TEKES D1.3: UBIWARE Platform Prototype v.1.0

UBIWARE Deliverable D1.3:

UBIWARE Platform Prototype v.1.0

May, 2008
Date May 8, 2008
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Artem Katasonov, Olena Kaykova, Olekshyriyenko,
Sergiy Nikitin
Work component WP1-WP5
Deliverable Code D1.3
Deliverable Owner I0G, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

© 2008 UBIWARE Deliverable D1.3 1

h»
b

> Sadm
- L5
TEKES D1.3: UBIWARE Platform Prototype v.1.0
Table of Contents
1o To [¥Tox 1 o] o SRR PPPUPPURRTT 3
1 UbiCore — Core Distributed Al platform deSiga . ..cccevvverveeeeieiiiiiiiiiiiee e e e eeeeeenn 4
1.1 Platform ArChiteCIUIE........coo e 4
1.2 Semantic Agent Programming Language (S-APL) oo 6.
1.3 S-APL engine run-time CYCl..........uuuuiiieeiiiiiiiieiiiiieir e eee e e e eeeeeees 11
1.4 UBIWARE Platform elementS..........ooiiii et 12
1.5 Visualizer / deDUQGQENcooeiiiieie e e 15
2 UbiBlog — Managing Distributed Resource Histories...........ccccevvvvvevviiivvvninnnnnn. 17
Agent commuUuNICALION 1N S-APL........oooiiiii e e e e eereeeeeeeeeeeee 18
3 SURPAS - Smart Ubiquitous Resource Privacy amdi8................cceevvvvvvvnnninnnnnn. 23
3.1 Ontological modeling Of OPEratioNS...........ciiiiiiiie e 23
3.2 Specifying access CONIrol POLICIESummmmmmeeeeeiiiiieeeeiiirrr e e e e e e ee e e e 26
4 Self-Management, Configurability and Integration..............ccoevvviiiiiiiiiiinnieeeeeeeenn. 29
4.1 RESOUICE a0aptatiOnuuuuuuueimmmmcceeeeeeeeeeeeseessnnsss e s s e eeeeeeeeeseesanesseesseesesnnnnnes 29
4.2 Configurability of atomic behaviors ..o 32
5 Smart Interfaces: Context-aware GUI for Integitddata (4i technology) 34
5.1 BACKGIOUNG ...t e e e e e e e e e e e e e e eeeeeeeeeeeeeeneennnnnns 34
5.2 SMAITINTEITACEuuiiiiiiiiiiiiiiii e e e e e e e e e e 36
5.3 FULUIE WOTK ...ttt ettt e e e e e e e e e e e e e e e et e e eeeeeneeeeeeebnasnnn s 42
=1][To e =T o] 0 Y2 44
Appendix A: UBIWARE PUbBlICAtIONS LIStuuuiiiiieiieieeeeeceeeeeeeeeiiiiii e 45

© 2008 UBIWARE Deliverable D1.3 2

h»
b

e S

L P
»

TEKES D1.3: UBIWARE Platform Prototype v.1.0

Introduction

The UBIWARE project aims at a new generation midaiee platform which will allow
creation of self-managed complex industrial systeorsisting of distributed, heterogeneous,
shared and reusable components of different nadugesmart machines and devices, sensors,
actuators, RFIDs, web-services, software componants applications, humans, etc. The
technologies, on which the project relies, are Swftware Agents for management of
complex systems, and the Semantic Web, for inteadydléy, including dynamic discovery,
data integration, and inter-agent behavioral coation.

Work in this project is divided into seven work gages which are running in parallel:
Core agent-based platform design

Managing Distributed Resource Histories

Security in UBIWARE

Self-Management and Configurability

Context-aware Smart Interfaces for Integrated Data

Middleware for Peer-to-Peer Discovery

Industrial cases and prototypes.

NogokrwhE

Work-packages 1 through 6 are research work paskdgmvever, the research efforts are
combined with agile software development procedResotypes of the UBIWARE platform,

integrating the work in these 6 work packages &emint levels of their readiness, are
developed during each project year, as UBIWARE UBIWARE 2.0 and UBIWARE 3.0.

