso Paper's offering
extends over the entire life cycle of the process covering new lines, rebuilds and various
services. Metso Automation supplies control systems and related ICTs for the products of
Metso Paper. We were concentrating on two areas, namely Product Data Management (PDM)
(Naumenko et al., 2005) and Proactive Machinery Maintenance Services (PMMS)
(Luostarinen et al., 2006). The major findings are the following.

– The current level of security for PMMSs is not sufficient for the needs of managing
cross-organizational processes. The elaboration of generic authorization enforcement
mechanisms in the business network is crucial to handle the heterogeneity and to shift the

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 37

control over the authorization process from Metso to its customers. FIGURE 3. shows the
current architecture for provisioning of PMMSs.

– The inter-organizational information exchange in the paper industry will extensively
use the mill model. Currently, there are several research initiatives that try to use Semantic
Web standards and technologies in order to develop appropriate solutions for the information
exchange for the PDM process. When semantic standards come into use for PDM and
PMMSs, then industrial resources for the access control will have semantic descriptions
according to the mill ontology. FIGURE 3. illustrates the vision for a future collaborative
platform for PDM based on the Semantic Web technologies.

FIGURE 3.4 The architecture for remote machinery maintenance services

FIGURE 3.5 The collaborative platform for Product Data Management

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 38

3.4 SURPAS Research Framework

Traditional security goals like confidentiality, availability, reliability, integrity,
manageability, accountability, responsibility etc, together with conventional measures and
mechanisms that support security, do not cover all the needs and threats of new emerging
computing environments. UBIWARE poses challenges for the research and development
towards more pervasive and intelligent countermeasures. Such countermeasures have to
provide the high level of user privacy, effective trust management, built-in self-security,
context-awareness, and pro-activity. Moreover, protection of multi-agent systems like
UBIWARE is still immature area, where the adoption of conventional security measures and
elaboration of new techniques are promising (Jansen and Karygiannis, 1999), (Borselius,
2002).

The elaboration of a consolidated security infrastructure following the SURPAS research
framework will lead to more innovative and intelligent industrial tools and will transform
security from an obstacle to a driver of large-scale industrial collaboration. SURPAS follows
the general UBIWARE vision – configuring and adding new functionality to the underlying
industrial environment on-the-fly by changing high level declarative descriptions. Regarding
security, this means that SURPAS is able of smoothly including new, and reconfiguring
existing, security mechanisms, for the optimal and secure state of the UBIWARE-based
system, in response to the dynamically changing environment.

FIGURE 3.6 illustrates the SURPAS research framework. The SURPAS semantics
(Naumenko, 2006) is the main conceptual part of the research. The formal explicit
specification of semantics is an input for the critical analysis of characteristics of suggested
features and for further elaborations of other components of the framework. In a nutshell, the
use of ontologies, instead of mathematical security and domain models, is the main
characteristic of the SURPAS research.

FIGURE 3.6 The SURPAS Research Framework

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 39

SURPAS functionality consists of two parts: the enforcement function and the administrative
function. The SURPAS enforcement function defines SURPAS run-time policy-enforcement
mechanisms. The SURPAS administration function defines mechanisms for managing
SURPAS data like semantic annotations of resources and operations, domain ontologies,
ontology-based policies, configuration settings for the enforcement function, etc. Each
function is further decomposed into the functional semantics, algorithms for specific tasks,
the abstract architecture based on ontologies and abstract use cases, and the reference
implementation.

The functional semantics is an abstract specification of functionality. It precisely defines
semantics of enforcement and administrative functions that change the state of the
UBIWARE-based system to keep it consistent and secure.

The algorithms define explicit step-by-step procedures to perform or compute
enforcement and administrative functions, mathematically specified in the functional
specification, that are complex and for which the solutions are not obvious from their abstract
specifications. Envisioned algorithms for rigorous study include: semantic annotating of
requests; retrieving relevant domain ontologies; taxonomic and faceted classification of
subjects, operations, and objects of access; retrieving relevant policy statements; resolving
conflicts in relevant policies; and access control decision making.

The abstract architecture is an upper view on architectural components of SURPAS and
interactions between them. This abstract description captures and reveals only fundamental
elements and relations. Basically, the abstract architecture is a bridge between theoretical
findings and adoption of SURPAS into practice.

The reference implementation takes the form of a set of software components. It serves for
research and development purposes to prototype and test characteristics of proposed ideas, to
generate feedback for upper components of SURPAS for further refinement, to make
SURPAS tangible for better understanding and evaluating of proposed research ideas, and to
implement components for possible reuse in industrial domains.

The UBIWARE adoption domains define industrial application areas of SURPAS. For
example, a business of PMMS in the pulp&paper industry serves as a good domain for
adopting UBIWARE. In this case, SURPAS will be important for managing access to control
systems of maintained machinery equipment (Naumenko, 2007) in the business network of
customers. The second promising application area is a business of decentralized management
of power-networks owned by different business actors. Use of SURPAS in UBIWARE
applications aligns SURPAS with the real world needs and issues. Merged semantics of
domains and of SURPAS will be the result of merging or/and mapping of SURPAS
ontologies with domain ontologies.

The SURPAS methodology is the formally described system of principles, practices and
procedures that guides applying the SURPAS in concrete industrial cases of UBIWARE.

Another perspective on the SURPAS research framework would divide the research
results according to the main areas of information and system security, namely access
control, secure communication, privacy and trust. It is useful to consider along these
dimensions all of the conceptual and functional semantics, algorithms, components of the
abstract architecture and the reference implementation. In addition, architectural components
of UBIWARE define the third, architectural, perspective on the SURPAS framework.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 40

3.5 SURPAS Conceptual Semantics for access control

3.5.1 Model-theoretic semantics of OWL

The model-theoretic semantics of SURPAS is an extension of the semantics defined in the
OWL standard. The OWL has two specifications of model-theoretic semantics: one is direct
model-theoretic semantics and it should be referred by default as we do and the second is
RDF-compatible model-theoretic semantics of OWL. Description of OWL semantics consists
of four parts: formal specification of vocabularies and interpretations, interpreting embedded
constructs, interpreting axioms and facts, and interpreting ontologies. Table 3.1 shortly
presents the direct model theoretic semantics of vocabularies and interpretations of OWL
(Patel-Schneider et al., 2004).

Table 3.1 – Direct model-theoretic semantics of vocabularies and interpretations of OWL

An OWL vocabulary and a datatype map
V V⊆

L ∪ VC ∪ VD ∪ VI ∪ VDP ∪ VIP
∪ VAP ∪ VO

VC
⊇{owl:Thing, owl:Nothing}

V is an OWL vocabulary. VL is a set of the
literals. VC is a set of URI references of the
classes. The class with qualified name owl:Thing
is the class of all individuals. The class with
qualified name owl:Nothing is the empty class.
VD is a set of URI references of the built-in OWL
datatypes and rdfs:Literal. VI is a set of URI
references of the individuals. VDP is a set of URI
references of the data-valued properties. VIP is a
set of URI references of the individual-valued
properties. VAP is a set of URI references of the
annotation properties. VO is a set of URI
references of the ontologies. VOP is a set of URI
references of the built-in OWL ontology
properties.

D A datatype.
L(d) A lexical space, which is a set of Unicode strings.
V(d) A value space.
L2V(d):L(d) V(d) → A total mapping from the lexical space to the

value space.
D:VD→LV A datatype map that is partial mapping from URI

references to the corresponding XML Schema
datatypes (may contain other datatypes as well).

An abstract OWL interpretation
I=<R, EC, ER, L, S, LV> An abstract OWL interpretation with respect to D

with vocabulary V.
R The domain of discourse or universe. It is

nonempty set that contains denotations of URI
references and literals in vocabulary V.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 41

EC:VC→P(O)
EC:VD→P(LV)
EC(owl:Thing)=O
EC(owl:Nothing)={}
EC(rdfs:Literal)=LV
O R ⊆

A mapping from URI references of classes and
datatypes to the corresponding class extensions
and sets of literal values.
O is the class extension of owl:Thing which
comprises individuals of the R.

ER:VDP→P(O×LV) A mapping from URI references of data-valued,
individual-valued, annotation, ontology properties
and the rdf:type property to the corresponding
class extensions.

ER:VIP→P(O×O)
ER:VAP∪ {rdf:type} P(R×R) →
ER:VOP→P(R×R)
L:TL→LV A mapping from typed literals of VL to literal

values LV.
S:VC ∪ VD ∪ VI ∪ VDP ∪ VIP ∪ VAP

∪ VO {owl:Ontology,
owl:DeprecatedClass,
owl:DeprecatedProperty} R

∪

→
S(VI) O ⊆
S(“I”)=I, I a plain literal without
language tag
S(“I”@t)=I, I a plain literal with
language tag
S(“I”)=L(“I”), I a typed literal

A mapping from URI references in vocabulary V
to their denotations in R. S is extended to plain
literals in VL by mapping them onto themselves

LV R ⊆ Literal values of I. It contains the set of Unicode
strings, the set of pairs of Unicode strings and
language tags, and the value spaces for each
datatype in D.

3.5.2 Model-theoretic semantics of SURPAS focusing Access
Control

Use and compliance to the direct model-theoretic semantics of OWL allow relatively simple
introducing of vocabularies and interpretations of specific concepts of SURPAS ontologies
preserving and inheriting all features of OWL.

For the specification of the model-theoretic semantics we use URI references for names
that are abbreviated to qualified names by using a namespace and a name of concept. The
table 3.2 defines namespace names for used in the paper namespaces.

Table 3.2 – Namespace names

Namespace name Namespace
surpas http://www.cc.jyu.fi/~annaumen/surpas.owl#
sbac http://www.cc.jyu.fi/~annaumen/sbac.owl#
sbacpriv http://www.cc.jyu.fi/~annaumen/sbacpriv.owl#

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 42

sbacproh http://www.cc.jyu.fi/~annaumen/sbacproh.owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/07/owl#

Before defining concepts needed to specify access control policies in SURPAS, Semantics-
Based Access Control (SBAC), we think it might be useful to define generic and abstract
concepts on the upper level of SURPAS. This is needed to allow reusing of our research
outcomes in other areas of security than access control. The table 3.3 introduces a stub of
upper model for SURPAS.

Table 3.3 – Model-theoretic semantics of vocabularies and interpretations of SURPAS

A SURPAS extension to the OWL vocabulary
VC

⊇{surpas::SecurityStatement} SURPAS class of security statements belongs
to the OWL vocabulary of URI references of
classes

VIP
⊇{surpas:subject, surpas:predicate,

surpas:object}
SURPAS properties belong to the vocabulary of
URI references of individual-valued properties

VSS
⊆VI URI references of the security statements that

are OWL individuals
A SURPAS extension to the OWL interpretation

SS=EC(surpas:SecurityStatement)=S(VSS),
SS⊆O

A set of security statements.

subject(SS, O, ER(surpas:subject))
predicate(SS, O, ER(surpas:predicate))
object(SS, O, ER(surpas:object))

Binary relations subject, predicate, and object
defined from the set of security statements to
the set of discourse except literal values by the
relation graphs that are class extensions of
SBAC properties surpas:subject,
surpas:predicate, and surpas:object respectively.

The set of security statements SS and three relations define a generic structure for
specification of statements related to security like privileges, prohibitions, obligations for
access control, trace statements for logging and audit, reputation statements and trust
agreement statements for trust management, etc. The scope of this paper encompasses
semantics of access control statements that is presented in the table 3.4.

Table 3.4 – Model-theoretic semantics of vocabularies and interpretations of SBAC

A SBAC extension to the OWL vocabulary
VCR

⊆VC URI references of the resources classes.
VCO

⊆VC URI references of the operations classes.
VC

⊇{sbac:ClassOfResources,
sbac:ClassOfOperations,
sbac:AccessControlStatement}

SBAC classes belong to the OWL vocabulary of
URI references of classes

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 43

VIP
⊇{sbac:subject, sbac:operation,

sbac:object}
SBAC properties belong to the vocabulary of
URI references of individual-valued porperties

VACR
⊆VI

VACO
⊆VI

VACS
⊆VSS

⊆VI

URI references of the access control resources,
operations and statements that are OWL
individuals

A SBAC extension to the OWL interpretation
ACR=EC(VCR)=S(VACR) A set of resources that could be subjects and

objects of access control. ACR is union of class
extensions of all classes of resources that
correspond to URI references of the vocabulary
VCR and it is the set of denotations of all URI
references of vocabulary VACR.

ACR O ⊆

ACO=EC(VCO)=S(VACO)
ACO⊆O

A set of operations.

ACS=EC(sbac:AccessControlStatement)=
=S(VACS), ACS SS⊆O ⊆

A set of access control statements.

CR P(ACR) ⊆ A set of subsets of resources defined by URI
references of vocabulary VCR. CR=EC(sbac:ClassOfResources)

CO P(ACO) ⊆
CO=EC(sbac:ClassOfOperations)

A set of subsets of operations defined by URI
references of vocabulary VCO.

acSubject(ACS, CR, ER(sbac:subject)) Binary relations access control subject,
operation, and object defined from the set of
access control statements to the set of classes of
resources, operations, and resources by the
relation graphs that are class extensions of
SBAC properties sbac:subject, sbac:operation,
and sbac:object respectively. Introduced
relations are subsets of corresponding relations
from the SURPAS extension.

acOperation(ACS, CO,
ER(sbac:operation))
acObject(ACS, CR, ER(sbac:object))
acSubject subject ⊆

acOperation predicate ⊆

acObject object ⊆

The ACR is a set of individual resources. A resource is an entity of physical or digital world
that is a subject or an object of access. Definition of the resource as a set for subjects and
objects gives more flexibility in access control rights specification because it is hard to
separate resources on passive and active in environments where artificial resources play
active roles and their relations to human users are weak or are not present. This means that a
resource may operate not on behalf of a user but because of its own initiative. Researches in
agent technologies and machine to human interaction are good sources for more details on
this topic. The ACO is a set of individual operations that could be actions, transactions,
access modes, etc.

Resources and operations are classified and collected to named sets that form hierarchies
of resources and operations. The CR is the set of subsets of resources and the CO is the set of
subsets of operations. Those sets are partially ordered by the transitive subset relation that is
subClass property in the OWL.

The ACS is a set of access control statements that denote a many-to-many abstract relation
between subject, operation and object of access using three binary relations from access

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 44

control statements to subject resources, operations, and object resources. The ACS
specializes semantics of the generic structure of different purpose security statements. The
main feature of the access control statement semantics and the whole SBAC is that security-
related statements mentioned above are specified between classes instead of individuals. In
their turn, specializations of ACS define concrete semantics in the submodels, for example
privilege, obligation and prohibition statements. The table 3.5 presents semantics of privilege
concept and authorization rule for policies that use only privileges.

Table 3.5 – Model-theoretic semantics of interpretations of SBAC privileges

A SBAC Privilege extension to the SBAC interpretation
PRIV⊆ACS A set of privilege statements that is a subset of

the set of access control statements. PRIV=EC(sbacpriv:Privilege)
Access: ACR×ACO×ACR Boolean → An authorization rule for policies with privilege

statements only. Access(s, o, ob)=(∃priv∈PRIV,
s∈subject(priv), o∈operation(priv),
ob∈object(priv))

The PRIV is a subset of ACS and denotes the set of individual privileges of access control. A
privilege is an authorization of resources to access other resources using some operations. A
decision of access granting or prohibiting depends on memberships of subject, operation and
object elements in sets that are in definitions of privileges. The decision algorithm evaluates
the containment relation between individual elements and sets taking into account partial
order of sets. There is a possibility to define the membership relation of elements using only
leaf sets from the taxonomy of sets while the decision algorithm can infer the membership of
elements to other sets based on the subClass relation that forms hierarchy of sets.

Support of only positive authorizations in the form of privileges guaranties a conflicts free
specification of access control policies. However, even in this case the model has an implicit
prohibition that everything is prohibited unless it is privileged. Introducing means for the
specification of prohibitions (Table 3.6) in the SBAC model enhances expressivity of the
policy language to make negative authorizations explicit.

Table 3.6 – Model-theoretic semantics of interpretations of SBAC prohibitions

A SBAC Prohibition extension to the SBAC interpretation
PROH ACS ⊆ A set of prohibition statements that is a

subset of the set of access control
statements.

PROH=EC(sbacproh:Prohibition)

Access: ACR×ACO×ACR Boolean → An authorization rule for policies with
prohibition statements only. Access(s, o, ob)=¬ (∃proh∈PROH,

s∈subject(proh), o∈operation(proh),
ob∈object(proh))

It is evident that policies with privileges and prohibitions are not free from conflicts in an
arbitrary case. These policies require mechanisms to resolve conflicts and ambiguity for the
guarantied decidability. Following the fundamental principle of access control for ensuring

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 45

confidentiality, prohibitions always precede privileges. For example, block lists in mobile
phones prohibit accepting calls from given phone numbers while there is a general implicit
privilege to accept calls from everybody. Note, for this example prohibitions are mostly used
to specify policies in the form of block lists. Although in the most cases policies will follow
the fundamental principle, there is a need to specify the precedence (Table 3.7) between
privileges and prohibitions to facilitate at least the explicit specification of the fundamental
prohibiting principle with the further precedence of privileges.

Table 3.7 – Model-theoretic semantics of interpretations of SBAC precedence

A SBAC Precedence extension to the SBAC interpretation
precedes(P(ACS), P(ACS), ER(sbac:precedes)) A binary relation that denotes

precedence in specifications of policies
between sets of access control
statements.

Access: ACR×ACO×ACR Boolean → An authorization rule for policies with
privilege and prohibition statements. Access(s, o, ob)= (∃priv∈PRIV, s∈subject(priv),

o∈operation(priv), ob∈object(priv),
((precedes(PRIV,PROH) ∨
precedes(PROH,PRIV), ¬ (∃proh∈PROH,
s∈subject(proh), o∈operation(proh),
ob∈object(proh))))

The notion of obligations in the SBAC model supports a provisional authorization model
where policies define provisional operations that must be executed to fulfill conditionally
positive access control decisions or/and to supplement negative decisions. Obligations may
conflict with privileges and prohibitions. There are conflicts when obligations dictate to take
unprivileged or even prohibited actions. The above defined binary relation helps to configure
the actual precedence between privileges, permissions, obligations and other possible access
control statements for particular cases. However the provisional authorization and obligations
are targets for our research during the next iterations. FIGURE 3.7 presents the core part of
the SBAC model.