UBIWARE deliverable D1.1 reported on the reseaesults from work packages 1 through
5 (it was decided not to perform the work at the 8A\dRiring the first project year due to
limitation in resources). This deliverable, D1.3egents the integrated development results
from those work packages, i.e. the current statehef UBIWARE platform prototype.
Naturally, during the development stage, solutiaiescribed previously in D1.1 have
undergone some changes and improvements.

Formally, D1.3 consists of the software systemlfitaad this accompanying report. The
present report includes a separate chapter forabats of every work-package involved.
Note that the work package 1 sets the generaltanthre of UBIWARE, and therefore the
description of results from WP1 is important fodenstanding the results from other WPs.

© 2008 UBIWARE Deliverable D1.3 3

h»
b

s< >
e & A=

- D
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

UBIWARE Deliverable D1.3:
Workpackage WP1:
Task T1.2_ wl:

1 UbiCore — Core Distributed Al platform
design

The main objective of the core platform is to eesaipredictable and systematic operation of
the components and the system as a whole by:

« enforcing that the smart resources, while mightdge own “personal” goals, act as
prescribed by the roles they play in a organizaama by general organizational
policies,

* maintaining the “global” ontological understandiagiong the resources, meaning
that a resource A can understand all of (1) thegnttes and the state of a resource B,
(2) the potential and actual behaviors of B, andt{@ business processes in which A
and B, and maybe other resources, are jointly el

During WP1's Year 1 (theRepresentationphase), the Semantic Agent Programming
Language (S-APL) was developed which is a semaémicsufficient for describing all of the
following: resources’ properties, agents’ behaviomrganizational policies, business
processes, ontologies, etc. Having a common largyt@gall those ensures that any type of
information in UBIWARE is semantic and facilitategertwining those: e.g. one can easily
prescribe that in a certain business process,nifesproperties of some resource have some
certain values this must lead to some specifioadaken by some agent unless prohibited
by some organizational (e.g. security) policy.

1.1 Platform Architecture

The central to the core platform is the architeztaf a UBIWARE agent depicted in the
Figure 1. The basic 3-layer agent structure islamio, for example, the Agent Factory’'s
ALPHA/AFAPL (see Section 2). There is the behavémgine implemented in Java, a
declarative middle layer, and a set of sensorsaahdhtors which are again Java components.
The latter we refer to @Reusable Atomic Behaviors (RAB#Je do not restrict RABs to be

© 2008 UBIWARE Deliverable D1.3 4

x
{

J

o
1]

D1.3: UBIWARE Platform Prototype v.1.0

only sensors or actuators, i.e. components semsirgifecting the agent’s environment. A
RAB can also be a reasoner (data processor) if srttee logic needed is impossible or is
not efficient to realize with the S-APL means, foome wants to enable an agent to do some
other kind of reasoning beyond the rule-based one.

Figure 1. The UBIWARE agent architecture

The middle layer is the S-APL beliefs storage. Than factor that differentiates S-APL
from traditional APLs like AgentSpeak or ALPHA ihat S-APL is RDF-based. An
additional immediate advantage is that in S-APL diféerence between the data and the
program code (rules and plans) is only logical bat any principal. They use the same
storage, not two separate. This also means thateaipon its execution can add or remove
another rule, the existence or absence of a ruldbeaused as a premise of another rule, and
so on. None of these is normally possible in tradél APLs treating rules as special data
structures principally different from normal beBeivhich is n-ary predicates. S-APL is a
very symmetric in this respect — anything that bardone to or with a simple statement can
also be done to any belief structure of any coniplex

Technically, our implementation is built on the ta@b the Java Agent Development
Framework (JADE, Bellifemine et al. 2007), whichaislava implementation of IEEE FIPA
specifications. The S-APL behavior engine is ar®esion (subclass) of JADE's Agent class,
while the base class for all RABs is an extensiodADE’s SimpleBehavior class.

As Figure 1 stresses, an S-APL agent can obtaimé¢leeled data and rules not only from
local or network documents, but also through querB-APL repositories. Such a repository,

© 2008 UBIWARE Deliverable D1.3 5

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

for example, can be maintained by some organizadiath include prescriptions (lists of
duties) corresponding to the organizational rohed the agents are supposed to play. In our
implementation, such querying is performed as iaggnt action with FIPA ACL messaging,
but does not involve any query or content langudzm®nd S-APL itself. As can be seen
from Figure 1, agents also can to load RABs remot&his is done as an exception
mechanism triggered when a rule prescribes engagR@gB while the agent does not have it
available. Thus, organizations are able to provideonly the rules to follow but also the
tools needed for that.

We also equip each agent with a blackboard, thromgich RABs can exchange arbitrary
Java objects. Similar solution can be found e.ghenCougaar framework (Helsinger, 2004).
The reason for that is not to unnecessarily rasthe range of applications that could be
realized with S-APL. Without such a blackboard, FRABould be always forced to translate
all data into RDF (even when the S-APL code ofabent is not concerned with the content
of data, or could not process it) or at least §irgdt as text string to put the as object of a
statement. This could restrict the performance amate importantly, significantly reduce the
wish to use S-APL. Blackboard is also necessaradocommodate objects like Socket,
HttpServletResponse or similar to enable an ageptdcess and respond to HTTP requests,
which may be needed in many applications. Withbllaekboard extension, the developers of
a specific application can use S-APL in differemtys:
* Semantic Reasoning. S-APL rules operating on S-d&th.

* Semantic Data. RABs (i.e. Java components) opgratinS-APL semantic data.

* Workflow management. RABs operating on Java blaakthabjects, with S-APL
used only as workflow management tool, specifyingaivRABs are engaged and
when.

* Any combination of the three options above.

1.2 Semantic Agent Programming Language (S-APL)

This section briefly describes S-APL language. &atetailed description, see (Katasonov,
2008).

S-APL has as an axiom that everything inside amtégenind is a belief. All other mental
attitudes such as goals, commitments, behavioles are just compound beliefs. Thus, an S-
APL document is basically a statement of some &geturrent or expected (by an
organization) beliefs.

S-APL is based on Notation3 (N3) (http://www.w3¥gsignissues/Notation3.html). N3
was proposed by Tim Berners-Lee as a more combatter readable and more expressive
alternative to the dominant notation for RDF, whisiRDF/XML. One feature of N3, which
goes beyond the plain RDF, is the concept of foarbat allows RDF graphs to be quoted
within RDF graphs, e.g. {irooml :hasTemperature 2b¢asuredBy :sensorl. An important

© 2008 UBIWARE Deliverable D1.3 6

h»
b

S >
Fie = .

- LS80
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

convention is that a statement inside a formulsotsconsidered as asserted, i.e., as a general
truth. In a sense, it is a truth inside a conteinegéd by the statement about the formula and
the outer formulas. This is in contrast to therpRDF where every statement is asserted as a
truth. In S-APL, we refer to formulae as contexhtainers. The top level of the S-APL
document, i.e. of what is the general truth foragent, we refer to as general context or just
G. Below, we describe the main constructs of S-AR/e. use three namespaces: "sapl.” for
S-APL constructs, "java:” for RABs, and "p:” for FAparameters. Empty hamespace ".” is
used for resources that are assumed to be defisedtesre locally.

The two constructs below are equivalent and dedisemple belief. The latter is introduced
for syntactic reasons.

:room1 :hasTemperature 25
{irroom1 :hasTemperature 25} sapl:is sapl:true
The next two constructs add context information:
{irroom1 :hasTemperature 25} :measuredBy :sensorl
{iroom1 :hasTemperature 25} sapl:is sapl:true ; :measuredBy :sensorl

The former states that "sensorl measured the taetyperto be 25” without stating that "the
agent believes that the temperature is 25”. In resht the latter states both. This
demonstrates a specific convention of S-APL: rathan doing several statements about one
container, "{...} P O; P O” leads to linking theag¢ments inside the formula to two different
containers. Then, using sapl:true it is also pésgsdblink some statements to a container and
to one of its nested containers.