The SBAC interprets the facts, axioms and ontologies as defined by the OWL direct
model-theoretic semantics. Notable and important interpretations of OWL for the SBAC are
provided briefly below. The OWL provides a possibility to specify sets of individuals using
descriptions. Descriptions are axioms and they include class identifiers, restrictions and
boolean combinations of other descriptions. Boolean combinations are union, intersection,
and complement. Restrictions are placed on properties and called also facets. For example, a
description “intersectionOf({domain:Student, restriction(domain:status
value(domain:visiting)})” denotes a set of individuals that have class “domain:Student” as
their type and satisfy the restriction: property “domain:status” has value “domain:visisting”
where “domain” is the namespace of domain ontology. Descriptions allow flexible
specification of access control policies for further inferring access control statements
applicable to individual resources and operations based on their taxonomic and faceted
classifications.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 46

FIGURE 3.7 The SBAC model

Taxonomic classification relies on the class extensions of several relations: the sets
containment relation rdf:type, the subset partial order relation rdfs:subClassOf and the subset
partial order relation for binary relations rdfs:subPropertyOf. Last two relations form
taxonomies of classes and properties. The faceted classification is a sophisticated alternative
to the traditional classification schemes. In the OWL facets are sets of individuals defined by
restrictions on their properties. Another useful OWL feature for organizing access control
statements is specification of an enumerated class as subject, operation or object of access by
the explicit specification of all individual members.

Interpretation of ontologies is the key issue for evolution, consistency, reasoning and
organising features of SBAC, domain knowledge and concrete policies separately in different
ontologies for flexible and joint further use with the high conceptual granularity. Annotation
and ontology properties, namely owl:versionInfo, owl:priorVersion,
owl:backwardCompatibleWith, and owl:incompatibleWith, help to record a history of
evolution of SBAC and domain onotlogies, policies, trust agreements, etc. Ontology property
owl:imports gives the extra effect of importing the contents of target ontology into the
current ontology. The OWL standard (Patel-Schneider, 2004) defines conditions when an
abstract OWL interpretation satisfies an OWL ontology. The definitions of when and how a
collection of ontologies and axioms and facts is consistent and entails an ontology or axiom
or fact provide background for reasoning and maintaining integrity of SBAC data.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 47

3.5.3 The SURPAS ontologies

There are several alternatives to define the SURPAS ontologies because the OWL has
different syntaxes that are useful for different purposes. Abstract syntax of the OWL is more
appropriate and useful for access to and evaluation of SURPAS comparing with the exchange
syntax. Purpose of abstract syntax is informal specification of ontologies that facilitates
analysis of concepts and relations.

A regular OWL ontology consists of annotations, axioms, and facts. Annotations carry
information about authorship, versioning and other data associated with an ontology and
concepts. Facts and axioms provide information about classes, individuals and properties that
form main content of an ontology. An ontology can have name that is intended to be the
address where it can be found, although this is out of formal semantics.

The SURPAS ontology defines three classes and three individual-valued properties with
explicit definition of their names (note: OWL allows defining anonymous concepts).
Specification of classes and properties consists of axioms that associate concepts’ identifiers
with the specification of their characteristics, for example that surpas:subject,
surpas:predicate and surpas:object properties have surpas:SecurityStatement class as their
domains.
Ontology(surpas:ontology
Class(surpas:SecurityStatement)
ObjectProperty(surpas:subject
domain(surpas:SecurityStatement))
ObjectProperty(surpas:predicate
domain(surpas:SecurityStatement))
ObjectProperty(surpas:object
domain(surpas:SecurityStatement)))

The OWL standard gives the formal semantics (Patel-Schneider et al., 2004) of operation for
importing ontologies. The SBAC ontology imports the SURPAS ontology in order to
specialize the security statement and three relations (Naumenko, 2007). The introduced class
for access control statements is a sub class of security statements. Subject, operation and
object relations of access control statements are sub properties of corresponding relations
from the SURPAS ontology. The SBAC ontology defines also restrictions on these relations
that their values must be classes of resources and operations respectively. For this purpose
there are two sub classes of the owl:Class concept that denote the class of resources and class
of operations. Finally, there is an axiom defining relation of precedence between privileges,
prohibitions and obligations.
Ontology(sbac:ontology Annotation(owl:imports
surpas:ontology)
Class(sbac:ClassOfResources partial owl:Class)
Class(sbac:ClassOfOperations partial owl:Class)
Class(sbac:AccessControlStatement partial
surpas:SecurityStatement
restriction(sbac:subject
allValuesFrom(sbac:ClassOfResources))
restriction(sbac:operation
allValuesFrom(sbac:ClassOfOperations))

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 48

restriction(sbac:object
allValuesFrom(sbac:ClassOfResources)))
ObjectProperty(sbac:subject super(surpas:subject)
domain(sbac:AccessControlStatement)
range(sbac:ClassOfResources))
ObjectProperty(sbac:operation super(surpas:predicate)
domain(sbac:AccessControlStatement)
range(sbac:ClassOfOperations))
ObjectProperty(sbac:object super(surpas:object)
domain(sbac:AccessControlStatement)
range(sbac:ClassOfResources))
ObjectProperty(sbac:precedes))

The SBAC privilege and prohibition ontologies import the SBAC ontology in order to extend
it with only one class axiom that defines the class of privilege statements or the class of
prohibition statements. These classes are subclasses of the abstract class of access control
statements. Thus the classes inherit all properties defined for the class of access control
statements. The individuals of these classes are positive and negative authorizations that
define classes of resources that may or cannot perform access using operations from
specified classes of operations to resources from specified classes of resources.
Ontology(sbacpriv:ontology Annotation(owl:imports
sbac:ontology)
Class(sbacpriv:Privilege partial
sbac:AccessControlStatement))

Ontology(sbacproh:ontology Annotation(owl:imports
sbac:ontology)
Class(sbacproh:Prohibition partial
sbac:AccessControlStatement))

Other ontologies are to be developed to implement features of SURPAS like context-
awareness, rules, trust management, exchange of access control assertions, semantic logging
and audit, etc. However those are subjects for further research.

FIGURE 3.8 illustrates the concepts of SURPAS ontologies, importing mechanism
amongst the ontologies and possible policies commitments to different SBAC features
introduced in the paper. Ontologies for the policies A and D are able to define only privilege
and only prohibition statements respectively. The policies B and C may contain both types of
statements. Privileges have precedence over prohibitions in the policy B and prohibitions
precede privileges in the policy C.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 49

FIGURE 3.8 The SBAC Ontologies

3.5.4 The role of ontologies in SURPAS

The SBAC ontologies consolidate and formally specify knowledge of the access control
research and development domain. This means that SBAC ontologies represent and organize
mainly already formalized knowledge in existing access control models. Similarly to
traditional access control models, SBAC ontologies aim to support the specification of
policies accordingly to standards, legal regulations and commonly accepted in a domain of
interest practices, agreements, approaches, etc. The whole framework generally and SBAC
ontologies in particular reuse achievements in the Semantic Web research and development
area. FIGURE 3.9 illustrates the place and role of SBAC ontologies.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 50

FIGURE 3.9 The place and role of the SURPAS ontologies

SURPAS ontologies and Semantic Web standards shape the abstract design of the SBAC
mechanism that is specialized to concrete designs for particular technologies and paradigms
of ICTs. The design of the SBAC mechanism follows the Ontology-Driven Architecture
(ODA) (Tetlow et al., 2006) to enforce and administrate policies of organizations specified
by ontologies.

The main role of SBAC ontologies is to provide means for the ontological domain
modeling. The SBAC ontology specifies upper concepts and other SBAC and domain
ontologies import it. Domain ontologies import the policy ontology because it has concept of
privilege that is necessary to encode authorizations. Although it is out of scope of this paper,
domain ontologies may import other SBAC ontologies that define for example how to
specify trust statements, rules, contextual information, etc.

3.5.5 An example of the specification of domain ontology

The domain ontology formally specifies concepts of domain, resources, operations,
privileges and their semantic relations. It imports the SBAC and policy ontologies. FIGURE
3.10 shows an example of specification of privileges for users to print on printers based on
their relations to an organizational structure. The individual organizational units form the
hierarchy by the partial order relation part-whole defined as the transitive property partOf.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 51

Units are superior to their parts. The example does not have hierarchy of operations and it
defines the only one individual operation that denotes printing.

FIGURE 3.20 The example of the domain ontology

Hierarchies of classes of resources are more advanced. They are formed by the subClassOf
transitive relation to reflect partially ordered sets of printers and users. An interesting thing is
the combination of taxonomic and faceted classification of individual users and printers. The
domain ontology has the class of all users and the property of users’ membership in
organizational units. Let in this domain a user be a member of all units which have as a part
specified (direct) unit of a user. Thus as long as the range of the membership property is
partially ordered to the hierarchy of organizational units, restrictions (facets) on this property
must form the hierarchy of sets of users that is isomorphic to hierarchy of organizational
units. The individual user of some unit belongs to the facet with this unit as fixed value for
the membership property. This is the example of faceted classification. Other facets to which
the user belongs are inferred based on the hierarchy of facets (taxonomic classification). The
user also gets inferred assignments of units to the membership property. The same
explanation holds for the specification and classification of individual printers.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 52

The actual specification of the authorization for users of unit1-1 to print on corresponding
printers looks simple comparing to the previous description of taxonomic and faceted
classification of resources. The authorization rule for the tuple <user1, print, printer1> is true
because privilege1 exists with subject as UserOfUnit1-1, operation as Operation, object as
PrinterOfUnit1-1 and user1 belongs to the set denoted by the class UserOfUnit1-1, print
belongs to the set denoted by the class Operation, printer1 belongs to the set denoted by the
class PrinterOfUnit1-1.

3.6 SURPAS Architecture

This section presents the research results towards the abstract architecture of SURPAS,
piloting and testing this abstract architecture, and designing secure SmartResource agent.

3.6.1 Abstract Architecture

The abstract architecture is an upper view on the components of SURPAS and interactions
between them. This abstract design captures and reveals only fundamental elements and
relations taking into account security patterns (Mazhelis and Naumenko, 2006). Basically,
the abstract architecture is the main bridge between theoretical findings and adoption of
SURPAS into practice because the abstract architecture integrates the research on theoretical
issues with practical concerns and with the development of applications. Another role of the
abstract architecture is to ensure interoperability and reusability for SURPAS. The abstract
architecture consists of abstract design of common or shared characteristics of SURPAS that
can be formally related to every valid SURPAS implementation. Possible concrete designs
will be interoperable and will reuse reference implementations because of the shared abstract
design.

The abstract architecture is a part of the SURPAS functional semantics. In addition to the
abstract architecture, the SURAPS functional semantics includes other research components,
i.e., formal specification of functionality, algorithms and reference implementations. The
abstract architecture is closely related to these components. The formal specification of
functionality and algorithms provide functional requirements for the design of abstract
architecture. Then, the abstract architecture serves as an input to the process of piloting and
testing research ideas. Due to the central role of ontologies in SURPAS, the abstract
architecture should follow Ontology-Driven Architecture (ODA) paradigm (Tetlow et al.,
2006) of software design. ODA is an emerging and immature research target. This is an
additional challenge in tackling this research component.

The abstract architecture of access control in SURPAS, SBAC, reflects two main
functions: the administrative function and the run-time authorization function, that is also
called enforcement function or access control mechanism. The SBAC enforcement function
defines an access control policy enforcement mechanism in SBAC. The enforcement
function controls run-time access of requestors to protected resources according to ontology-
based access control policies, credentials of requestors, attributes of objects and operations

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 53

using algorithms of SBAC. The SBAC administration function defines mechanisms of
manipulation with the SBAC data including semantic annotations of resources and operations,
domain ontologies, ontology-based policies, configuration settings for the enforcement
function, and other. We concentrated on the SBAC enforcement function during our research.

The really first step towards the abstract architecture is identifying the common
components and characteristics that any SBAC implementations would have. These generic
components and characteristics form the scope of abstract architecture. The next step is to
integrate revealed components and characteristics in architectural abstractions. After that
some crucial components and features have to be prototyped for rationality and feasibility
study. The list of some generic elements is created taking into account security patterns [17-
20] and the proposal to use advances of Semantic Web.

– A subject of access is an active resource that requests some operation over other
resources. It is an actor in any authorization pattern also known as the client or
requestor. SBAC profiles and domains specialize the notion of entities that can be
subjects of access while the abstract architecture deals with the notion of abstract
subjects.

– An operation of access is an abstract concept that generalizes in the abstract
architecture access types, operations, methods, procedures, transactions, etc used in
profiles and domains.

– An object of access abstractly represents a protected object or passive resource in
other words.

– A guard (also known as protected system, single access point, checkpoint, enclave,
reference monitor, policy enforcement point) is a widely used component that
mediates access to protected resources by enforcing rules of corresponding access
control policies. The abstract architecture requires that the guard must evaluate all
requests, correctly evaluate policies, be incorruptible, and not be bypassable. There is
a single centralized guard that mediates access to all resources or a set of guards each
for some distinct type of resource or even for individual resource. Guards may be
proxies (Gamma et al., 1995) or embedded as part of protected resources. This
impacts the performance and assurance of the system. The abstract architecture deals
with guards as proxies. This is a more general case and if needed the functionality of
guards can be integrated with resources. Peculiarity of profiles and domains
determines concrete design solutions.

– A policy (access decision function, policy decision point) has a set of rules (called
rights, permissions, prohibitions, authorizations, etc) that define which subjects may
access which objects using which operations. It is advisable to use this pattern to
isolate policy decision logic from resource and enforcement code. It might be
infeasible to perform the decision making outside resources or enforcement
components (guard). The abstract architecture defines that the policy is always an
ontology or set of ontologies and it makes access decisions based on semantics of
subjects, operations, objects, context, and policy rules of access.

– A rule is a part of policy and for the SBAC rules are represented by access control
statements.

– A subject and object descriptors are well known patterns that provide access to
relevant attributes of subject and objects of access respectively in situations when

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 54

checking attributes is independent from establishing them, there are different sources
of attributes, different attributes are needed in different contexts, etc. The abstract
architecture of SBAC deals with subject, operation, object, policy, and context
descriptors in the form of semantic annotations. These annotations have to be
protected because attributes may embody sensitive data too. We position the SBAC
for open and dynamic environments thus the retrieval and creation of semantic
annotations for involved entities is not a trivial task.

– Context is a container for the data that are relevant for the access control decision and
enforcement relating to execution or administrative state of the environment,
operation, session, etc.

We identified the common components and characteristics for the SBAC enforcement
mechanism. These components are the proactive guard (ProGuard), the policy information
retrieval component (PIR), the context information retrieval component (CIR), and the
resource information retrieval component (RIR). ProGuard is the proxy and guard for
protected resources and information retrieval components. ProGuard enforces an access
decision based on the reasoning over the semantically encoded access control policy and the
semantic annotations of a subject, an operation, an object and a context of access. ProGuard,
driven by results of reasoning, collects all needed semantic annotations and policy rules to
make an access decision for communicating with information retrieval components, thus
acting proactively. The reasoner interactively provides instructions to get additional data for
further reasoning or a decision about access finally. The PIR component provides semantic
annotations of access control policies and of trust agreements between cooperative partners.
The RIR and CIR components provide unified interfaces to access semantic annotations of
resource’s attributes and contextual data respectively. FIGURE 3.31 shows the SBAC
abstract architecture of the SBAC enforcement mechanism. FIGURE 3.4 illustrates a control
flow of ProGuard.

FIGURE 3.31 The abstract architecture of the SBAC enforcement mechanism

FIGURE 3.42 The SBAC enforcement procedure

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 55

3.6.2 Piloting the abstract design

The development environment consists of several interrelated elements shown in FIGURE
3.5. Java 2 standard edition development kit version 1.5 (http://java.sun.com/j2se/1.5.0/) is a
programming language and platform that was chosen for the prototyping of research ideas.
Jena (http://jena.sourceforge.net/) is a semantic web framework for java developed within the
HP Labs Semantic Web Programme (http://www.hpl.hp.com/semweb/). ARQ
(http://jena.sourceforge.net/ARQ/) is a SPARQL processor for Jena. SPARQL is a query
language for the RDF developed by W3C (Prud'hommeaux and Seaborne, 2006). Eclipse
(www.eclipse.org) is an open source community that produces extensible with huge amount
of plugins integrated development environment (IDE). The last version of the IDE is 3.2. A
UML modeling tool is an eclipse plugin EclipseUML 2.1 Free Edition
(http://www.omondo.com/) produced by Omondo Inc. The Eclipse Test & Performance
Tools Platform (TPTP, http://www.eclipse.org/tptp/) project consists of four subproject one
of which provides tools for tracing and profiling java applications for further analysis of
performance. The really first thing to do for piloting the abstract design is to create defined
SBAC ontologies in the RDF/XML exchange syntax of OWL. For this purpose the protégé
(www.protege.stanford.edu) is the most appropriate tool. The protégé is an open source and
free ontology editor with the number of plugins for editing (Protege-OWL) and visualizing
(Ontoviz, OWL Viz) OWL ontologies. Web server is a container for developed in the protégé
SBAC, domain and policy ontologies that are accessible by the prototype from Internet
through HTTP protocol.

FIGURE 3.53 The development and testing environment

FIGURE 3.64 consists of two UML diagrams. The first diagram is a class diagram with
upper classes of subjects, ProGuards and protected objects. Subjects can access other
resources that are targets of access. Protected objects are protected by ProGuards that serve
as proxies decorating (Gamma et al., 1995) operations provided by protected objects.
ProGuards are resources and could be accessed by subjects the same way like protected
objects. ProGuards are also protected objects in their turn for two reasons: they can be
protected by other ProGuards like the second diagram shows and they have the same
interfaces as objects they represent according to proxy and decorator design patterns. The
second diagram is a collaboration diagram of objects that represent both mixed and nested
structures of ProGuards. The hybrid structure means that subject first access an upper guard
to get reference for access and lower level guards check request against policies. The nested
structure of guards follows the secure proxy security design pattern (Blakley et al., 2004) and

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 56

is known under different names like defense in depth, single sign-on, delegation, security
protocol encapsulation, tunneling, nested protected systems, etc.

FIGURE 3.64 The upper class and collaboration UML diagrams.

ProGuard is a façade (Gamma et al., 1995)] for the whole complex systems that implements
its functionality. The internal architecture of the ProGuard consists of the information
retrieval components and decision maker. FIGURE 3.75 presents associations between the
ProGuard and information retrieval components in the form of UML class diagram.

FIGURE 3.75 The ProGuard UML class diagram.

Being the facade for the whole subsystem the ProGuard provides interfaces of components
and it delegates fulfillment of requests to the components that actually implement the
interfaces. Moreover the ProGuard control access and protects the information retrieval
components and itself as was above motivated during the description of abstract architecture.
If the ProGuard is composed by the arbitrary number of information retrieval components of
each type then it shall have additional means for coordination of delegation of calls. To make

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 57

this situation simpler at this level of design, the ProGuard can have only one information
retrieval component for each type while they can be composed or linked to networks of
information retrieval that is a subject of design on their levels.