The goals of the agent and the things that the tabeleves to be false are defined,
correspondingly, as:

sapl:l sapl:want {:room1 :hasTemperature 25}
{iroom1 :hasTemperature 25} sapl:is sapl:false

sapl:l is a special resource that is defined intheebeliefs of an agent owl:sameAs the URI
of that agent. A specific convention of S-APL isttke.g. "sapl:l sapl:want {A B C}. sapl:l
sapl:want {D E F}" is the same as "sapl:l sapl:wgatB C. D E F}". In other words, the
context containers are joined if they are defifedugh statements with the same two non-
container resources.

The commitment to an action is specified as follows
{sapl:l sapl:do java:ubiware.shared.MessageSenderBehavior}
sapl:configuredAs {

p:receiver sapl:is :John.
p:content sapl:is {:get :temperatureln :room1}

sapl:Success sapl:add {:John :informs :temperature}

© 2008 UBIWARE Deliverable D1.3 7

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

The "java:” namespace indicates that the actican RAB. Otherwise, it would be an abstract
action (capability) that a rule was supposed todli@e into a plan. When the behavior engine
finds such a belief in G, it executes the RAB amthoves the commitment. In the
configuration part, one may use special statenterasid or remove beliefs. The subject can
be sapl:Start, sapl:End, sapl:Success, and sdplHa predicate is either sapl:add or
sapl:remove. Using such statements, one can egmlyify sequential plangapl:l sapl:do ...}
sapl:configuredAs {... sapl:Success sapl:add {{sapl:l sapl:do ...} sapl:configuresAs {...}}} .

The commitments to mental actions are as follows:
sapl:l sapl:remove {:John :informs :temperature}

sapl:l sapl:add {:John :informs :temperature}

sapl:remove uses its object as a pattern that tsh@a with G and removes all beliefs that
match. sapl:add does not need to be normally sede just stating something is the same
as adding it to beliefs. This construct is needé@mwone wants to postpone the creating of
the belief until the stage of the agent run-timeleyteration when commitments are treated
(see in the end of this section), or when one tise®bject as a variable holding the ID of a
statement or a container (see below).

The conditional commitment is specified as:

{{?room :hasTemperature ?temp} :measuredBy *. ?temp > 30 }

=>{.}
?room and ?temp are variables. => and > are shalthéor sapl:implies and sapl:gt. *
means "anything”. The object of sapl:gt and otliézring predicates (>=, <, <=, =, I=) is an

expression that can utilize arithmetic operatidoagctions like abs, floor, random, etc. and
string-processing functions like length, starts\Wghbstring, etc. When the behavior engine
finds in G a belief as above and finds out thattlad conditions in the subject context
container are met, it copies to G, substitutingaldes with their values, all the beliefs from
the object container. Those can be plain beliefd/ancommitments, unconditional or
conditional. S-APLallows a variable value to sulos a part of a resource,
e.g. "logs/?today/received”. Such a liberty is ontrast with, e.g., the approach used in the
CWM semantic reasoner (http://www.w3.0rg/2000/1@sidoc/cwm) where a variable
value can only be a substitute for the whole resmuhowever, it was shown to greatly
simplify the programming.

As with any commitments, the conditional commitmaat removed after successful
execution. In order to create a persistent ruke/th statement has to be wrapped as:

{{...} =>{...} } sapl:is sapl:Rule

It is possible to define a guard for a conditionammitment so it is dropped if the guard
becomes false:

{{...} =>{...} } sapl:is sapl:true ;
sapl:existsWhile {...}

© 2008 UBIWARE Deliverable D1.3 8

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

We introduce sapl.existsWhile as a way of creatboghmitment guards because APLs
normally require the ability of defining commitmerthat are dropped as unachievable or
not relevant anymore. However, in S-APL sapl:eXidtde can of course be used with any
type of beliefs.

There are also a couple of alternatives to =>:

{.}->{.};saplelse {...}
{sapl:l sapl:want{...}} >>{...}

-> and >> are the shorthands for sapliimpliesNowl aapl:achievedBy. -> specifies a
conditional action rather than a commitment: ichecked only once and removed even if it
was false. One can also combine it with sapl:elsspecify the beliefs that have to be added
if the condition was false. >> works the same aswith the only difference that if the left
side of it refers to some goals, commitments cerfate (GUI or HTTP) events, those are
removed automatically when the rule fires. Thus,tas the meaning of logical transition
rather than pure inference.

A specific convention of S-APL is that if there a@veral possible solutions to the query in
the left side of =>, -> or >>, the right side ispead by default for the first-found solution
only. One can use sapl:All wrappings to define tihat right part has to be copied several
times: for every unique value of some variable a#rg uniqgue combination of the values of
some variables. These wrapping can be used irr ¢fitbdeft or the right side:

{{{... } sapl:All ?x} sapl:All ?y } =>{...}
{...} => {{{...} sapl:All ?x} sapl:All ?y }

sapl:All on the right side is allowed to enableidiefy different wrappings for different (top-
level) resulting statements, e.g. "{...} => {X Y Z{?x L ?y } sapl:All ?y. A B ?x}
sapl:All ?x}”. On the left side of =>, sapl:All muslways wrap the whole contents of the
container. Other solutions set modifier wrappings @so available, namely sapl:OrderBy,
sapl:OrderByDescending, sapl:Limit, and sapl:Off3éte meaning of those are the same as
of their equivalents in SPARQL (http://www.w3.orgrdf-spargl-query/). One can also
wrap a condition in the left side of => with sapponal to have the same effect as
SPARQL’s OPTIONAL, and connect two conditions wipl:or to have the same effect as
SPARQL’s UNION. It is also possible to specify exgilve conditions, i.e. ones that must not
be know to be true, by using the wrapping sappl:daNotBelieve {...}.

One can also define new calculated variables:
{?person :height ?h. ?feet sapl:expression "?h/0.3048”. ?m sapl:min ?feet } =>{...}

sapl:expression gives to the new variable the vahming from evaluating an expression.
sapl:min is a special predicate operating on theokenatching solutions rather than on a
particular solution. The other predicates from g@me group are sapl:max, sapl:sum,
sapl:count (number of groups when grouped by valwéssome variables) and
sapl:countGroupedBy (number of members in eachpjrou

© 2008 UBIWARE Deliverable D1.3 9

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

Variable can also refer to IDs of statements angtecd containers, and one can use the
predicates sapl:hasMember, sapl:memberOf, rdf:sybjdf:predicate and rdf:object. After
obtaining the ID of the container with "?x :accarglito :Bill”, one can do the following
things:

{ ... {?x sapl:is sapl:true} :accordingTo :John } =>{...}

?x sapl:is sapl:true

sapl:l sapl:add ?x

sapl:l sapl:remove ?x

sapl:l sapl:erase ?x

?x sapl:hasMember {:room1 :hasTemperature 25}

The first construct defines a query that is evadads true if any belief that is found in the
context container ?x has a match in the contextagoer {} :accordingTo :John. The second
one links the statements from ?x to G, while thedthopies them to G. The fourth uses the
contents of ?x as the pattern for removing belfedsn G, while the fifth removes the
container ?x itself. Finally, the sixth add to ttwmtainer ?x a new statement.

There are several ways to create a variable holdisgpf some statements (we hope that the
meanings are clear):

{{* :hasTemperature 25} sapl:ID ?x } :accordingTo :Bill

{?x rdf:predicate :hasTemperature} :accordingTo :Bill

{?x sapl:is sapl:true} :accordingTo :Bill

?c :accordingTo :Bill. ?c sapl:hasMember ?x
One can use a query like { {?x sapliis sapl:truggccording to :Bill. {?x saplis
sapl:true} :accordingTo :John } => {...}", which ievaluated as true if there is at least one
belief from the first container that has a matchtha second container. One can also use

sapl:true, sapl:add, sapl:remove, sapl.erase,hsmhtember and sapl:memberOf to do the
same things as explained above, but for one staiteoméy.