3.6.3 Testing the pilot

The piloting of the abstract architecture was conducted with the main purpose to test
performance of the SBAC enforcement mechanism and gather information for rationality and
feasibility study of the whole vision. FIGURE 3.86 is a UML sequence diagram generated
after profiling of the testing prototype run. This diagram shows the test sequence aggregated
to the upper level objects that are the subject, protected object and ProGuard. The test
application firstly creates three elements and then starts the sequence of one request from the
subject to the ProGuard with the following evaluation of the request.

FIGURE 3.86 The testing run (aggregated upper sequence).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 58

There are basically two control flows with distinct characteristics and impacts on the overall
performance where monitoring and measuring is needed. The first is the process of starting
up the ProGuard when it creates and initializes all internal components. The performance of
this process is crucial for the fast restarting of the ProGuard in the case of restoration after
fault or something else. Obviously the time at which the ProGuard starts is not as important
and critical as the response time of run-time evaluating of requests. This is the second
process and it occurs each time when subjects try to run operations over protected objects.
There are different factors that impact the performance of the SBAC enforcement mechanism.
We have already identified above that the overall performance accumulates both
performances of the start-up and evaluating processes:

– The performance of the start-up process is determined by the time of start-ups of
ProGuard components. The information retrieval components have to initialize their
sets of semantic annotations and information retrieval networks. The decision maker
has to initialize the knowledge base with at least SURPAS ontologies in highly
dynamic environments and can initialize the knowledge base with all ontologies and
semantic annotations in the case of closed environments.

– The performance of the evaluating process is determined by the retrieving of semantic
annotations in the case of dynamic environments and actual decision making. The
decision making process is broken down to three activities. The first is combining the
decision making knowledge base based on retrieved semantic annotations, applicable
SURPAS, domain and policy ontologies that might be loaded partially during the
start-up process. The second is preparing the query according to the request and
SBAC authorization rules that correspond to applicable policies. The third activity is
executing of the query against the prepared knowledge base using the query engine.
FIGURE 3.97 shows the UML sequence diagram of the SBAC decision making
control flow upon the request arrival from the subject.

The above breakdown of performance reveals major factors that influence performance of the
SBAC enforcement mechanism:

– The size of knowledge base that is compounded of the number of instances, classes,
properties and access control statements in the SBAC, domain and policy ontologies.

– Activities of initialization and preparation of the knowledge base for the decision
making process can be allocated to the start-up and evaluating processes based on the
availability of semantic annotations and ontologies in different environments. The
allocation of these activities shapes the compromising balance between performances
of the both processes.

– The complexity of the querying the knowledge base differs because of different
complexity of the authorization rules for policies that commit to different features of
the SBAC illustrated on the figure 4. Complexities of policies A and D are equal and
correspond to the case when only either privileges or prohibitions are used.
Complexities of policies B and C are equal and correspond to the case when both
privileges and prohibitions are used.

– The performance of implementation of the query engine is the most crucial for the
evaluating process as shown below during description of testing.

– The performance of implementation of the knowledge base impacts performances of
the both processes.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 59

FIGURE 3.97 The testing run (SBAC decision making sequence).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 60

The UML component diagram (FIGURE 3.108) depicts the concrete architecture of the
SBAC enforcement mechanism for the measuring of minimal response time of the SBAC
decision making process in the settings that support the maximal performance. The internal
structure of the ProGuard consists of the decision maker that has in-memory knowledge base
(decision set) in the form of ontology model provided by the Jena framework and the query
engine (query processor) provided by the ARQ processor of SPARQL queries to RDF data.
All ontologies are placed into the web server and accessible via HTTP protocol.

FIGURE 3.108 The concrete architecture with the fastest possible response time.

The fastest response time of the evaluating process corresponds to the simplest policy and
domain ontologies. The policy ontology consists of one class of active resources with one
individual, one class of passive resources with one individual and one class of operations
with one operation. The policy has the only one privilege statement defined using the above
described classes. All RDF statements of SBAC, domain and policy ontologies are loaded
into the decision set during the start-up process. The SPARQL query corresponds to the
authorization rule from the table 4 for policies defined using only privilege statements (the
query for policies with only prohibitions is analogical).

PREFIX example: <http://www.cc.jyu.fi/~annaumen/example.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sbacpriv: <http://www.cc.jyu.fi/~annaumen/sbacpriv.owl#>
PREFIX sbac: <http://www.cc.jyu.fi/~annaumen/sbac.owl#>
PREFIX surpas: <http://www.cc.jyu.fi/~annaumen/surpas.owl#>
SELECT ?x
WHERE {
?x rdf:type sbacpriv:Privilege .
?x surpas:subject ?subject .
?x sbac:operation ?operation .
?x surpas:object ?object .
example:resource_1 rdf:type ?subject .
example:operation_1 rdf:type ?operation .
example:resource_2 rdf:type ?object .}

For the execution time analysis the TPTP platform provides tools by monitoring method time
data. The cumulative CPU time of the ProGuard start-up process is 12,256 seconds which are
caused mainly by the start-up (12,141 seconds) of the decision making component and by
initializing the in-memory decision set more specifically. The cumulative CPU time of the

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 61

evaluating process is 0,813 seconds which are fully caused by the query execution over the
decision set.

This cumulative CPU time does not take into account time of I/O operations with memory
thus it is smaller than the real invocation time of both processes (14,559 and 2,05 seconds)
but fairer for the comparison with fixed type of CPU because the real cumulative time
depends from bigger number of characteristics of the hardware. The personal computer that
was used for testing is IBM PC with the CPU AMD Athlon XP 3000+, 1 GB of RAM, and
OS Microsoft Windows XP Professional version 2002 with Service Pack 2.

3.6.4 Architecture of the secure SmartResource agent

The central in UBIWARE is the architecture of a secure SmartResource agent depicted in
FIGURE 3.19. This architecture of an agent extends the one from (Terziyan and Katasonov,
2007) by adding the security components. It can be seen as consisting of four layers: reusable
atomic behaviors (RABs), behavior models corresponding to different roles the agent plays,
SURPAS security policies, and the behavior engine.

A reusable atomic behavior (RAB) is a piece of code implementing a reasonably atomic
function. As the name implies, RABs are assumed to be reusable across different
applications, different agents, different roles and different interaction scenarios.

The behavior of an agent is defined by the roles it plays in one or several organizations.
Some examples of the possible roles for the power-networks domain: operator’s agent, feeder
agent, agent of the feeder N3056, fault localization service agent, ABB fault localization
service agent, etc. Obviously, a general role can be played by several agents. On the other
hand, one agent can (and usually does) play several roles, potentially coming from different
organizations. A role consists of a set of beliefs representing the knowledge needed for
playing the role and a set of behavior rules. Roughly speaking, a behavior rule specifies
conditions of (and parameters for) execution of various RABs. Obviously, RABs need to be
parameterizable. Notice that, in UBIWARE, if a role specifies the need of interaction with
another agent, that agent is always specified by its role, not name or another unique identifier
of a particular agent.

The behavior engine is the same for all the SmartResource agents. The behavior engine
consists of the agent core, and the two core activities that we named “assign role” and “live”.
The AssignRole activity is responsible for parsing roles into the beliefs and behavior rules
storages. The Live activity implements the run-time loop of an agent. Introducing SURPAS
embeds the policy enforcement mechanism (see details below) into it. The Live activity has
also to be protected by some built-in security measures. The Live activity iterates through all
the behavior rules, checks them against current beliefs, goals and security policy constraints.
After that, it executes RABs together with security mechanisms corresponding to roles and
policies, respectively.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 62

FIGURE 3.19 The architecture of the secure SmartResource agents

The SURPAS policy enforcement mechanism manages security policies and security
mechanisms. Its main task is to enforce security policies by interweaving with the Live
activity. SURPAS policies are declarative descriptions using expressive and machine-
interpretable data formats of Semantic Web. They are reusable over different agents,
processes and organizations. Usually, SURPAS policies restrict actions prescribed by roles
and enforce use of security mechanisms in addition to normal activities.

Agents access the roles, policies, security mechanisms, and RABs from external
repositories, which are assumed to be managed by the organizations which own or hire the
agents, or trusted authorities. It is done either upon startup of an agent, or if the organization
requests an update to be made. Externalization of roles, policies, security mechanisms and
RABs has several advantages:

– Increased flexibility for control and coordination. Namely, the organization can
remotely affect the behavior of the agents through modifying the behavior roles and security
policies.

– The roles, policies, security mechanisms, and RABs can always be kept up-to-date.
– Possibility to create self-configuring and self-protecting agents.
– Agents may ‘learn’ in run-time how to play a new role and how to follow a new

security policy.
– Organizations are able to provide not only instructions what to do (declarative

descriptions of roles and policies), but also the tools enabling doing that (RABs and security
mechanisms).

– Agents may have a “light start” with on-demand extension of functionality.
– Inter-agent behavior and security awareness. The agents can make some use of the

information about some roles and policies, even if they do not follow them. One reason is to

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 63

understand how to interact with, or what to expect from, an agent playing those roles and
following those policies.

In summary, the security components, which SURPAS introduces into the architecture of
the SmartResource agent, are the policy enforcement mechanism that is built-in into the
behavior engine, and security measures and security policies which can be either provided
upon agent’s startup or retrieved on demand.

In UBIWARE, we also envision some additional security related services, e.g. verifying
and signing of roles, policies, security mechanisms and RABs by external trusted authorities
to guarantee defect-free and proper behavior of agents. Regarding security, the beliefs
storage of an agent has to supports following important activities: semantics-based logging
and audit for proactive context-aware intrusion detection and non-repudiation, computing
reputation for the management of trust relations between agents and security services,
persistent storing of security contexts, and other.

3.7 SURPAS in industrial use cases

This Section exemplifies the above described conceptual semantics (Section 3.5) and
architecture (Section 3.6) of SURPAS using the scenarios of the collaborative fault detection
and localization in the distributed power network (Section 3.3.1) and the distributed proactive
monitoring of paper production machinery (Section 3.3.2).

3.7.1 Secure decentralized management of power networks

FIGURE 3.143 illustrates the adoption of SURPAS for the decentralized management of
power networks. The scenario starts when the operators 1 and 2, which belong to different
companies A and B, notice abnormal behavior in their subnetworks. The company A owns
the core distribution subnetwork that includes the substations 1 and 2. The company B
manages the local power distribution starting from the substation 2 and including the
substation 3. Both companies send maintenance workers in order to collect information on-
site because initial remote fault detection and localization have not produced precise results.
The workers 1, 2 and 3 belong to the maintenance crew of the company A. The worker 4 is
send by the operator 2 from the company B. In UBIWARE, that automate cross-
organizational processes between these two companies, secure SmartResource agents
represent the maintenance workers, operators, companies and the equipment of this power
network

The workers 1 and 2 observe substation 1 and adjacent network equipment. The worker 3
checks the substation 2. The worker 4 checks the substation 3 and a physical condition of the
feeder between the substations 2 and 3. The workers write textual notes, take photographs, go
through checklists, check measurements and other.

Before hand, operators and workers got the security assertions from their organizational
SmartResource agents with permissions to access information of co-employees. Now, the
operators monitor on-site collected material using Internet and GPRS connection to the

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 64

mobile terminals of corresponding workers (FIGURE 3.110 cases 1 and 2). The workers 1, 2,
and 3 jointly browse collected material using a virtual P2P JXTA network extended to the
mobile network (FIGURE 3.110 case 3) and a pure P2P using WLAN and Bluetooth
connections when possible (FIGURE 3.110 cases 4 and 5). In this situation, the
organizational SmartResource agents act as the authorization authorities according to the
sequence diagram in FIGURE 3.12.

FIGURE 3.110 Communication between SmartResource agents in mobile environments

While checking the substations 2 and 3 and the feeder in between, the workers 3 and 4 try to
access the collected material of each other. Their SmartResource agents delegate the
authorization of incoming requests to the organizational SmartResource agents according to
the sequence diagram of FIGURE 3.132.

The access is granted because both companies have an agreement to share maintenance
information about all network equipment on the border of their subnetworks. Finally, the
worker 4 discovers the tree that felt to the wires and is the most obvious cause of the
abnormal behavior of the network. The photo with the GPS coordinates goes into the
maintenance histories of both companies together with all the measurements related to the
abnormal behavior for further reuse during detection and localization of similar faults.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 65

FIGURE 3.121 Organizational SmartResource agent as third-party authority

FIGURE 3.132 Delegation of authorization to the organizational SmartResource agent

In order to exemplify the ontology-based specification of access control policies according to
the SURPAS ontologies, here we provide simplified specification of two privileges and
related classes. The first privilege authorizes access to the power network equipment of the
core distribution subnetwork by the maintenance personnel of the company A using roles of
maintenance. The second privilege authorizes access to the power network equipment of the
substation 3 by the maintenance personnel of the company A using the same roles. The first
privilege belongs to the access control policy of the company A. This privilege is needed by
the workers 1, 2, and 3, and operator 1 in order to exchange on-site information. The second

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 66

privilege supports the agreement to share maintenance information about all network
equipment on the border of companies’ subnetworks. In our use case, this second privilege is
needed to retrieve the photo with the tree by the worker 3 from the mobile phone of the
worker 4. The specifications for these privileges and related classes refer to the shared
domain ontology “pwont”. This domain ontology contains semantic annotations about the
employees, companies, equipment and structure of power network, SmartResource roles and
other.

<sbacpriv:Privilege rdf:ID="Privilege_1">
 <sbs:subject rdf:resource="#MaintenancePersonnelOfCompanyA"/>
 <sbac:operation rdf:resource="&pwont;#MaintenanceRole"/>
 <sbs:object rdf:resource="#PartOfCoreDistributionNetwork"/>
</sbacpriv:Privilege>
<sbacpriv:Privilege rdf:ID="Privilege_2">
 <sbs:subject rdf:resource="#MaintenancePersonnelOfCompanyA"/>
 <sbac:operation rdf:resource="&pwont;# MaintenanceRole"/>
 <sbs:object rdf:resource="#PartOfSubstation_3"/>
</sbacpriv:Privilege>
<owl:Class rdf:ID="MaintenancePersonnelOfCompanyA">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="&pwont;#MaintenancePersonnel"/>
 <owl:Restriction>
 <owl:hasValue rdf:resource="&pwont;#Company_A"/>
 <owl:onProperty rdf:resource="&pwont;#belongTo"/>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>
<owl:Class rdf:ID="PartOfCoreDistributionNetwork">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:hasValue rdf:resource="&pwont;#CoreDistributionNetwork"/>
 <owl:onProperty rdf:resource="&pwont;#partOf"/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="PartOfSubstation_3">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:hasValue rdf:resource="&pwont;#Substation_3"/>
 <owl:onProperty rdf:resource="&pwont;#partOf"/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 67

FIGURE 3.143 The SURPAS use case for decentralized management of power networks

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 68

3.7.2 Secure Proactive Machinery Maintenance Services

After deriving the real-world security questions for SUPRAS, we used the case of PMMSs in
order to exemplify the adoption of SURPAS. We considered an example of specification of
hierarchy of resources, hierarchy of operations, and access control privileges in the industrial
maintenance domain.

FIGURE 3.154 partially illustrates ontologies and concepts used for the specification of a
privilege that experts with an expertise in paper lines of series 480 are authorized for the
condition monitoring of all components of third paper line of mill A.

FIGURE 3.154 The SURPAS and domain ontologies for maintenance services

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 69

Three ontologies comprise the domain ontology for this case. The mill ontology is an upper
level domain ontology commonly shared between collaborating partners in the paper industry
that defines meta model for paper mills. All partners keep confidentially their own ontologies.
The mill A model ontology consists of semantic annotations of concepts related to the mill A.
Partners define access control policies in the form of ontologies based on the SBAC, Policy,
Mill and their mill models ontologies.

The mill ontology contains hierarchies of classes that reflect classifications of human
resources, industrial resources, information assets, etc. To classify the resources the mill
ontology specifies the class of maintenance experts and the class of assets. The class of assets
has an object property to define partially ordered sets of assets by the “part of” transitive
relation. The class of assets is specialized further to two classes of industrial assets that are
class of valves and class of paper lines of specific series. The mill ontology introduces the
class of monitoring roles that are kind of maintenance roles.

The mill A model ontology has semantic annotations for a paper line number 3 of series
480, a valve of series 345 that is a part of this paper line, an expert with the expertise in this
paper line, a valve monitoring role that provides means for the condition monitoring of
valves and is modelled by an instance of the monitoring role.

The mill A policy ontology contains a privilege statement and supporting classes. The
privilege defines class of maintenance experts with the restriction that the expertise property
has at least some values from the class of paper lines of series 480. The expert defined in the
mill A ontology satisfies the restriction and thus belongs to the class of authorized subjects of
access. Note that the expert may be defined in the confidential ontology of provider of
machinery maintenance services. However the specification of privilege by the owner of
maintained assets can still be based on the shared mill ontology while the extraction of
semantic annotations for accessing individual subjects is performed based on requests to the
SmartResource agents and the classification to classes of authorized subjects is based on
requestors’ attributes. This is an important feature that ensures the feasibility of
specifications of access control statements in dynamic, distributed and collaborative
environments with incomplete data and meta data due to different reasons.

The privilege defines authorized operations (behaviours) modelled with monitoring roles.
The objects of access are restricted to assets that are part of third paper line. The valve
defined in the mill A model ontology is classified to authorized objects because it is an asset
and a part of the third paper line. Thus an access control decision in the case of the expert 1
monitoring the valve with the valve 573 as the object of access will be positive.

We adopted the SURPAS abstract architecture, where all four components of the abstract
architecture of the SBAC enforcement mechanism become SmartResource agents. FIGURE
3.165 shows the top level architecture and indicates the steps of a possible use case for the
SBAC enforcement mechanism.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 70

FIGURE 3.165 The SURPAS use case for maintenance services

1. Metso’s maintenance expert requests status of valve of series 345 that is part of the
running third production machine of customer A as a countercheck for a predicted
fault.

2. The ProGuard intercepts the request and retrieves corresponding policy rules based
on a policy annotation.

3. Policy rules require some additional information about the expert, valve and context
of access for this kind of request. The ProGuard retrieves an annotation of the valve
that is the object of access based on valve ID from the mill A model ontology.

4. The ProGuard retrieves contextual information that is available from a local context
annotation.

5. The ProGuard of customer A does not have enough information internally, thus it
forwards a request for the information about the context and the expert that is the
subject of access.