There is also possibility to define meta-rules:
{{.-}=>{...} } sapl:is sapl:MetaRule

Meta-rules behave exactly as normal behavior rdigs. difference is only in their position
in the agent’s run-time cycle. Meta-rules are pssed twice: just before starting processing
normal rules and conditional commitments, and gdigr that - just before starting processing
commitments to external actions (see below). Tloeeefthe actual difference is in intended
purpose: meta-rules are supposed to modify/blockmab rules or commitments, to
implement some organizational, e.g. security, jesic

The final remark on S-APL syntax is that the bebaeingine automatically generates and

maintains several special beliefs that can be usegueries. One example is "sapl:Now
sapl:is <current system time in milliseconds>".

© 2008 UBIWARE Deliverable D1.3 10

h»
b

S >
Fie = .

- LS80
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

1.3 S-APL engine run-time cycle

Figure 2 presents a simplified view of the run-timgcle that the UBIWARE agent’s
behavior engine implements to act based on S-APRkwer models.

A 4
Remove the goals that match with G
. Check all existsWhile conditions found in G J '
! ¥ !
! Remove beliefs i
Rt St A P
Check all inference predicates (=>, >>, ->, requires) in MetaRule context J :
s ! i
E Add beliefs. Check all add, remove and erase in G. Add and remove
i Check all inference predicates in both G and Rule context J
i ! ;
:| Add and remove beliefs. Check all add, remove add erase in G. Add and remove beliefs. |:
T ¢ _+___J
Check and apply MetaRules again
v
Check all configuredAs in G and schedule RABs for excution
YES

Chanaes made to beliefs?

Collect garbage

Sleep

Figure 2. S-APL run-time cycle

In each iteration, the engine performs the follayvin
* First, it checks and removes all goals, both inpl$asapl:want {}" or “sapl:l
sapl:achieving {}” that match with G, i.e. haveeddy been achieved.
* Then, it checks all sapl:existsWhile conditionsrfdun G and removes the beliefs,
whose existsWhile conditions are not met anymore.

© 2008 UBIWARE Deliverable D1.3 11

Sz T
Fne el

» T——
TEKES D1.3: UBIWARE Platform Prototype v.1.0

Then, it checks all the inference predicate (sayplies =>, sapl:impliesNow ->,

sapl:achievedBy >>, and sapl:requires) found in {sapl.is sapl:MetaRule context.

If some rules are executed, the result is that speve beliefs are added to G. If

there are several executable rules in one iteragibare executed. Immediately after

that, the engine check all sapl:add, sapl:remowk sapl.erase commitments in G,

and then adds and remove the needed beliefs agssvitle commitments themselves.

* Then, exactly the same is done for inference patescin both is G (conditional
commitments) and in the context {...} sapl:is sapl&(behavior rules). Beliefs are
added only after both G and Rules are processeén,Thlso the executed
conditional commitments are removed.

e Then, the MetaRules are processed again (to blazkfynany action commitments
that were made).

* Finally, all the {sapl:l sapl:do ...} sapl:configur@d (action commitments) that are
found in G are executed (this leads to putting ¢cberesponding RAB into the
execution queue) and then removed.

« If any changes to beliefs were made, the enginedidbs the new iteration. The
new iteration will actually start after all the et RABs will be executed once.

» Otherwise, the engine collects garbage (unrefertkooatexts and statements) and

blocks the run-time cycle until a new message esrior some of running RABs

makes some modification to the beliefs. If there any active RABs, they will
continue execution.

As it stressed in the Figure 2, actual modificatitmthe belief storage (adding and removing)
are to be done after all the checks are complétetiis way, e.g. the effect of execution of
one rule could not prevent another executablefrata execution.

Garbage collection involves, in an iterative fashio
* Removing all contexts that are not referenced dicenot appear as the subject or the
object of any statement.

* Removing all statements that are not referencedaie not linked to any context
* Removing all empty contexts, i.e. not having anymher statements.