6. Metso’s ProGuard intercepts the request 5 and retrieves rules from a trust agreement
through PIR of Metso. According to these rules, Metso can provide information about
the resource and the context.

7. Metso’s ProGuard retrieves the semantic annotation of the expert.
8. Metso’s ProGuard retrieves the semantic annotation of relevant context.
9. Based on the annotation of context the reasoner implies that contextual information

contains sensitive data because the maintenance expert predicts the fault based on a
history of faults during an operation of paper production machine of similar type
owned by the customer B and the distribution of this information can violate a trust
agreement between Metso and the customer B. Thus Metso’s ProGuard delegates the
request to the customer B for a decision about possibility to share sensitive contextual
data with the customer A.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 71

10. The guard of customer B retrieves rules from its trust agreements with Metso and the
customer A.

11. The ProGuard of customer B retrieves requested contextual information and reasons
that customers share information about the condition monitoring and the diagnostics
for this type of paper machine. The customer B forwards the decision to Metso Paper,
which forwards semantic data about the subject and the context of access to the
customer A.

12. The ProGuard of customer A based on all collected data makes positive decision
granting access to valve’s status.

13. Alternatively, the ProGuard denies access and replies with rejection of request.

3.8 Conclusions

Conventional approaches to manage and control security seem to have reached their limits in
new complex environments. These environments are open, dynamic, heterogeneous,
distributed, self-managing, collaborative, international, nomadic, ambient, and ubiquitous.
New generation middleware such as UBIWARE will significantly advance the industrial
automation towards automatic discovery, composition, orchestration, integration, invocation,
execution monitoring, and coordination of industrial resources. These advanced automation
techniques target physical world objects and thus put security as the core need-to-be-
addressed issue. We described our long-term vision for the security and privacy management
in such complex environments, SURPAS. It aims at policy-based optimal collecting,
composing, configuring and provisioning of security measures in multi-agent systems like
UBIWARE. This section concentrates on the access control issues in SURPAS. Particularly,
we analyzed the security implications of UBIWARE, presented the SURPAS research
framework which guides our research towards SURPAS, the SURPAS conceptual semantics
and the SURPAS abstract architecture.

There are an enormous number of targets for further work. They include ontology
engineering for fundamental elements of security, elaborating architectures, designing new
specific algorithms for the intelligent security policy management, developing reference
implementations and, finally, adopting research ideas into practice in real-world industrial
settings.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 72

UBIWARE Deliverable D1.1:
Workpackage WP4:

Task T1.1_w4:

4 Principles of the Configurability

Evaluating current approaches towards software configuration, configuration
schemas and patterns. Defining the principles of the configurability in

UBIWARE and applying them to the development of configurable resource
adapters.

Workpackage leader: Sergiy Nikitin

The main objective of the UBIWARE project is to develop an open and generic middleware
platform which will allow creation of self-managed complex industrial systems consisting of
distributed, heterogeneous, shared and reusable components of different nature, e.g. smart
machines and devices, sensors, actuators, RFIDs, web-services, software components and
applications, humans, etc. The middleware will enable various components to automatically
discover each other and to configure a system with complex functionality based on the
atomic functionalities of the components.

Autonomic components must be given certain degree of flexibility in order to make
them more reusable and increase adaptability to new or changing environment. One of the
key issues is to keep connectivity to the resources from the outer world (with respect to
UBIWARE) connected via adapters. To keep resources always connected, we need to
elaborate a framework for configurable adaptation, which will define the principles of the
adapter configuration and change handling rules.

The notion of configurability and configuration is nowadays discussed in different
application areas ranging from the Reconfigurable Computing3 to Software Configuration

3 Reconfigurable Computing - http://en.wikipedia.org/wiki/Reconfigurable_computing

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 73

Management4. Although, these topics seem to be relevant, they are quite different from the
problem domain of the UBIWARE. In this paper we will narrow our scope to the
configurability of software components, meaning that components have interfaces allowing
changes to the components’ behaviour. Furthermore, in order to illustrate the configurability
in action, we select a specific component of the UBIWARE platform – an adapter, as an
object of configuration.

The need for configurable software is dictated by the market demanding more and more
adjustable and flexible solutions. There is a number of open source solutions available, such
as Obix framework (OBIX). The framework offers an API to incorporate software
configuration mechanisms into your application. It works with the XML-based portable
configuration data, allows definitions of relationships amongst components, detects
automatically changes to the configuration files and loads new settings. These solutions aim
at the configurable initialization and deployment of applications and offer rather
sophisticated APIs. The UBIWARE platform provides initial configurations as well, so these
frameworks can be useful, however, due to autonomous nature of UBIWARE architecture,
we need an instrument, that allows on-the-fly component (re-) configuration. For more
sophisticated self-aware entities such as software agents, we need a mechanism for self-
configuration.

The generic problem of configurability is a hot topic in a number of today’s ICT areas.
Reconfigurable hardware elements have brought new tasks to architects both on hardware
and software levels. There are a number of on-going research activities in a field of
reconfigurable and/or self-aware systems, for example SELFMAN (SELFMAN),
CASCADAS (CASCADAS) and Deliver (Deliver).

4.1 Configurability in UBIWARE

We will start with the definitions and terminology and determine what the
configurability in UBIWARE is and what it is not. Configurability can be of two types:

a) Structural – Instead of fixing some block, we just put new one. There can be dummy
components, which can be configured to play any kind of functionality,

b) Parametric – Functional components allowing tuning of their functionality.
Of course, there can be a combination of these two.
In UBIWARE structural configurability (type a) is used for business process (re-

)planning, whereas parametric configurability (type b) is applied for adjustment of individual
components and atomic behaviors. The reasonable question here would be: “What can one
configure in atomic behaviour/component?” The answer is: we use the notion of “Reasonably
Atomic Behavior” to model building blocks of the system. “Reasonably atomic” means here,
that there is no need to further decompose the functionality of the component, because it
makes the modeling too complex. We claim that it is more convenient for a designer to
define fewer components with configurable elements, rather than atomizing them up to the
primitives Endless decomposition will bring us to the programming language primitives.

4 SCM - http://en.wikipedia.org/wiki/Software_configuration_management

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 74

Furthermore, the composition of configurable components should be less computationally
expensive. For example, we take an atomic function transform(X,Y) where X is an input
document and Y is an output document. Suppose, we have a static source of input, that
slightly changes once a year. The transformation logic is quite simple and fixed. In this case
there is no need to make a third parameter which would be a transformation script (i.e.
transform(X,T,Y)). The function does not change its output even when there is a small change
in the input and transformation script. It still produces the same Y. Hence, there is no need to
change the behavior as a whole and declare one more class. What would be reasonable is to
configure it by calling separate setConfiguration() function to provide minor changes in the
transformation logic. This approach would allow on the fly reconfiguration of the component,
thus there is no need for redeployment and breakages in operation.

The above mentioned types of configurability (structural and parametric) correspond to
the configuration of composite and atomic components respectively; however, composite
component may have configurable parameters.

According to the project plan, this deliverable will focus on the application of the
configurability to adaptation. We separate three major subjects of investigation:
Configurability Framework, Configurable Adaptation and Configurable Transformation. The
dependencies among them are shown on Figure 4.1.

Configurability Configurability
FrameworkFramework

ConfigurableConfigurable
AdaptationAdaptation

ConfigurableConfigurable
TransformationTransformationuses

applies

Figure 4.1 – Configurability Framework applied to adaptation

The Configurable Adaptation process involves Configurable Transformation, but both
apply the Configurability Framework. The Transformation is only a part of Adaptation which
also includes Connectivity and Self-Awareness modules.

4.1.1 Configurability framework
This section discusses the generic domain-independent understanding of the configurability.
We need a formal framework for configuration, because modifications in the runtime need
additional patterns and functionality to keep the system consistent, up and running.

4.1.1.1 Configuration in software lifecycle
Configurability influences all the stages in software lifecycle starting from the domain
analysis and ending with the maintenance. Early, on the domain analysis stage the analysts
should identify areas, where configuration will probably appear and state what kind of
changes in the domain are expected or possible. Requirements analysis should further specify
the expected flexibility of the software system. The Software Architecture will define
interfaces of the components and the configurable elements will be modeled and handled
properly to ensure secure and predicable configuration. The implementation will have its

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 75

peculiarities because configurable elements will have special methods and variables, thus
influence the coding as such. The testing phase should be handled with special care; unit tests
should include reconfiguration procedures and analyze the results taking into account
security of reconfiguration and interdependencies. The deployment of the software will have
an initial configuration either hardcoded or gathered in an initialization script. During the
maintenance process, the reconfigurations should preserve system integrity and consistency,
thus implement transaction logic for vertical (top-down) reconfiguration and negotiation
protocols for horizontal (peer-to-peer) reconfiguration.

4.1.1.2 Programming the Configurability
The configuration of any entity in UBIWARE is performed using a Configuration Script,
which reaches the target object either in form of an ACL message (if the object is an agent),
or as an input parameter of the Configurable interface, and particularly setConfiguation()
method.
Every component featuring the configurable characteristics, must implement Configurable
behavior or Configurable interface. The former one is used for agent-level behavior
configuration and the latter one configures atomic software primitives. Both the behaviour
and the interface allow setting the configuration and getting the configuration description.
The configuration script is processed by the agent, and if the agent decides to start
configuration, it launches the ConfigurationBehavior, which encapsulates the script
processing and configuration process logic. The ConfigurationBehavior generates the
ConfigurationDescription objects, which represent either current or desired state of the
agent’s components (see Figure 4.2).

Figure 4.2 – Processing the configuration script

The propagation to subcomponents is organized via Configurable interface. Every
configurable software component has a precise specification of configurable parameters and

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 76

only these parameters can be changed. Changes to the Atomic Behaviors are done via
setConfiguration() method of the interface, which may contain consistency checking
procedures. The configuration process uses transaction mechanism for rolling back the whole
operation if at least one of the subcomponents was not configured properly. The
Configuration Transaction Algorithm is shown on Figure 4.3.

Figure 4.3 – Configuration Transaction Algorithm of Configurable Component

The compulsory preliminary activities for configuration are defined as follows:

- Check security and policy permissions for performing the configuration
- Check if the configuration is safe (if an agent performs some action at the time of

configuration, it may lead to an unpredictable behavior). The safest is to perform
configuration when an agent is idle.

- Suspend agent’s activities for the period of configuration in order to avoid
unsynchronized execution

When the configurable component is running, it has a configured state, which is described by
the ConfigurationDescription that corresponds to the instance of the
ConfigurationDescription class in the Transformation Ontology (see Figure 4.4).

ConfigurationDescription

ParameterhasParameter

hasConfiguredValue Literal

hasCIDReference ConfigurableComponent
componentId
hasSubComponent

Figure 4.4 – ConfigurationDescription class

The ConfigurationDescription refers to the instances of the Parameter class, which is an
upper class for the Parameter ontology. The parameter has a literal value and a reference to
the Component ID. This reference is needed, because the component may have a
subcomponent hierarchy with the same parameter types (see Figure 4.5).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 77

Component

Subcomponent

Subcomponent 1 Subcomponent 2
p1 p1

Figure 4.5 – Component hierarchy

The Subcomponent 1 and 2 can have the same parameter or even be of the same type, but
configured differently. Therefore, we need an explicit definition and identification of the
component structure.
Any configurable component has binding of its parameters to the ConfigurationDescription.
The way how binding is implemented is not specified, it can be, for example, an if-else code
(see Figure 4.6). The processing logic of the component ensures the validity of the
ConfigurationDescription objects and checks if all of them have reached the target.

Figure 4.6 – Configuration setting function

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 78

4.1.1.2 Structural Configurability (Composition)
Complex processes and scenarios in UBIWARE are represented as a set of inter-agent
activities, or, in other words, parallel and sequential behavior executions. The sequential
execution of behaviors within one agent entity is planned and initiated by the set of rules,
which define agent’s actions and plan new ones. The rule-based process planning and
execution has been researched in the SmartResource project and has appeared as a General
Networking Framework (Kaykova et al., 2006).

4.1.2 Configurable Adaptation
Configurable adaptation is considered to be a key success factor for UBIWARE. To make
adaptation of external resources simple and transparent is quite challenging task, especially
for a dynamic and changing environment. The adapter, therefore, in addition to
transformation capabilities embeds more sophisticated features and becomes an autonomous
configurable entity (see Figure 4.7).

Figure 4.7 – The architecture of an agent-driven adapter

The behaviors of the adapter agent are divided into four logical groups: Self-management,
Resource interaction, Transformation and Resource Agent Interaction.
AwarenessBehavior and ConfigurationBehavior belong to the Self-management group. They
represent the intelligent part of the agent.
R_ActuatorBehavior and R_SensorBehavior represent Resource Interaction group. They deal
with the connections (e.g. database connections) and message reception. However, both
behaviors can be active from the software point of view and this separation is rather logical.
The R_SensorBehavior may open database connection to retrieve some data, whereas
R_ActuatorBehavior will write data to the Resource database or send control signals. The
TransformerBehavior represents the transformation logic between the native resource
language and UBIWARE platform language.
The RA_ReceiverBehavior and RA_SenderBehavior are responsible for interaction with the
Resource Agent. We will describe different scenarios of interaction in the next section

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 79

4.1.2.1 Interaction scenarios
The interaction between three main entities of the adaptation process (Resource, Adapter
Agent and Resource Agent) can be rather complex and involve negotiation protocols (so-
called choreography). Different interaction cases determine the TransformerBehavior
operation. We have distinguished key interaction scenarios for the above mentioned entities
(see Figure 4.8).

Figure 4.8 – Passive Adapter Scenarios

The first scenario describes trivial transformation case, when one message in a native dialect
is transformed into the ACL message. Filtering is a particular case of the transformation,
when only part of the input data is processed. It can be present in all the scenarios, regardless
of the direction of the message flow or messages number.
In the Passive Aggregation scenario the Adapter Agent collects incoming messages and then
sends the aggregated data in the ACL message to the Resource Agent.
The Clarification scenario parses complex message from the Resource and sends a sequence
of messages to the Resource Agent. This scenario is reasonable, for example, when a service
returns three alternative results. There is no need to create additional semantic entity to wrap
two or three service results, but these results are sent separately instead. This may simplify
processing logic of the Resource Agent.
The Hybrid Clarification combines features of both the Aggregation and Clarification
scenarios. It represents a many-to-many relationship of the incoming and outgoing messages.
The Adapter Agent receives a number of messages from the resource and then generates a
number of messages to the Resource Agent.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 80

In case of the active adapter operation, we have distinguished the main types of scenarios
(see Figure 4.9).
In the Simple Active Request the Adapter Agent periodically queries the Resource and sends
query results as an ACL message.
The Resource Agent Request differs from the latter one only by the query initiator. Whereas
in the Simple Active Request the query is initiated by the logic of the Adapter Agent, in the
second case, the Resource Agent acts as an initiator.

Figure 4.9 – Active Adapter Scenarios

The Agent Request Specification is a scenario, where the Adapter Agent clarifies what is the
exact need of the Resource Agent before querying the Resource.

4.1.2.2 Communication with sources of adaptation
The adaptation in UBIWARE has rather broad application. The sources of adaptation may
vary from RFID sensors up to databases and web services. In this section we will discuss the
differences among sources and design key software components of the adapter agent
behaviors.
We distinguish sources by the connectivity, data formats and interaction methods. The
connectivity can vary by methods of access to the resource. For example, RPC call, JDBC
connection, message-based service invocation or local driver or API based connection to any
software.
The data formats extracted from the source can also have different nature and format. It can
be a bitmap image or comma-separated file, or XML document. It can also be a Java object.
The interaction methods distinguish the way, how resource data is obtained. It can be a
listener that waits for incoming data from the resource, or a time-, or event-based scheduled
requestor. Although the actuator and sensor behaviors are logically separated (see Figure x),
they may use the same software components in their implementation. Figure 4.10 shows the
parameters for atomic components differentiation.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 81

Figure 4.10 – Parameterization of Atomic Behaviors for interaction with Resource

Although, these criteria allow further division of the functionality into the atomic elements,
we stop here the division of the behaviors and leave further differentiation to the
configurability. For example, the hardcoded Sensor atomic behavior can implement JDBC-
ResultSet-JavaRequestor combination and produce a ResultSet Java object as an output.
However, it can also be a Hashtable Java object as an output. The data format of the
retrieved object determines the input format for the Transformer. On the Transformer side the
syntactic preprocessing can be configured to match the semantic transformer, e.g. XML as a
string can be parsed to the DOM document and vice versa. The interaction specifies also the
how the states are handled in both Actuator and Sensor behaviors. The aggregation (when an
agent is waiting for a certain sequence of messages for further processing) is defined by
further specialization of the Interaction type, for example, Passive Aggregation is a Listener
type with the specified finite state algorithm (e.g. invoke transformation when five messages
have been collected).

4.1.3 Configurable Transformation

The Configurable Transformation module represents the transformation logic of the adapter.
In context of adaptation, it can be considered as a subcomponent of the adapter, but we have
separated it into the independent component, because the transformation, as such, is not only
a part of adaptation. It can also be a part of service functionality. In fact, any activity of a
service can be interpreted as a transformation depending on the add value of the output
compared to the input. The key element of the transformation module is a
TransformerBehavior. It is a domain independent entity that encapsulates the transformation
logic. This logic varies and can be implemented using different technologies: It can be a Java
code performing image analysis and text extraction or XSLT script for XML documents. We,

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 82

therefore, introduce a Transformation Ontology – a common model for describing
transformations. The transformations are Reusable Atomic Behaviors which require
descriptive specification basis for classification of the conceptualizations. The
Transformation Ontology consists of the core part and the pattern part. The core part defines
the generic objects and methods of transformation, whereas the pattern part conceptualizes
structural patterns of the objects being transformed and their relationships.
The core ontology comprises the following elements:

- TransformerBehavior – a root element representing the transformation entity. Its
properties are shown on Figure 4.11.

Figure 4.11 – Transformation Ontology Core

The core elements describe the structure of the Atomic Behavior, i.e. real software code that
performs transformation. The TransformerBehavior class has a URI identifier of the
Behavior and reference to the online repository, where binary implementation of the
Behavior can be obtained from. Both TransformerInput and TransformerOutput refer to the
descriptive pattern of the object being transformed and the object being generated. The
TransformationMethod is a reference to the ontology of transformation techniques like pure
Java code transformation, XSLT-transformation, service-based transformation (e.g. we may
need a pdf-file generation), etc.
The pattern part defines the exact format of the input or output. It describes the Java type of
the object and its structure up to the reasonable extent. It is somewhat similar, to the JDBC
ResultSet object’s metadata and can be linked to the appropriate ontology to simplify the
specification of the transformation logic defined in the TLPattern.

4.1.3.1 Configurable Transformation in action
The above mentioned ontology describes the static structure of the TransformerBehavior,
whereas enactment of the configurable transformation requires additional description of the
actions in runtime (see Figure 4.12). The configuration message in S-APL language passes
the policy checking procedure and if it is successful, the message is processed by the
ConfigurationBehavior that, extracts the XSLT-script and forms the
ConfigurationDsecription object. The script is assigned as a parameter to the
ConfigurationDescription, which is passed to the configure() method of the
TransformerBehavior. In particular case the TransformerBehavior is quite simple and really

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 83

atomic, meaning that it does not contain configurable subcomponents. During the
configuration, the transformation activities are suspended by the AwarenessBehavior to avoid
unsynchronized access to the code.

Figure 4.12 – Example adapter with TransformerBehavior

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 84

4.2 Conclusions and Outlook

The need for configurable adaptation has appeared as a result of industrial cases analysis,
which disclosed the problems of the static code in process industry. Minor changes in the
business logic of information systems lead to maintenance breaks and involve a lot of human
resources, particularly programmers for code maintenance, testers, system administrators for
giving the access to the running platforms, and deployment, who launch the updated version
as a product. The configurability changes the process with the anticipation of possible
changes and making them a part of the functionality in the very beginning, thus giving more
flexibility to the business process management. Most of the changes now go from the
programmer’s level to the level of business process configuration – a descriptive script-based
business logic, which can be updated dynamically in a runtime. This allows the business
process manager to handle a vast number of situations without annoying the programmers
and provide fast changes in response to customers needs. The configurability can be used not
only for a product customization, but also for a dynamic, on the fly support and maintenance.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 85

UBIWARE Deliverable D1.1:
Workpackage WP5:

Task T1.1_w5:

5 General Vision of 4I Technology and Its
Application in UBIWARE

REQUIREMENTS FOR HUMAN ADAPTATION

Workpackage leader: Oleksiy Khriyenko

Next-generation integration systems will utilize different methods and techniques (Semantic
Web and Web Services, Agent Technologies and Mobility) to achieve the vision of
ubiquitous knowledge. Unlimited interoperability and collaboration are important values for
a multitude of areas in daily life. Integration of heterogeneous applications and data sources
into an interoperable system is one of the most relevant challenges for many knowledge-
based corporations nowadays. Thus, the development of Global Understanding eNvironment
(GUN) (Kaykova et al, 2005), which would support interoperation between all the resources
and exchange of shared information, is challenging, but potentially profitable task.

The challenge of enabling computer systems to make better use of Web data by making
that data machine-processable has been taken up by the Semantic Web effort, which proposes
formal knowledge structures to represent concepts and their relations in a domain. These
structures are known as ontologies and the World Wide Web Consortium (W3C) 5 has
recommended two standards, the simpler Resource Description Framework (RDF)6 and the
more expressive Web Ontology Language (OWL)7.

5 http://www.w3c.org
6 http://www.w3.org/RDF
7 http://www.w3.org/TR/owl-absyn

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 86

In recent years, the discovery of “Web as platform”, termed in some quarters as Web
2.0 (O’Reilly, 2005), and innovative websites like Flickr 8 , Wikipedia 9 , Google Map 10 ,
Wikimapia 11 and Yahoo Maps 12 encourage social networking. Regarding to the core
characteristics of Web 2.0, a website is no longer a static page to be viewed in a browser, but
is a dynamic platform upon which users can generate their own experience. The richness of
this experience is powered by the implicit threads of knowledge that can be derived from the
content supplied by users and how they interact with the site. Another aspect of this Web as
platform is sites which provide users with access to their data through well defined APIs and
hence encourage new uses of that data, e.g. through its integration with other data sources.

Accordingly to Lyndon J.B. Nixon work (Nixon, 2006), as the current trends develop
we expect to experience a future Web which will be media rich, highly interactive and user
oriented. The value of this Web will lie not only in the massive amount of information that
will be stored within it, but the ability of Web technologies to organize, interpret and bring
this information to the user. And as usually, a graphical user interface is one of the important
parts in performing of these processes. Media presentation is a key challenge for the
emerging media-rich Web platforms. Several information visualization techniques have been
developed in the last years due to the need of representing and analyzing the huge amount of
data generated by several applications or made available through the World Wide Web.
Previously, we had a deal with data visualization, precisely with a data format representation.
Depending on a data format, whether it is a text, an image or a video, graphical user interface
presents the data in certain way. On the next stage, small step has been done in visualization
of object part-of relations, namely as a tree visualization. The second step was a step when
we came to semantic definition of the objects, and have found a need to represent ontology
concept tree and semantic graph (Yuxin et al., 2005). But it was just a step to semantics and
ontology representation.

In following new technological trends, it is time to initiate a new stage of
multidimensional resource visualization (visualization of resource properties, contexts of
inter-resource communication and interaction) and a stage of semantic metadata-based visual
browsing across resources.

5.1 Intelligent Resource Visualization

5.1.1 Motivation for intelligent resource visualization

One of the reasons for intelligent resource visualization springs from a necessity of the
resource search and browsing processes enhancement.

With the reference to the research (Marcos et al., 2005), there are a number of
important criticisms that can be made of Classical Model of information search. On the one

8 http://www.flickr.com
9 http://www.wikipedia.org
10 http://maps.google.com
11 http://www.wikimapia.org
12 http://maps.yahoo.com

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 87

hand, this model does not adequately distinguish between the needs of a user and what a user
must specify to get it. Very often, users may not know how to specify a good search query,
even in Natural Language terms. Analyzing what is retrieved from the first attempt is used
not so much to select useful results, as to find out what is there to be search over. A second
important criticism of the Classical Model is that any knowledge generated during the
process of formulation a query is not used later on in the sequence of search process steps, to
influence the filtering step and presenting step of the search results, or to select the results.
Finally, Classical Model provides an essentially context-free process. There is no proper way
in which knowledge of the task context and situation, and user profile can have an influence
on the information search process.

To address these criticisms, the WIDE Model of information retrieval (Marcos et al.,
2005) treats the general task of information finding as a kind of design task, and not as a kind
of search specification and results selection tasks. Information retrieval is understood as a
kind of design task by first recognizing the difference between users stating needs and
forming well specified requirements, and then properly supporting the incremental
development of a complete and consistent requirements, and the re-use of the knowledge
generated in this (sub) process to effectively support the subsequent steps in the process that
concludes in a useful set of search results. Also, there are several projects that are aimed to
somehow enhance the Classical Model of information retrieval. For example, a problem of
search query uncertainty has been faced in one of the projects of Industrial Ontologies Group
(IOG):”Semantic Facilitators for Web Information Retrieval”13. The main idea of the project
is that Semantic Search Assistant/Facilitator (SSA) uses ontologically defined knowledge
(WordNet14) about words from Google search request and provides possibility for user to
specify right meaning of the words from available set of them. Further, based on the
description of selected word meaning, SSA uses embedded support of advanced Google-
search query features in order to construct more efficient queries from the formal textual
description of searched information (Kaykova et al., 2004).

Thus, we can see how much work is doing in the area of the classical information
retrieving model enhancement by adding some new useful features. Even more, nowadays
there are a lot of efforts aimed at the creation of a fully ontology-based semantic query and
search mechanisms, where search query is created based on ontological concepts
specification. But it is complicate and challenging task. And still, it is not evident how to
detect the user needs and to provide only relevant ontological concepts for the user during the
query specification.

With growing interest to the usage of Wiki-based systems, in near feature we will face
a huge mass of information. But, fully unintelligible for machines/software, and very
problematically and unhandy searched/browsed by human, this information will be totally
useless. Nowadays, interest of experts starts to turn to the side of Web 3.0. Web 3.0 is a term
that has been coined to describe the evolution of Web usage and interaction that includes
transforming the Web into a database, a move towards making content accessible by multiple
non-browser applications, the leveraging of artificial intelligence technologies and the
Semantic web and three dimensional interaction and collaboration (Web 3.0). According to
Wikipedia, Web 3.0 is the final step in the decomposition of monolithic Web Pages into

13 SemanticFacilitator (project report) - www.cs.jyu.fi/ai/OntoGroup/SemanticFacilitator.htm
14 WordNet - http://wordnet.princeton.edu

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 88

discrete components that include: Presentation (HTML and (X)HTML), Logic (Web Services
APIs), and Data (Data Models) trinity that transitions Web Data containment from Web
Pages to Web Data. Its emergence simplifies the development and deployment of Data
Model driven composite applications that provide easy, transparent and organized access to
“the world’s data, information, and knowledge”. Web 3.0 thus promises to be much more
useful than 2.0 and to render today's search engines more or less obsolete. To fit the vision of
Web 3.0, there is a possibility to annotate Wiki-system content (using Semantic MediaWiki)
and apply knowledge of a given subject (or domain) to build intelligence into Wiki. It adds
semantics to the Wiki content, but search and browsing of annotated information are left as
nonreinforced issues.

Thus, when we come to the vision of GUN (where all the resources of the virtual and
the real world are connected and interoperate with each other) and an amount of information
becomes so huge, we have to elaborate new visualization techniques that simplify the search
and browsing processes through reducing amount of queries via context-dependent resource
visualization. Following this approach, we have a need somehow to visualize the resource
properties (in different from “directed arc between objects” representation way), the various
relations between resources and the inter-resource communication process. And even more,
we have a need to make this visualization more context-dependent, to be able to represent
information in handy and adequate to a certain case (context) way, to reach a plasticity of UIs
(Thevenin and Coutaz, 1999). Thus, the main focus in GUI development will be concentrated
on the resource visualization aspects and we have a challenging task of semantically
enhanced context-dependent multidimensional resource visualization.

5.1.2 Visualization of a resource

Several information visualization techniques have been developed in the last years due to the
need of representing and analyzing a huge amount of data generated by several applications
or made available through the World Wide Web. In the beginning, information systems had a
deal with data visualization, precisely with a data format representation. Depending on a data
format, whether it is a text, an image or a video, graphical user interface presents a data in
certain way. On the next stage, small step has been done in visualization of object part-of
relations, namely in a form of a tree. Then, there was a step when we came to semantic
definition of the objects, and have found a need to represent ontology concept tree and
semantic graph (Yuxin et al., 2005). Recent expectations regarding a new generation of the
Web strongly depend on a success of Semantic Web technology. But it was just a small step
to the semantics and ontology representation.

Information visualization aims to provide compact graphical presentations and user
interfaces for interactively manipulated large numbers of items. Information visualization is
the study of how to effectively present information visually. A lot of work in this field
focuses on creating innovative graphical displays for complicated datasets. Now it has
become evident that we cannot separate visual aspects of both data representation and
graphical interface from interaction mechanisms that help a user to browse and query a data
set through its visual representation.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 89

The problem of manipulation with a huge amount of information is a complexity of the
search query specification and provisioning of the relevant links for the through content
browsing. The idea of intelligent resource visualization is to simplify the search and
browsing processes via associative resource visualization. Multidimensional associative
resource visualization means visualization of a resource depending on a context, via
association with various aspects of resource being (relations with the other resources,
domains, areas of interest, etc.). Some times we cannot specify exactly what we are looking
for, but we feel that it is somehow related to certain stuff, certain situation, certain context.
Such visualization can give us a hint, turn to the right direction, show us related objects and
provide links to them. In other words, visualization will utilize context-based filtering and
enrichment of the visualized scene with the relevant links.

All the resources have a set of properties, and if consider that all the resources are parts
of the World and all of them are related and somehow linked to each other, then we have a
very huge amount of resource properties. It seams like it is impossible to elaborate handy
query system that will operate with all these properties. Thus, context-based approach is a
grate solution to resolve this problem. In certain sense, context is an extraction of the
resources, some of their properties, relations that are relevant to certain situation, action or
other aspect of resource being (see FIGURE 5.1). Applying context-dependent visualization
we reduce amount of the “steps” on a path leading to the final destination. Thus, a context
can be a basis for specific visualization view of a resource and other related to it resources.
For example, “part-of” relation (if it concerns physical relation of resources) can be
visualized as a 3D model of nested or somehow connected resources; or 2D model, if third
dimension is not valuable (for example to present the resources on a map, if they are part-of
the World). From the other side, “part-of” relation of a resource can be abstract and cannot
mean any physical contact with other resource. Resource can be a part of some (business)
process. In this case, there is no physical contact between the parts and such relation should
be represented in different way (for example relation graph).

FIGURE 5.1 Context. Meta-level extraction

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 90

To show the different dimensions of a resource, let us consider a “person” resource (FIGURE
5.2). The visualization of a “person” in a context of healthcare & condition of one’s organs
can be performed in a way of human body diagram (with a view of the organs). This can
allow expert/doctor to check the organs’ condition (based on visualized properties), the
influence of the organs on each other and the body systems; to switch the view to the internal
view of necessary organ and manipulate with related information. At the same time, ”person”
resource in a context of healthcare & location of a healthcare organization can be visualized
in a form of a map with a highlight location, whether it is an organization, which belongs to
the person employer, or just the nearest organization to the person location. Another
visualization dimension of a “person” resource can be occupation/profession. It can be
performed via visualization of a working area/place with the relevant work-related links:
duties, area of interests, professional related resources, contacts, etc. For example, if the
“person” is a goalkeeper of a football team, then its visualization in a context of profession
can be displayed in a form of a team on a football field. Then we have an access to the other
team members (know their roles in the team), have a link to a stadium (“stadium” resource,
which provides facilities for the training) and to the home “team” resource. One more context
of “person” resource visualization can be a family relation of a person. In this case,
visualization can be performed in a form of a genealogical (family) tree. Several other
examples of context-dependent resource visualization can be founded in the figure below
(FIGURE 5.2).

FIGURE 5.2 Resource visualization

Depending on a context, human/expert needs information (information related to subject
resource) to be visualized in certain way. This gives us one of the requirements for visual

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 91

interfaces – ability to represent information regarding to chosen contextual property of a
resource or contextual situation. Such interface should allow user to simply choose a context
for the data representation, and should even support cases of multiple contextual property
selection for the complex views and filtering purposes. Choosing the appropriate
representation(s) is challenging and research is needed to evaluate and compare different
approaches. At the same time, different visualization modules are specialised and present
resources in certain domain. Such domains can target restricted set of resources as well as
wide. For example, one of the restricted domains can be anatomy and processes between the
parts of the human body. In this case, a visualization module can present the information
based on 3D human body visualization and should be able to visualize the properties from
anatomy domain. This task becomes more challenging in case of a wide target domain. For
example, we need to represent information vie spatial resource location view and cover all of
the resources, and then interface should somehow visualize all the properties. Thus, the next
requirement for visual interface is to be able to visualize the properties of the resources that
are belonging to the covered domain ontology.

5.2 4I (FOR EYE) TECHNOLOGY

5.2.1 Utilization of Intelligent Resource Visualization in next-
generation systems

There are already some developed domain-oriented software applications, which try to
visualize data in domain specific and suitable for human way (graphics software from
SmartDraw®15, concept-browser Conzilla16 and Human Semantic Web browser Conzilla2,
Google Maps, etc.). But still, they are developed for specific standalone domain-oriented
applications. And when we face real need in an open unlimited collaboration environment
(Web 3.0), we will have to develop mach more visualization tools and modules that are
aimed to visualize various resource properties, contexts, situations and associations to
provide human flexible and handy Human-Machine interaction interface. Thus, semantic-
based context-dependent multidimensional resource visualization approach can be a basis for
the development of such interface. It is well known that the 3rd dimension gives new
possibilities for organising, presenting and interacting with content. Ideally 3D will make
computer interaction easier, more intuitive and more natural. 3D is also very useful for
presenting great amounts of data in easily understood 3D visualisations or graphs. That is
why Web3D Consortium 17 aims to promote the open standards for Real-Time 3D
Communication. Concerning the 3D software producers we can highlight Octaga AS18 as a
producer of world class real-time 3D software products, which creates outstanding content
for real-time 3D; and Media Machines Inc.19 - a leading provider of 3D virtual worlds

15 SmartDraw® - www.smartdraw.com
16 Conzilla concept-browser – www.conzilla.org
17 Web3D Consortium - www.web3d.org
18 Octaga AS - www.octaga.com
19 Media Machines Inc. - http://william.mediamachines.com

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 92

software and services for the Web. Some analysts remain divided over whether 3D on the
Web will be of much interest to a general audience. At the same time, marketers have
reported success with 3D retail environments in which products can be rotated and
manipulated in three dimensions. Other recently grooving areas of use include multi-user
games, e-learning applications, data visualization and warehousing, and collaborative design
and engineering. Presented resource visualization approach can be utilised in the
development of Web 3D application to enhance them with more natural and associated
resource visualization and context-dependent browsing technique.

Now it has become evident that we cannot separate visual aspects of both data
representation and graphical interface from interaction mechanisms that help a user to browse
and query a data set through its visual representation. Following GUN-Resource centric
approach, let us consider user interfaces for context-based resource access and contextually
related information retrieving. The challenging task is to create a visual interface that
provides integrated information from variety of information providers in context-dependent
way. And here, Intelligent Resource Visualization is a basis for 4i (FOR EYE) technology,
that can be considered as a valuable extension of the text-based Semantic MediaWiki to
Context-based Visual Semantic MediaWiki, a new generation of resource collaboration
environments that follow the vision of Web 3.0.

5.2.2 4i Infrastructure

As was mentioned in previous section, one of the requirements for visual interfaces is an
ability to represent information regarding to chosen contextual property of a resource, an
interface should allow user to simply choose a context for data representation, and should
even support cases of multiple contextual property selection for complex views and filtering
purposes. Such requirements can be met by MetaProviders - sui generis portals of Resources
with specific visualization view. It is named by MetaProvider in a sense that it provides an
access and presents other resources, which in turn are providers of own information (data).
All GUN-Resources have certain own location (physical and digital). But it does not mean
that they should have just one way to get an access to them. MetaProvider is an interface-
mediator that gives a possibility to mark/select a resource (object) on its interface and
provide the link to original resource location. In other words, it allows resource registration
for further access to its data. At the same time, any resource can be registered on variety of
different MetaProviders in different views. The main feature of MetaProviders is each party
that takes care of some GUN-Resource registers the resource itself. It causes fast filling of
information accessible through MetaProvider. And each user/resource in one moment has an
access to related information of amount of others. But such interoperability brings a new
requirement for the MetaProviders and users. They should share common ontology to be
interoperable on semantic level. Additionally to semantic interoperability, GUN-Resources
are proactive/goal-driven resources and supplied with a Resource Agent for resource-to-
resource (R2R)/ agent-to-agent (A2A) communication.