In result, any “hanging” sub-graph of beliefs vii# removed as garbage. Therefore, it is
always enough to explicitly remove just the togesteent, e.g. {} sapl:configuredAs {}, and
let the garbage collector to remove the rest -etintexts appearing as the subject and the
object.

1.4 UBIWARE Platform elements

The UBIWARE agent architecture depicted in Figurienplies that a particular UBIWARE-
based software application will consist of a setSeAPL documents (data and behavior
models) and a set of specific atomic behaviors e@éak this particular application.

© 2008 UBIWARE Deliverable D1.3 12

h»
b

F Sadaa
- =

» —
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

Since reusability is an important UBIWARE conceitnis reasonable that the UBIWARE
platform provides some of those ready-made. Thezetbhe UBIWARE platform as such can
be seen as consisting of the following three eldmen

* The behavior engine

* A set of “standard” S-APL models.

* A set of “standard” RABSs.
Then, also the development outputs of other UBIWARG®EK packages are exactly some
sets of such “standard” S-APL models and RABs tteat be used by the developers to
embed into their applications certain UBIWARE feati such as security or flexible
declarative (re-)configuration.

The table below lists the Reusable Atomic Behavi(R#\Bs) that are included into
UBIWARE 1.0. For detailed description of those, @eatasonov, 2008).

Print Prints to the screen (and to the log) specified
text.

PrintBeliefs Prints to the screen (and to the It
contents of specified context container.

ModifyGUI Sends a request to a GUI to perform same

actions, mainly related to modifying GUI
(enabling/disabling elements, putting text|to

labels, etc.).
ExternalAppStarterBehavior Starts an external software application.
UnzipperBehavior Unzips a ZIP archive.
HttpDataFetcherBehavior Downloads a document (eugy. HTML
page) from an Internet server.
EmailSenderBehavior Sends an email.
FilesSensorBehavior Generates a belief structwseriteng the

contents of a file-system folder, including all

the subfolders.

XmlIReaderBehavior Reads an XML file and generates a
predefined hierarchical belief structure.

XmlIWriterBehavior Writes XML data based on a preded
belief structure.

TextTableReaderBehavior Reads a text file contgiaidata-table, for
example a CSV file.

ExcelReaderBehavior Reads data from a workshesetitrosoft
Excel file.

SQLReaderBehavior Submits an SQL query to a relatio

database and generates from the results a
hierarchical belief structure.

RdfXmIReaderBehavior Reads am RDF/XML file and lo@d
contents into the agents’ beliefs into the
specified context container.

© 2008 UBIWARE Deliverable D1.3 13

3
o

o
1]

D1.3: UBIWARE Platform Prototype v.1.0

BeliefsBackupBehavior

Saves a sub-graph of agbelgfs as an S-
APL Notation3 string.

BeliefsLoadBehavior

Loads an S-APL Notation3 strigyen

directly or from file) into the agents’ beliefs.

HttpResponseSenderBehavior

Sends an HTTP respmaseréquest
arrived earlier.

CreateAgentBehavior Creates a new agent in the JADE
container.
MessageSenderBehavior Sends a message to anothéoaghe

same platform.

MessageReceiverBehavior

Listens for incoming megsagnatching
defined parameters.

SecurityCheckBehavior Checks with Directory Faatbt whether
the agent in question plays a role that wou
authorize it for something.

DFRegisterBehavior Register with the Directory Ftator the
services (e.g. roles) provided by this agen

DFLookupBehavior Finds with the Directory Facildahames of

agents playing a particular role.

SeveralButtonsGUI

Gives a very simple interfaceniitbuttons
and possibility to enable and disable those
buttons.

DebugBehavior

Starts the visualizer / debuggerfiate (see
next subsection).

The following table below lists the standard S-Ambtdels provided with UBIWARE 1.0.
Some of those are described in chapters on othex. WP

Id

L.

nts

startup Enables agents to access S-APL docume
remotely, from an OntologyAgent.
RABLoader Enables agents to access RABs remotely
from a RABRepositoryAgent.
OntologyAgent The script for an OntologyAgent.
RABRepositoryAgent The script for an RABRepositogght.

Reasoning.RDFSReasoner

Implements RDF Schema negsates
(class-subclass relation, etc.)