4i (FOR EYE) is an ensemble of GUN Resource Platform Intelligent GUI Shell (smart
middleware for context dependent use and combination of a variety of different
MetaProviders depending on user needs) and MetaProviders, visualization

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 93

modules/platforms that provide context-dependent filtered representation of resource data
and integration on two levels (information/data integration of the resources to be visualized
and integration of resource representation views with a handy resource browsing) (see
FIGURE 5.3). Context-awareness and intelligence of such interface brings a new feature that
gives a possibility for user to get not just raw data, but required integrated information based
on a specified context. GUI Shell allows user dynamic switching between MetaProviders for
more suitable information representation depending on a context or resource nature. From
other side, MetaProvider plays fore main roles:

- Context-aware resource visualization module that presents information regarding to
specified context in more suitable and personalized for user form;

- Interface for integrated information visualization with intelligent context-aware filtering
mechanism to present only relevant information, avoiding a glut of unnecessary
information;

- Visual Resource Platform that allows resource registration, search, access and
modification of needed information/data in a space of registered resources;

- Mediator that facilitates resource to resource (R2R) communication.
Such switching and filtering process is a kind of visual semantic browsing based on semantic
description of the context and resource properties.

FIGURE 5.3 Intelligent Interface for Integrated Information (4i technology)

Let us consider GUN-Resource that presents a power line as a main initiator of a
visualization process (FIGURE 5.3). Intelligent GUI, as a part of GUN Platform, provides an

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 94

opportunity for user to initiate context-based search process that returns appropriate
MetaProvider or a set of them. Search process can be performed via centralized or
decentralized system of MetaProviders registration. Depending on a contextual property,
Intelligent GUI Shell provides an access to filtered set of retrieved MetaProviders. Then user
can register the resource (if it is not registered yet) or/and get related to the resource
integrated information on MetaProvider interface. It is not necessary that search result will
contain just one instance of a fit class of MetaProviders. This is an open environment and
there is can be a set of various realizations of MetaProviders from different producers. Also,
GUI Shell allows dynamic switching between MetaProviders for more suitable information
representation, depending on a context (a set of contextual resource properties). From other
side, MetaProvider provides API to specify information filtering context – a context for
visualization of appropriate resources and their necessary properties. In this scenario user
asks the MetaProvider to show resources in certain area around the subject resource (power
line) in the context of physical damaging and relevant to this resource properties. Thus,
physical conditions of other two resources (forest and weather that are shown in the figure)
have been requested and the values of correspondent properties have shown on the interface.

Now, when expert has recognized alarm situation, he/she need, for example, to change
the architecture of the electrical chain (electricity supplying) and for this purpose can easily
switch to another MetaProvider with more appropriate internal view of power line
architecture. Another valuable benefit of such smart ensemble architecture is possibility to
perform autonomous agent-based resource communication via MetaProvider’s and GUI Shell
APIs. It is an open environment for MetaProviders and it is a good base for different business
models that can be built on it. Thus, with a purpose to be an interoperable part of open
environment, each player has to be supplied with API and should be semantically adapted to
understand the requests and to provide understandable response.

5.2.3 Requirements for the technology components

Intelligent GUI Shell:

• context-based selectiveness and filtering

One of the main features of the GUI Shell is an ability to represent the information regarding
to chosen contextual property of the resource. There are two aspects: relevance of presented
information to the context and dependence of information representation view on the data
representation context. Interface should allow user to simply choose a context for data
representation, and support even multiple contextual property selection for complex views
and filtering purposes. It is not necessary to define all of the contexts manually, the system
should be supplied with a module for intelligent construction of the complex context from the
initial one based on domain ontology and knowledge bases. Concerning the example from
the previous section (FIGURE 5.3), a context of needed data is a physical damaging of the
resource (power line).It is quite natural that physical damaging can be caused directly or
indirectly by other resources that are located near by. From this we can get a context for
better data representation view. This context is location (spatial resource representation).
From the other hand, it is evident that it is much better to have as many as possible resources

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 95

(allocated near by subject resource) registered on certain instance of appropriate
MetaProvider. It gives us additional parameter for search query or search result filtering such
as an amount of the relevant registered resources. Concerning an intelligent filtering of data
to be presented, system should select and visualize just relevant to the context resource
properties. Regarding to our case, it is not necessary to visualize all of the properties of
resource “Forest” if just fire condition and forest works can cause a physical damage of the
resource “Power Line”. And of course, to build such intelligent filtering mechanism, we need
to have knowledge, ontology of resource relations and different processes descriptions.

Thus, the GUI-Shell should provide handy interface for resource properties browsing
and context generation. And if we are talking about an interface that provides dynamic
switching between different views (MetaProviders), then Shell should provide a possibility to
generate context from the visualization module (MetaProvider) interface. It brings a need to
organise a flexible mechanism for interoperation between Shell and MetaProviders’
interfaces.

• personalization

Concerning the personalization issues, GUI-Shell should provide user personalization
features. System should try to remember user preferences regarding to visualization views,
more popular MetaProviders and etc. At the same time system should support alliance
approach, when resources are bound in some business, production or another process. In this
case system should propose the MetaProviders which have registered the necessary parts
(partners). Another personalization issue concerns the preferred information visualization
(visualisation of the resource properties). Because there are can be many MetaProviders,
which are belonged to the same class of MetaProviders, but the methods of visualization
certain properties may be different. That is way system should detect the preferred for user
visualization methods and provide user personalization on that level.

MetaProvider:

• integrated data representation

As a portal for registered resources, MetaProvider should support a simple resource
registration process (depending on a specific of presentation view), store resource semantic
profiles for further resource discovery and inter-resource communication. Inter-resource
communication implies a following the same ontology by resources. Following the common
ontology brings a possibility to create a correct request to the resources, and get and present
appropriate data from them. As was mentioned before, integrated data representation means
representation of the data from different resources in certain context related to a subject
resource. It is a representation of filtered relevant to the certain case data. There is a sense to
perform a filtering process on the user side (i.e. on the side of GUI-Shell), but an input data
for the request creation and filtering process should come from the resources that are
accessible via MetaProvider API.

• resource property visualization

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 96

Information Visualization aims to provide compact graphical presentations and user
interfaces for interactively manipulating large numbers of items. Information visualization is
the study of how to effectively present information visually. Much of the work in this field
focuses on creating innovative graphical displays for complicated datasets.

Information Visualization allows designers to present a large amount of information
using abstract representations. Geographic and scientific visualization applications usually
use representations determined by the nature of the data being displayed. Location within the
graphic is usually used to represent location in space. For example in 2D maps, a projection
of space structures the representation, whilst in 3D models of the body or of physical
processes such as meteorological predictions graphics are constrained by a 3D spatial
framework. On the other hand, Information Visualization allows designers to choose among
a palette of possible representations that fill space in a variety of ways, such as hierarchies,
time lines, networks, tabular displays and the like, to produce information abundant displays.
Choosing the appropriate representation(s) is challenging and research is needed to evaluate
and compare different approaches.

Visualization techniques include selective hiding of data, layering data, taking
advantage of 3-dimensional space, using scaling techniques to provide more space for more
important information (e.g. fisheye views), and taking advantage of psychological principles
of layout, such as proximity, alignment, and shared visual properties (e.g. color). Advanced
interfaces also need to address the longer term process of analysis that may require
annotation, history keeping, collaboration with peers, and the dissemination of results and
procedures used. Faster rendering algorithms, sophisticated aggregations techniques to deal
with large datasets, and novel labelling techniques are also needed, and along with careful
studies of users and their needs will lead to successful visualization applications.

Different MetaProviders are specialised and present the resources in certain domain.
Such domains can target restricted set of the resources as well as wide. For example, one of
the restricted domains can be anatomy and processes between the parts of the human body. In
this case, MetaProvider can present the information based on 3D human body visualization
and should be able to visualize the properties from anatomy domain. This task becomes more
challenged in case of wide target domain. For example, if MetaProvider represents
information vie spatial resource location view and covers all of the resources, then it should
somehow visualize all the properties. Thus, the main requirement in that part is to be able to
visualize the properties of the resources that are belonging to the covered domain ontology.

• dynamic interoperability

Thus, interoperability among the components of the environment will be provided via
metadata and ontologies. Additionally, if we consider the open environment, members of
which are agent-driven (i.e. proactive, autonomous, goal-driven, intelligent and etc.) to
enable communications, coordination and negotiations between them, then MetaProvider
should support inter-agent communication via API.

• usability
Here we come to usability issues that play important role in user interface development. If we
use the term data usability to describe quality of information or quality of data in the context

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 97

of information visualization applications, then, regarding to (Freitas et al., 2002), data
usability is associated to three principles:

a) data reliability, which describes the feasibility of the gathering data process as well as
the confidence level, including interval for errors, etc. that can cause distortion between
reality and model (reality represented by the system);

b) minimal impact on data changing, i.e., the system must avoid changing the information
and it must allow recovering original information whenever it is needed. However, in
practice, this data stability is not feasible because frequently data must have to be adapted to
visualization constraints such as the reduction of dimension when presenting n-dimensional
data in a 2D or 3D visualization, for example. This 2D or 3D representation breaks down the
usability of original data. It is clear that we cannot avoid some changes during the
visualization process but we can try to reduce their impact; and

c) support decision-making, which means that data representation should be
understandable by end-users and help them to make decisions.

Common usability suggestions:

Accordingly to W3C Working Group Note: “Common Sense Suggestions for Developing
Multimodal User Interfaces” (Larson, 2006), the suggestions are organized into four major
principles of user interface design. The following four principles determine how quickly
users are able to learn and how effectively they are able to perform desired tasks with the
user interface:

• Satisfy real-world constraints
• Communicate clearly, concisely, and consistently with users
• Help users recover quickly and efficiently from errors
• Make users comfortable

There is a set of the different aspects suggestions: task-oriented, physical, environmental,
consistency, organizational, conversational, reliability, social, advertising, ambience,
accessibility, suggestions that concern listening mode, system status and human-memory
constraints. Multimodal user interface developers should follow the above four principles and
apply the following suggestions to avoid many of the potential usability problems caused by
using modes incorrectly.

5.3 4i (FOR EYE) Technology in UBIWARE

In UBIWARE, humans are important resources, which can play several distinct roles: a
resource under care, a service provider, a user, and an administrator. Obviously, the humans
need some graphical interfaces to interact with the rest of the system. The same person can
play several roles, switch between them depending on the context, and, in result, require
different interfaces at different times. In addition, a UBIWARE-based system presents a large
integration environment with potentially huge amounts of heterogeneous data. Therefore,
there is a need for tools facilitating information access and manipulation by humans. A
semantic context-aware multimodal visualization approach would provide an opportunity for

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 98

creating smart visual interfaces able of presenting relevant information in a more suitable and
more personalized form.

From the GUN point of view, a human interface is a special case of a resource adapter
(Human-Resource AdaPter - HRAP). We believe, however, that it is unreasonable to embed
all the data acquisition, filtering and visualization logic into such an adapter. Instead, external
services and application should be effectively utilized. Therefore, the intelligence of a smart
interface (HRAP) will be a result of collaboration of multiple agents: the human’s agent, the
agents representing resources of interest (those to be monitored or/and controlled), and the
agents of various visualization services – MetaProviders via an agent of HRAP (see FIGURE
5.4). This approach makes human interfaces different from other resource adapters and
indicates a need for devoted research.

FIGURE 5.4 Human-Resource Adapter based on 4i (FOR EYE) technology

Workpackage 5 - “Smart Interfaces: Context-aware GUI for Integrated Data (4i technology)”
will study dynamic context-aware A2H (Agent-to-Human) interaction in UBIWARE, and
will elaborate on a technology which we refer to as 4i (FOR EYE) technology. 4i (FIGURE
5.5) enables creation of a smart human interface through flexible collaboration of an
Intelligent GUI Shell, various visualization modules, which we refer to as MetaProvider-
services, and the resources of interest.
Based on 4i technology, an infrastructure will be embedded into UBIWARE enabling
effective realization of the following system functions:

• visualization of data provided by a service in response to a request;

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 99

• search, retrieving and visualization of data required by a human expert,
• providing access to contextual information, and visualization of it;
• visualization of resource registration, configuration, and security policy establishment

processes;
• resource discovery via MetaProviders (because they act as thematic portals).

This workpackage plays a significant role in UBIWARE – it connects human eyes and
human hands to it. The results from this workpackage will enable UBIWARE to provide
flexible and context-aware interfaces to humans participating in activities of a UBIWARE-
based system.

FIGURE 5.5 Processes related to UBIWARE Platform and 4i (FOR EYE)

Assuming that a UBIWARE-based system will have some human administrators, there is a
need for a GUI through which the administrators will be able to manually configure the
system, which also includes defining the security policies. Therefore, 4i must allow for that,
and special MetaProviders have to be developed for creating interfaces to perform such
administrative functions. As can be seen, the research on smart interfaces will affect and will
be affected by research and results from other UBIWARE project workpackages, such as
WP3: SURPAS “Smart Ubiquitous Resource Privacy and Security” and WP4:COIN “Self-
Management, Configurability and Integration”.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 100

5.4 Application of 4i (FOR EYE) Technology: Semantically
enhanced browsing across multimedia contents.

Let us choose the multimedia content management area for the case study as a one of the
fastest growing area of the Web.

5.4.1 Resource semantic track

A number of vocabularies that deal at some level with multimedia content currently exist
(Geurts et al., 2005): MPEG-7, Dublin Core Element Set, VRA, Media Streams, Art and
Architecture Thesaurus (AAT), MIME, CSS, Composite Capabilities/Preference Profiles
(CC/PP), PREMO, Modality Theory, Web Content Accessibility Guidelines. Of course, it is
very important to develop appropriate format for semantic annotation of multimedia content.
But, from the other hand, it is more natural to find the way to build-in full semantics to the
digital formants of multimedia (image, video, audio). Nowadays, production houses shoot
high-quality video in digital format; organizations that hold multimedia content (such as TV
channels, film archives, museums, and libraries) digitize analog material and use digital
formats. Maybe it is a time to reach all the digital media formats with a Semantic Track,
which will contain not just content structure, but full semantic content annotation including:
content structure, concepts, objects, actions and etc.

Considering the main aspect of the discussions around a multimedia, Human is a main
customer of multimedia services and an end-user of a multimedia content. With a sustainable
multimedia content growing, Human/User needs new intelligent techniques for multimedia
content browsing, search/retrieving and adapted representation. At the same time, the stated
goal of the Semantic Web initiative is to enable machine understanding of web resources.
However, it is not at all evident that such machine-readable semantic information will be
clear and effective for human interpretation. Hence, in order to effectively harness the powers
of the semantic web, it needs a “conceptual interface” (Naeve, 2005), that is more
comprehensible for humans. Such conceptual interface can improve multimedia content
retrieving process and together with well elaborated Semantic Track of the multimedia
resources, can provide a unique basement for semantically enhanced across multimedia
contents browsing.

The sub-symbolic abstraction level covers the raw multimedia information represented
in well-known formats for video, image, audio, text, metadata, and etc., which are typically
binary formats, optimized for compression and streaming delivery. They aren’t well suited
for further processing that uses, for example, the internal structure or other specific features
of the media stream. A structural (symbolic) layer on top of the binary media stream provides
this information. The standards that operate in this middle layer for the representation of
multimedia document descriptions are: Dublin Core, MPEG-7, Visual Resource Association,
and so on. The problem with this structural approach is that the semantics of the information
encoded in the XML are only specified within each standard’s framework. MPEG-7 was not
built specifically for web applications and thus does not facilitate embedding links to other
resources and interoperability between them. A possible solution to resolve the

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 101

interoperability conflict is to add a third layer (the logical abstraction level) that provides the
semantics for the middle one, actually defining mappings between the structured information
sources and the domain’s formal knowledge representation based on semantically enriched
languages (RDF and OWL). RDF-based languages and technologies provided by the W3C
community is well suited to the formal, semantic descriptions of the terms in a multimedia
document’s annotation. A combination of the existing standards seems to be the most
promising path for multimedia document description in the near future. For these reasons, the
W3C has started a Multimedia Annotation on the Semantic Web Task Force20 as part of the
Semantic Web Best Practices and Deployment Working Group. The new task force operates
within the framework of the W3C Semantic Web Activity group21. One goal is to provide
guidelines for using Semantic Web languages and technologies to create, store, manipulate,
interchange, and process image metadata. Another is to study interoperability issues between
multimedia annotation standardization and RDF- and OWL-based approaches. Hopefully,
this effort will provide a unified framework of good practices for constructing interoperable
multimedia annotations.

Research towards a multimedia content and content description bounding has been
going during the last several years. Commonwealth Scientific and Industrial Research
Organization have developed an open source family of technologies ANNODEX (Pfeiffer et
al., 2003) for embedding annotations and hyperlinks directly within digital audio and video
files. Such embedding allows the combined resource to become just like any web document
which has content and content description bound into one. Also, the idea of a media semantic
track utilizing has been elaborated in another research (Khriyenko, 2005), which concerns
issues of multimedia smart messaging in an environment of limited devices. Semantic
annotation of multimedia content is performed by using appropriate domain specific
ontologies that model the multimedia content domain. Ontologies typically represent
concepts by linguistic terms. However, also multimedia ontologies can be created, that assign
multimedia objects to concepts. At the same time with semantic content metadata annotation,
annotation of the concepts of: people (artist, owner, restorer, author, producer, etc.), art
objects and representations (painting, sculptures, films, digital representations, etc.), events
and activities, places, methods and techniques, and etc., we should provide a basis for
multimedia content features to be presented in semantic annotation also. This gives a
possibility for better automatic annotation of the multimedia content. Further we try to
specify the features of the multimedia content that can be detected and presented in Semantic
Track. In (Bertini et al., 2005) authors present a list of systems of automatic semantic
annotation, most of them in the application domain of sports video. Among these, there is an
approach, where MPEG motion vectors, playfield shape and players position have been used
with Hidden Markov Models to detect soccer highlights.

Another approach has been aimed to detect the principal soccer highlights, such as shot
on goal, placed kick, forward launch and turnover, from a few visual cues. Additionally, the
ball trajectory also has been used in order to detect the main actions like touching and
passing and compute ball possession by each team; a Kalman filter is used to check whether
a detected trajectory can be recognized as a ball trajectory. But, in all these approaches a
model based event classification is not associated with any ontology-based representation of

20 http://www.w3.org/2001/sw/BestPractices/MM/
21 http://www.w3.org/2001/sw/

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 102

the domain. However, although linguistic terms are appropriate to distinguish event and
object categories, they are inadequate when they must describe specific patterns of events or
video entities. In this case, high level concepts, expressed through linguistic terms, and
pattern specifications represented instead through visual concepts, can be both organized into
new extended ontologies, that will be referred to as pictorially enriched ontologies.
Ontologies can be extended to multimedia enriched ontologies where concepts that cannot be
expressed in linguistic terms are represented by prototypes/patterns of different media like
video, audio, etc. The audio features used to characterize the sound signal and classify the
sample by instrument. The CUICADO project (Peeters, 2003), provided a set of 72 audio
features, and research has shown that some of the features are more important in capturing
the signal characteristics: temporal shape, temporal feature, energy features, special shape
features, harmonic features, perceptual features and MPEG-7 Low Level Audio Descriptors
(spectral flatness and crest factors). Now we can see how many multimedia-specific features
and properties can enrich a Semantic Track of multimedia resources.

5.4.2 Across multimedia content semantic browsing in a sense of
concept based semantic search

We have to consider another developing trend on the Web – a growth in multimedia content.
Technological progress has meant that we have never had access to so much media content
as now. Future challenges for the Web will be the meaningful organization of this huge
amount of online media content as well as its meaningful delivery to the user. However, the
present state of the art of media and Web technologies prevents richer integration. A
multimedia semantic browsing, as a sub-class of general resources browsing is a complex
process that combines a set of sub-processes. This process can be performed based on
presented 4i (FOR EYE) technology. Figure (FIGURE 5.6) shows us an example of an across
multimedia contents semantic browsing architecture. In the left center of the figure, a GUI-
Shell is presented as a combination of the tools that take parts in the process: multimedia
content player, Semantic Track visualization component, concept browser and semantic
search query builder/creator.

FIGURE 5.6 Multimedia semantic browsing

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 103

Let us consider an example, where user is watching an episode of a movie with some song
(soundtrack) at the background. User likes this song/melody and would like to find more
songs of this author (or even more complex goal – find similar songs to the initial one). To
achieve the goal, user should browse Semantic Track of this video instance, which contains a
structure of a video file, objects, actions, soundtracks, etc.; and find a reference to the
searched song. Then, utilizing a concept browsing tool, which is connected to remote
ontology, user can specify a semantic query for a needed multimedia resource (in our case - a
song). Such query specification can be considered as a creation/construction of a resource
semantic pattern (virtual nested resource with specified properties). As a result of the search
process, appropriate audio resource will be returned and even lyrics of the song can be
displayed based on its’ Semantic Track.

But it was just a simple case of semantic search/browsing process. Multimedia
Resource Semantic Track usually contains just a structure of content and descriptions of
multimedia content specific features. And because of this, very often we can not specify
direct linking between the contents of two Semantic Tracks of the different resources. The
“glue” for these two semantic annotations is situated in Semantic Knowledge Bases (for
example semantically-enhanced Wikipedia or different ontologies). It can be useful in the
next example. Now we are looking for an image of the house of the first wife of some actor
from a movie that we are watching. Firstly, we stop the movie on a scene where this actor is
presented and, based on Semantic Track, find a link to this person. Then we browse a
semantic knowledge base via the concept browser and find a link to his first wife and her
house. After semantic search query generation we get the searched image on the browser.

At the same time, approach of instance based search via MetaProviders can be
beneficially utilized in multimedia content searching/browsing. Let us consider a case, when
we would like to see other houses, which are located nearby the house of the mentioned wife.
We can use some MetaProvider – Wikimapia kind of service, which provide an access to the
registered resources via showing them on a map. If the image is registered on this
service/platform, then we easily can find other registered images in the same area (location),
especially if final visualization will be filtered in a context that searched resource is an image
of a house.

Accordingly to the GUN approach, all the parts of searching/browsing process
presented in GUI-Shell can be developed as separate functional modules (resource) and can
be chosen by user to allow personalization of a browsing interface. In this particular use case
of the OntoEnvironment, with resources of the real world (people, objects and etc.) we face
new semantically-enhanced media-file resources. As was mentioned, these resources contain
not just internal structure in their Semantic Tracks, but also links to other resources. Thus,
with a purpose to be competitive in the open market of the media resources and have big rank
of use, resources should be self-maintained and all the time should have up-to-date links in
Semantic Track. Here we see the necessity of resource proactive behaviour. Supplied with an
agent-based GUN Platform, behaviour of the resource can be configured in a way that gives
resource a possibility to communicate with other resources and change/update own Semantic
Track in real time (see FIGURE 5.7).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 104

FIGURE 5.7 Semantically enhanced multimedia resource infrastructure

5.5 Conclusions

Now, when human becomes very dynamic and proactive resource of a large integration
environment with a huge amount of different heterogeneous data, it is quite necessary to
provide a technology and tools for easy and handy human information access and
manipulation. Semantically enhanced context-dependent multidimensional resource
visualization provides an opportunity to create intelligent visual interface that presents
relevant information in more suitable and personalized for user form. Context-awareness and
intelligence of such interface brings a new feature that gives a possibility for user to get not
just raw data, but required information based on a specified context. Now, when unlimited
interoperability and collaboration demand data and information sharing, we need more open
semantic-based applications that are able to interoperate and collaborate with each other.
Ability of the system to perform semantically enhanced resource search/browsing based on
resource semantic description brings a valuable benefit for today Web and for the Web of the
future with unlimited amount of resources. Proposed resource visualization approach can find
a place and can be utilized in various visual systems and especially in next-generation
human-centric open environments for resource collaboration with enhanced semantic and
context-based visual resource browsing. Presented 4i (FOR EYE) technology quite fits the
demands of a new generation of integration systems. It is an ensemble of Platform Intelligent
GUI Shell and visualization modules – MetaProviders that provide context-dependent
representation view of resource data and integration on two levels. These are: information

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 105

(data) integration of the resources to be visualized; and integration of resource representation
views with a handy resource browsing in different dimensions. It can be considered as a new
valuable extension of text-based Semantic MediaWiki to Context-based Visual Semantic
MediaWiki. With the idea of the GUN we come to the environment where all the resources
are semantically interoperable and have own semantic description – Resource Semantic
Track. With the growing ubiquity of digital media content, ability to combine continuous
media data with its own multimedia specific content description into the one source brings
the idea of a true multimedia semantic web one step closer. 4i is a good basis for the different
business, production, maintenance, healthcare, social process models creation and
multimedia content management.

In the context of UBIWARE, 4i (FOR EYE) technology is a part of it. From one side,
the technology is a base for Human-Resource adaptation and will be elaborated accordingly
to the principles and vision of UBIWARE. The intelligence of this smart interface is a result
of collaboration of multiple agents: the human’s agent, the agents representing resources of
interest (those to be monitored or/and controlled or requesting a human), and the agents of
various visualization services – MetaProviders via an agent of Human-Resource Adapter.
From the other side, accordingly to the 4i, specific interfaces (MetaProviders) will be
developed to provide functionality for a human (Platform administrator) to configure
functionality of a UBIWARE-based system.

5.6 Dissemination of the results

The idea and materials that were included in this technical report were presented in several
international conferences and published as scientific papers:

- ICEIS-2007: 9th International Conference on Enterprise Information Systems.

Khriyenko O., "4I (FOR EYE) Technology: Intelligent Interface for Integrated Information", In:
Proceedings of the 9th International Conference on Enterprise Information Systems (ICEIS-2007),
Funchal, Madeira – Portugal, 12-16 June 2007.

- SIGMAP-2007: International Conference on Signal Processing and Multimedia
Applications.

Khriyenko O., "4I (FOR EYE) Multimedia: Intelligent semantically enhanced and context-aware
multimedia browsing", In: Proceedings of the International Conference on Signal Processing and
Multimedia Applications (SIGMAP-2007), Barcelona, Spain, 28-31 July 2007.

- VIIP- 2007: 7th IASTED International Conference on Visualization, Imaging, and Image

Processing.
Khriyenko O., "Context-sensitive Multidimensional Resource Visualization", In: Proceedings of the 7th
IASTED International Conference on Visualization, Imaging, and Image Processing (VIIP 2007), Palma
de Mallorca, Spain, 29-31 August 2007.

http://www.iceis.org/index.htm
http://www.sigmap.org/
http://www.sigmap.org/
http://www.iasted.org/conferences/home-583.html
http://www.iasted.org/conferences/home-583.html

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 106

Bibliography

Bertini, M., Cucchiara, R., Bimbo, A. and Torniai, C., (2005). Ontologies Enriched with

Visual Information for Video Annotation, In: Multimedia and the Semantic Web
workshop as part of the 2nd European Semantic Web Conference (ESWC2005-MSW),
Heraklion, Crete, May-June, 2005.

Blakley, B., Heath, C., and members of The Open Group Security Forum. (2004). Security
design patterns. Technical Guide No. G031. The Open Group.

Borselius, N., (2002). Mobile agent security, Electronics & Communication Engineering
Journal, October 2002, Volume 14, no 5, IEE, London, UK, pp 211-218

Bosse, T., Treur, J. (2000). Formal interpretation of a multi-agent society as a single agent.
Journal of Artificial Societies and Social Simulation 9(2)

CASCADAS. CASCADAS - Component-ware for Autonomic Situation-aware
Communications, and Dynamically Adaptable Services, FP6 Integrated Project
http://www.cascadas-project.org/

Collier, R., Ross, R., O'Hare, G. (2005). Realising reusable agent behaviours with ALPHA.
In: Eymann, T., Klugl, F., Lamersdorf,W., Klusch, M., Huhns,M.N. (eds.) MATES
2005. LNCS (LNAI), vol. 3550, pp. 210-215. Springer, Heidelberg

Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J. (2004). A programming language for
cognitive agents: Goal directed 3APL. In: Dastani, M., Dix, J., El Fallah-Seghrouchni,
A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 111-130. Springer, Heidelberg

Deliver. Deliver: Intelligent Software Knowledge Management and Delivery,
http://www.cwi.nl/htbin/sen1/twiki/bin/view/Deliver

Freitas, C. M. D. S., Luzzardi, P. R. G., Cava, R. A., Winckler, M. A., Pimenta, M. and
Nedel, L. P., (2002). Evaluating Usability of Information Visualization Techniques. In:
5TH SYMPOSIUM ON HUMAN FACTORS IN COMPUTER SYSTEMS (IHC),
2002, Fortaleza - CE Proceedings. Fortaleza:SBC, 2002. p. 40-51.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., (1995). Design patterns: elements of
reusable object-oriented software. Addison-Wesley professional computing series.
Addison-Wesley. Boston, Mass.

Geurts, J., Ossenbruggen, J., and Hardman, L., (2005). Requirements for practical
multimedia annotation. In: Multimedia and the Semantic Web workshop as part of the
2nd European Semantic Web Conference (ESWC2005-MSW), Heraklion, Crete, May-
June, 2005.

Harrison, C. G., Chess, D. M. and Kershenbaum, A., (1995). Mobile Agents: Are they a good
idea, technical report, 1995, IBM Research Division.

Horn, P., (2001). Autonomic computing: IBM's perspective on the state of information
technology. IBM Corporation, Tech. Rep., 15 Oct. 2001. Available:
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

Jansen, W., (2000). Countermeasures for Mobile Agent Security, Computer
Communications, Special Issue on Advanced Security Techniques for Network
Protection, Elsevier Science BV, November 2000.

Jansen, W. and Karygiannis, T., (1999). Mobile Agent Security, National Institute of
Standards and Technology, Special Publication 800-19, August 1999.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 107

Kaykova, O., Khriyenko, O., Klochko, O., Kononenko, O., Taranov, A., Terziyan, V. and
Zharko, A., (2004). Semantic Search Facilitator: Concept and Current State of
Development, In: InBCT Tekes Project Report, Chapter 3.1.3 : “Industrial Ontologies
and Semantic Web”, Agora Center, University of Jyväskylä, January – May 2004. URL:
http://www.cs.jyu.fi/ai/OntoGroup/InBCT_May_2004.html

Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A., Terziyan, V. and Zharko, A.,
(2005). General Adaption Framework: Enabling Interoperability for Industrial Web
Resources. In: International Journal on Semantic Web and Information Systems, Idea
Group, ISSN: 1552-6283, Vol. 1, No. 3, July-September 2005, pp.31-63.

Kaykova O., Khriyenko O., Terziyan V., General Networking Framework, Technical Report
(Deliverable D 3.1), SmartResource Tekes Project, Agora Center, University of
Jyvaskyla, January-May, 2006.

Kephart and Chess, D. M., (2003). The vision of autonomic computing. Computer, vol. 36,
no. 1, pp. 41--50, Jan. 2003. Available: http://portal.acm.org/citation.cfm?id=642200

Khriyenko, O., (2005). SemaSM: Semantically enhanced Smart Message, In: Eastern-
European Journal of Enterprise Technologies, Vol. 1, No. 13, 2005, ISSN: 1729-3774.

Larson, J. (2006). Intel (editor). W3C Working Group Note: “Common Sense Suggestions
for Developing Multimodal User Interfaces”, 11 September 2006, URL:
http://www.w3.org/TR/2006/NOTE-mmi-suggestions-20060911/

Luostarinen, K., Naumenko, A., and Pulkkinen, M., (2006). Identity and Access
Management for Remote Maintenance Services in Business Networks, in IFIP
International Federation for Information Processing, Volume 226, Project E-Society:
Building Bricks, eds. R. Suomi, Cabral, R., Hampe, J. Felix, Heikkilä, A., Järveläinen,
J., Koskivaara, E., (Boston: Springer), pp. 1-12.

Marcos, G., Smithers, T., Jiménez, I., Posada, J., Stork, A., Pianciamore, M., Castro, R.,
Marca, S., Mauri, M., Selvini, P., Sevilmis, N., Thelen, B. and Zechino, V., (2005). A
Semantic Web based approach to multimedia retrieval. In: Fourth International
Workshop on Content-Based Multimedia Indexing (CBMI 2005), Riga, Latvia, 21-23
June, 2005.

Mazhelis, O., and Naumenko, A., (2006). The Place and Role of Security Patterns in
Software Development Process, In Medina, E.F. and Yagüe, M.I. (Eds.), Security in
Information Systems Proceedings of the 4th International Workshop on Security in
Information Systems, WOSIS 2006 In conjunction with ICEIS 2006 Paphos, Cyprus,
May 2006. INSTICC Press, pp. 91-100.

Naeve, A., (2005). The Human Semantic Web: shifting from knowledge push to knowledge
pull, In: International Conference on Computational Science (ICCS 2005), Atlanta,
USA, 22-25 May, 2005.

Naumenko, A., (2006). Contextual rules-based access control model with trust. In
Shoniregan C. A. and Logvynovskiy A. (Eds.), Proceedings of the International
Conference for Internet Technology and Secured Transactions, ICITST 2006, 11-13
September, London, UK, ISBN 0-9546628-2-2, e-Centre for Infonomics, pages 68-75.

Naumenko, A., (2007), Semantics-Based Access Control – Ontologies and Feasibility Study
of Policy Enforcement Function, In: J., Filipe, J., Cordeiro, B., Encarnacao, and V.,
Pedrosa (Eds.), In Proceedings of the 3rd International Conference on Web Information
Systems and Technologies (WEBIST-07), Barcelona, Spain - March 3-6, 2007, Volume
Internet Technologies, INSTICC Press, pp. 150-155.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 108

Naumenko, A., Katasonov, A., Terziyan V., (2007), A Security Framework for Smart
Ubiquitous Industrial Resources, In: Goncalves, R., Müller, J., Mertins K., and Zelm,
M., (Eds.), In Enterprise Interoperability II: New challenges and Approaches,
Proceedings of the 3rd International Conference on Interoperability for Enterprise
Software and Applications (IESA-07), March 28-30, 2007, Madeira Island, Portugal,
Springer, pp. 183-194.

Naumenko, A., and Luostarinen, K., (2006). Access Control Policies in (Semantic) Service-
Oriented Architecture, In Schaffert S. and Sure Y. (Eds.), Semantic Systems From
Visions to Applications, Proceedings of the SEMANTICS 2006, Austrian Computer
Society, Vienna, Austria, pp. 49-62.

Naumenko, A., Nikitin, S., Terziyan, V., and Zharko, A., (2005). Strategic Industrial
Alliances in Paper Industry: XML- vs. Ontology-Based Integration Platforms, In: The
Learning Organization, Special Issue on: Semantic and Social Aspects of Learning in
Organizations, Emerald Publishers, ISSN: 0969-6474, Vol. 12, No. 5, 2005, pp. 492-
514.

Nixon, L., (2006). Multimedia, Web 2.0 and the Semantic Web: a strategy for synergy. In:
First International Workshop on Semantic Web Annotations for Multimedia
(SWAMM), as a part of the 15th World Wide Web Conference, Edinburgh, Scotland,
22-26 May, 2006.

OBIX. Obix framework – an open source Java library for software configuration http://obix-
framework.sourceforge.net/

O’Reilly, T., (2005). What is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software. September 2005. Online
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Peeters, G., (2003). A large set of audio features for sound description (similarity and
classification) in the CUIDADO project, In: CUIDADO project report, 2003. URL:
http://www.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf

Patel-Schneider, P., Hayes, P. and Horrocks, I., (eds.), (2004). OWL Web Ontology
Language Semantics and Abstract Syntax, W3C Recommendation, W3C;
www.w3.org/TR/owl-absyn/ (26.02.2007).

Pfeiffer, S., Parker, C. and Pang, A., (2003). The Annodex annotation and indexing format
for timecontinuous bitsreams, Version 2.0 (work in progress).
http://www.ietf.org/internet-drafts/draft-pfeiffer-annodex-01.txt, December 2003.

Rao, A., Georgeff, M. (1991). Modeling rational agents within a BDI architecture. In:
KR’91. Proc. 2nd International Conference on Principles of Knowledge Representation
and Reasoning, pp. 473-484

Rao, A. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In:
Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55.
Springer, Heidelberg

SELFMAN. SELFMAN – Self Management for Large-Scale Distributed Systems based on
Structured Overlay Networks and Components, FP6 Project, 2006 – 2009.
http://www.ist-selfman.org/wiki/index.php/SELFMAN_Project

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence 60(1), 51–92
Srirama, S., and Naumenko, A., (2007). Secure Communication and Access Control for

Mobile Web Service Provisioning, In CD-ROM Preprints of Proceedings of

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 109

International Conference on Security of Information and Networks (SIN2007), 8-10th
May, 2007.

Terziyan, V., and Katasonov, A., (2007). Global Understanding Environment: Applying
Semantic and Agent Technologies to Industrial Automation, In: M. Lytras et al (eds.),
Emerging Topics and Technologies for in Information Systems, IGI Global, 2007, 35
pp. (Book chapter, submitted 14 May 2007).

Tetlow, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., and Kendall, E., (eds). (2006).
Ontology Driven Architectures and Potential Uses of the Semantic Web in Systems and
Software Engineering. W3C editors draft.

Thevenin, D. and Coutaz, J., (1999). Plasticity of User Interfaces: Framework and Research
Agenda. In Proceedings of Interact'99, vol. 1, Edinburgh: IFIP, IOS Press, 1999, pp.
110-117.

Vazquez-Salceda, J., Dignum, V., Dignum, F. (2005). Organizing multiagent systems.
Autonomous Agents and Multi-Agent Systems 11(3), 307-360

Web 3.0. In: Wikipedia - a multilingual, web-based, free content encyclopedia. URL:
http://en.wikipedia.org/wiki/Web_3.0

Yuxin, M., Zhaohui, W., Zhao, X., Huajun, C., Yumeng, Y., (2005). Interactive Semantic-
Based Visualization Environment for Traditional Chinese Medicine Information. In:
Web Technologies Research and Development - APWeb 2005, 7th Asia-Pacific Web
Conference, Shanghai, China, March 29 - April 1, 2005, Springer, volume 3399/2005,
ISBN 978-3-540-25207-8, pp. 950-959.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 110

Appendix A: UBIWARE WP7 Status
Introduction
The objective of the 7-th workpackage is to trial UBIWARE on real industrial cases. This has
two major goals for such case studies. The first goal is to evaluate the scientific concepts
behind UBIWARE and to find problems and issues in UBIWARE that would otherwise be
overlooked. The second goal is to facilitate the further utilization of UBIWARE in the
industry. Several specific cases, proposed by the industrial partners, will be analyzed,
designed and prototyped based on the UBIWARE platform. The reasons for prototyping are
the same: to identify issues in UBIWARE that would get overlooked if the work was only
theoretical and thus abstract, and to demonstrate the benefits of UBIWARE in a tangible way
so to facilitate future industrial adoption.

There are three industrial cases, those of ABB, Fingrid and Metso Automation.

During the Year 1, with respect to all three cases the following tasks are to be performed:
Task T1.1_w7: Case analysis: identification of relevant industrial resources, their

dependencies and interactions
Task T1.2_w7: Connecting to relevant industrial resources: Development of

appropriate resource adapters

More detailed tasks for each industrial case have been defined during communication with
Metso Automation and Fingrid (see below).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 111

A.1 Metso Automation case

A.1.1 Background

The following systems are considered:

• IP21 – Process history database – contains all process events.
• ALP – Alarms only database. Contains about 1% of IP21 messages.
• Engineering DB – object database that represents resources’ structure and links

between them. Database content is quite static, updated rarely.
• MUST - Multi-State Monitoring system.
• DNA diary – electronic diary with human comments related to events.

A.1.2 Opportunities

• Timeline-based visualization of the alarms
Recognition and showing if similar alarm has already taken place. This will help
expert in problem solving and decision making.

• Clustering of the alarms in visualization

Time-based, place-based, action-based, etc. The alarms are shown in their own
clusters, out of which it is easier for the user to select the important ones.

• Automatic regulation (adjustment) of the alarm limits

A lot of time is spent on the alarm limits definition during the installation of the
factory. The simplification of the procedure using semantic web would be a great
benefit.

A.1.3 Working Plan

The working plan is defined as an initial set of features and steps needed to implement those
features. Connection between Semantic Web storage and IP21 was implemented during
previous project SmartResource 2004-2007. The goal of the first year of UBIWARE project
is to connect two more resources and provide very simple analysis of alarms for demo
purposes.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 112

SAP

Semantic
databaseMyCommunity

Maintenance actions
and history

Human know-how
with events

Process history

Alarm history

LIMS Laboratory system

NN

As rich as possible event generation: Grade changes, roll changes, MUST, SPC, alarm limits…….

Why this happened?
What options do I have to fix this?

What effects does this have?

Semantic web
reasoning

Domain specific
reasoning

En DB Engineering database

ALP

IP 21

DNAdiary

FIGURE A.17 Accumulation of cause-effect data

1. Connect Engineering database.

• Get XML dump of DB, analyze design and extend existing ontology accordingly.
• Implement a semantic adapter to database. Karaila promised to establish an

interface to the database during the week 8-12.10.07. The interface will provide
needed data in an XML format. We will extract the following information: Basic
knowledge about factory, connections within the factory and alarm limits. The
connection should be available in November.

• Still to decide which factory floor will be a tested.

2. Connect Diary database.
• Get data scheme from Metso and extend ontology accordingly.
• Metso will ask permission from Heinola if their diary information can be used.
• Metso already has a dump of the Heinola Fluting from year 2006.
• The limitation is that Heinola has an old version of the diary meaning that the data

is mainly textual descriptions, not categorized, so, reuse of the information is
much lower.

• Implement a semantic adapter to database.

3. Implementing needed Reusable Atomic Behaviors and Behavior Models needed for

creating an agent able to:
• Query the databases
• Perform simple analysis of the alarms (for demo purpose).

4. Implementing another agent linked to a Web-Service so the analysis results could be
accessed through the web (e.g. linked to the intranet).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 113

A.2 Fingrid case

A.2.1 Background

The following systems are considered:

• Event History Database (Oracle) in the office environment, to which data is
automatically replicated from SCADA’s event history database (the replication will
be implemented in December).

o The focus is on R1-alarms, i.e. equipment alarms that require some
maintenance actions to be performed.

o The database also keeps events on when a maintenance worker entered or left
a substation (billing is based on working time).

o R3, R4, and R5 alarms, i.e. disturbances in the network, can also be
considered.

o Major R3, R4, and R5 alarms are also manually fed into Fingrid extranet
(sähkömarkinnat => käyttöhäiriöt page)

• Elnet system (Oracle) that stores information about assets: towers, feeders,
substations (i.e. the whole power network) + which maintenance service provider
serves which working area.

o MapInfo GIS is used for geographic representation of the power network.
Data for MapInfo is somehow synchronized22 with data in Elnet.

• Tosu system (MS Access) that is used by the maintenance service providers to report
to Fingrid the costs for the work performed.

• The lightning info-service – FMI provides for Fingrid data on all the lightning
events in Finland. The data is probably stored in a DB. Additionally, FMI provides a
Google Maps –based application, which geographically shows lightnings data
combined with the data on the locations of Fingrid power lines.

• Microsoft SPS is used for creating web-based intranet.
• MS BizTalk is used as the integration platform, e.g. lightning data comes through

BizTalk.

A.2.2 Opportunities

In the present state of Fingrid practice, at least the following functions are performed
manually (or not performed at all) while could potentially be automated:

• Statistic analysis of the Event History data.
o Report on how many R1 alarms were happening per month /year per working

area.

22 Throughout the text, in italic are things that could be clarified

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 114

o Analysis of efficiency of maintenance service providers. In case of an R1
alarm in their working area, the provider is notified automatically. One
question is how much time it takes the provider to reach the substation to
perform maintenance.

• Integrating data from Event History, Elnet and Tosu.
o Analysis of the relationship between alarms (event history) and the types of

equipment (Elnet).
o Understanding what alarm has led to what maintenance actions at what cost.

Such matching is not possible for some reason (this is left unclear) at present.
• Integrating data from Event History and Lightening data

o Matching the locations and times of R3,4,5 alarms with the locations and
times of lightning strikes to automatically filter out lightning-caused
disturbances (normally require no action to be performed).

A.2.3 Special requirements

Data security is a central concern. It is major reason, along with safety, for putting the focus
on historic analysis of events rather on the real-time operation. It is also the reason for that no
real-time systems will be accessible for UBIWARE development for a while.

Any new functionality that UBIWARE can create should be linked to Fingrid web-based
intranet through SPS.

A.2.4 Working Plan

The working plan is defined as an initial set of features (with priorities assigned) and steps
needed to implement those features. At this stage, it is difficult to say if all features could be
implemented in the UBIWARE timeframe. This also obviously depends on how deep we will
go into the features.

The goal of the first year is to implement FE-1 (limited to only simple analysis in step 4).

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 115

Reusable atomic behavioursReusable atomic behavioursReusable atomic behaviours

H
TM

L
G

U
I

H
TM

L
G

U
I

.c
la

ss

Simple GUI

Adapter Adapter
AgentAgent

SPARQL

HTML

SQL
Event History

Pool of Atomic Pool of Atomic
BehavioursBehaviours

DB Manager AgentDB Manager Agent

Adapter Adapter
AgentAgent

RDF

St
at

is
tic

St
at

is
tic

.c
la

ss
M

SG
Se

nd
M

SG
Se

nd
.c

la
ss

SP
A

R
Q

L
SP

A
R

Q
L p

ar
se

r
pa

rs
er

.c
la

ss
…… .c
la

ss
SQ

L
Q

ue
ry

SQ
L

Q
ue

ry
.c

la
ss

SCADA

FIGURE A.2 Analysis of the Even Data

FE1 (priority high):
1. Get the dump of event data and load it into a test (Oracle) database.
2. Based on the data scheme design an ontological model to be used for classifying the

events and their properties.
3. Implement a semantic adapter to the database.
4. Implementing needed Reusable Atomic Behaviors and Behavior Models needed for

creating an agent able to:
• Query the database
• Perform statistical analysis of the data (see above)

5. Implementing another agent linked to a Web-Service so the analysis results could
be accessed through the web (e.g. linked to the intranet).

FE-2: Integration with Elnet (priority: medium)

1. Extending the ontology from FE-1
2. Implementing an adapter to Elnet (real, replica?)
3. Implementing RABs and behavior models for the Elnet agent
4. Developing the integration scenarios (involving the Event DB agent and the Elnet

agent and maybe others)

FE-3: Integration with Tosu (priority: medium)

Steps are similar to FE-2

FE-4: Integration with Lightnings data (priority: low)
Steps are similar to FE-2

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 116

A.3 ABB case

ABB has not yet confirmed its participation in UBIWARE and so far refused to have meeting
to specify the case (situation as for 6 November 2007). We hope to have the confirmation
from ABB and to schedule a specification meeting in near future.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 117

Appendix B: UBIWARE Publications List

Terziyan V., Katasonov A., Global Understanding Environment: Applying Semantic and
Agent Technologies to Industrial Automation, In: M. Lytras and P.O. Pablos (eds.),
Emerging Topics and Technologies in Information Systems, IGI Global, 36 pp. (submitted 14
May 2007).

Terziyan V., SmartResource – Proactive Self-Maintained Resources in Semantic Web:
Lessons learned, In: International Journal of Smart Home, Special Issue on Future
Generation Smart Space, 2008, SERSC publisher, ISSN: 1975-4094, 18 pp. (submitted 5
September 2007).

Katasonov A., Kaykova O., Khriyenko O., Nikitin S., Terziyan, V., Smart Semantic
Middleware for the Internet of Things, In: Proceedings of the Internet of Things 2008 (IOT-
2008), International Conference for Industry and Academia, 26-28 March, 2008, Zurich,
Switzerland, Springer, LNCS, 17 pp. (submitted 20 September 2007).

Katasonov, A., Terziyan, V., SmartResource Platform and Semantic Agent Programming
Language (S-APL), In: P. Petta et al. (Eds.), Proceedings of the 5-th German Conference on
Multi-Agent System Technologies (MATES’07), 24-26 September, 2007, Leipzig, Germany,
Springer, LNAI 4687 pp. 25-36.

Terziyan V., Predictive and Contextual Feature Separation for Bayesian Metanetworks, In: B.
Apolloni et al. (Eds.), Proceedings of KES-2007 / WIRN-2007, Vietri sul Mare, Italy,
September 12-14, Vol. III, Springer, LNAI 4694, 2007, pp. 634–644.

Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper Industry - A Semantic
Storing, Browsing and Annotation Mechanism for Online Fault Data, In: Proceedings of the
4th International Conference on Informatics in Control, Automation and Robotics (ICINCO),
May 9-12, 2007, Angers, France, INSTICC Press, ISBN: 978-972-8865-87-0, pp. 191-194.

Salmenjoki K., Tsaruk Y., Terziyan V., Viitala M., Agent-Based Approach for Electricity
Distribution Systems, In: Proceedings of the 9-th International Conference on Enterprise
Information Systems, 12-16, June 2007, Funchal, Madeira, Portugal, ISBN: 978-972-8865-
89-4, pp. 382-389.

Khriyenko O., 4I (FOR EYE) Technology: Intelligent Interface for Integrated Information,
In: Proceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS-2007), Funchal, Madeira - Portugal, 12-16 June 2007.

 D1.1: The Central Principles and Tools of UBIWARE

© 2007 UBIWARE Deliverable D1.1 118

Khriyenko O., 4I (FOR EYE) Multimedia: Intelligent semantically enhanced and context-
aware multimedia browsing, In: Proceedings of the International Conference on Signal
Processing and Multimedia Applications (SIGMAP-2007), Barcelona, Spain, 28-31 July
2007.

Khriyenko O., Context-sensitive Multidimensional Resource Visualization, In: Proceedings
of the 7th IASTED International Conference on Visualization, Imaging, and Image
Processing (VIIP 2007), Palma de Mallorca, Spain, 29-31 August 2007.

Naumenko A., Semantics-Based Access Control in Business Networks, Jyvaskyla Studies in
Computing, PhD Thesis, Volume 78, Jyvaskyla University Printing House, 215 pages, 2007.

Srirama, S., and Naumenko, A., (2007). Secure Communication and Access Control for
Mobile Web Service Provisioning, In: Proceedings of International Conference on Security
of Information and Networks (SIN2007), 8-10th May, 2007.

Naumenko, A., SEMANTICS-BASED ACCESS CONTROL - Ontologies and Feasibility
Study of Policy Enforcement Function , In: Proceedings of the 3rd International Conference
on Web Information Systems and Technologies (WEBIST-07), Barcelona, Spain - March 3-6,
2007, Volume Internet Technologies, INSTICC Press, pp. 150-155.

Naumenko A., Katasonov A., Terziyan V., A Security Framework for Smart Ubiquitous
Industrial Resources, In: R. Gonzalves, J.P. Müller, K. Mertins and M. Zelm (Eds.), In:
Enterprise Interoperability II: New challenges and Approaches, Proceedings of the 3rd
International Conference on Interoperability for Enterprise Software and Applications
(IESA-07), March 28-30, 2007, Madeira Island, Portugal, Springer, pp. 183-194.

Katasonov A., Kaykova O., Khriyenko O., Loboda O., Naumenko A., Nikitin S., Terziyan
V., The Central Principles and Tools of UBIWARE, Technical Report (Deliverable D 1.1),
UBIWARE Tekes Project, Agora Center, University of Jyvaskyla, May-October 2007, 118
pp.

http://www.cc.jyu.fi/%7Eannaumen/ex/SBACO.pdf
http://www.cc.jyu.fi/%7Eannaumen/ex/SBACO.pdf

	
	Abbreviations
	 Introduction
	1 UbiCore – Core Distributed AI platform design
	1.1 Agent Programming Languages (APLs)
	1.2 Semantic Agent Programming Language (S-APL)
	1.2.1 S-APL Axioms
	1.2.2 S-APL Notation
	1.2.3 Descriptive constructs
	1.2.4 Querying constructs
	1.2.5 Agent’s capabilities
	1.2.6 S-APL run-time cycle
	1.2.7 Conclusions

	2 UbiBlog – Managing Distributed Resource Histories
	2.1 General approach
	2.2 External querying
	2.3 Other communicative acts
	

	3 SURPAS – Smart Ubiquitous Resource Privacy and Security
	3.1 UBIWARE security implications
	3.1.1 Openness
	3.1.2 Dynamics
	3.1.3 Heterogeneity
	3.1.4 Decentralization
	3.1.5 Collaborative
	3.1.6 Context-awareness
	3.1.7 Flexibility
	3.1.8 Extensibility and expressiveness
	3.1.9 Self-management
	3.1.10 Human centricity
	3.1.11 Mobility
	3.1.12 Ambient intelligence

	3.2 Security threats in UBIWARE
	3.2.1 Conventional perspective
	3.2.2 Architectural perspective
	3.2.2.1 Agent to agent platform
	3.2.2.2 Agent to agent
	3.2.2.3 Agent platform to agent
	3.2.2.4 UBIWARE to resource and resource to UBIWARE
	3.2.2.5 Repositories to agent

	3.3 Security questions in industrial cases
	3.3.1 Decentralized management of power networks
	3.3.2 Proactive machinery maintenance services

	3.4 SURPAS Research Framework
	3.5 SURPAS Conceptual Semantics for access control
	3.5.1 Model-theoretic semantics of OWL
	3.5.2 Model-theoretic semantics of SURPAS focusing Access Control
	3.5.3 The SURPAS ontologies
	3.5.4 The role of ontologies in SURPAS
	3.5.5 An example of the specification of domain ontology

	3.6 SURPAS Architecture
	3.6.1 Abstract Architecture
	3.6.2 Piloting the abstract design
	3.6.3 Testing the pilot
	3.6.4 Architecture of the secure SmartResource agent

	3.7 SURPAS in industrial use cases
	3.7.1 Secure decentralized management of power networks
	3.7.2 Secure Proactive Machinery Maintenance Services

	3.8 Conclusions

	
	4 Principles of the Configurability
	4.1 Configurability in UBIWARE
	4.1.1 Configurability framework
	4.1.1.1 Configuration in software lifecycle
	4.1.1.2 Programming the Configurability
	4.1.1.2 Structural Configurability (Composition)

	4.1.2 Configurable Adaptation
	4.1.2.1 Interaction scenarios
	4.1.2.2 Communication with sources of adaptation

	4.1.3 Configurable Transformation
	4.1.3.1 Configurable Transformation in action

	4.2 Conclusions and Outlook

	5 General Vision of 4I Technology and Its Application in UBIWARE
	5.1 Intelligent Resource Visualization
	5.1.1 Motivation for intelligent resource visualization
	5.1.2 Visualization of a resource

	5.2 4I (FOR EYE) TECHNOLOGY
	5.2.1 Utilization of Intelligent Resource Visualization in next-generation systems
	5.2.2 4i Infrastructure
	5.2.3 Requirements for the technology components

	5.3 4i (FOR EYE) Technology in UBIWARE
	5.4 Application of 4i (FOR EYE) Technology: Semantically enhanced browsing across multimedia contents.
	5.4.1 Resource semantic track
	5.4.2 Across multimedia content semantic browsing in a sense of concept based semantic search

	5.5 Conclusions
	5.6 Dissemination of the results

	 Bibliography
	 Appendix A: UBIWARE WP7 Status
	Introduction
	A.1 Metso Automation case
	A.1.1 Background
	A.1.2 Opportunities
	A.1.3 Working Plan
	 A.2 Fingrid case
	A.2.1 Background
	A.2.2 Opportunities
	A.2.3 Special requirements
	A.2.4 Working Plan
	 A.3 ABB case

	 Appendix B: UBIWARE Publications List