Reasoning.OWLReasoner

Implements a subset of O\&doreng rules
(symmetric, inverse and transitive properti
sameAs)

Communication.Listener

Receives messages (see €Hypt

Communication.Informer

Agent answering queries (Skapter 2)

Communication.Follower

Agent doing what it is askedlo (see
Chapter 2)

Communication.Believer

Agent adding to its belwetfsat it was

informed about (see Chapter 2)

© 2008 UBIWARE

Deliverable D1.3 14

> S

- —

TEKES D1.3: UBIWARE Platform Prototype v.1.0

Communication.Ontology Defines an ontology of comimative
actions for, e.g., policy-based control (see
WP3).

Security.SBACReasoner Semantics-Based Access C&easoner
(see Chapter 3).

Configurability.RABConfigurator Modifies unconditi@l commitments to
actions (e.g. RABs) based on the global
configuration settings for those actions (see
Chapter 4)

1.5 Visualizer / debugger

| v| Bli
@z Alias namespaces
[] Show expanded belief containers text
| o= {5 {_C_RULES} (0) gb:is gb:Rule] |5 Container as N3 ["] Show expanded belief containers icons
N pref?x cfg: <herp r'/ww_ul:uwa::e.jyu.tifconfiguxahilwyﬂ). [Expandable empty b
¢ 12 Gpzefix gh: <http://wwmw.ubivare.jya.£i/saplfi=_
Lt rAgent Controls
e
o g3 E ILE.
L.C METARULES} (1) @b 1 ghida "Yaction”
} gh:configuredis "?configh. el
ent life cycle mknown yei
P ghiis "action" cfg:configuredAs "Tdefault'. i Y @ ves
t
3 "?default” gh:hasMember {
O gh:MetaRule gy ctamih i s W el
bl
o {3 {_C_FALSE} (0) ghiis gbifalse gb:1 gbidollotBelieve { Paiting until life cycle:
"rzonfig" ghihasMemberz {
Urparam! gh:is "Iwalue!
o= |5 gb:l ghowant{_C_GOALS}(0) 3
o >
o {5 gkl ab:achisving{_C_ACHIEV ¥ghiaz { Progress Agent 1
"2default" gh:hasMember { £+
% "param" cfg:izDefault "Ivalue’
o {& gb:l ghedoing {_C_DQ} (2) ¥-
gh:1 gh:doNotBeliewe {
= - "2config" ghihasMembez {
o y]
{5 genubiware.shared TextTable| hrpatam? ghi 1a ven Stop Agent Restart Agent
¥
o= {3 {_C20}(1) gb:configuredAs 4 ¥
¥
} gb: impl { Hide this panel
{& gkl gb:haveName artem RIS
L cform> foreground = java.awt.Colez[z=0,g=0,b=0]
4 BT SRR fletozm> aliasNamespaces = true
|5 gb:MNow gbiis 120940??9425:% “Yconfig" gh:hasMember { kform> showSettings = true
“rparam’ gh:is "*"
. - b
& ob:Time ghiis 11:36:34 f
i besorms agentLifeCycles = -1
(& ob:Date ghiis 2008-04-28 gl ghiad form> waitingUntilAgentLifeCycle = false
“Iconfig" gb:hasMember {
"oparam® gh:is "Tvalue®
1
b
- - |
¥ gh:iAll "7pazam"
e |
\

Figure 3.The visualizer interface

In the future, an important additional element lvd UBIWARE platform is a set of tools
facilitating the development of UBIWARE-based apations. One tool in this group has
already been under development and its first ver@ancluded with UBIWARE 1.0. It is
the beliefs-visualizer / debugger interface. Angratigcan start its own visualizer (it is done
by using DebugBehavior RAB) to enable the develdpemonitor the agent’s beliefs and
also to control the agent’s execution.

© 2008 UBIWARE Deliverable D1.3 15

h»
b

F Sadaa
- =

» —
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

The screenshot of the visualizer is shown in Figuréhe current state of the visualizer:

* Shows the content of the beliefs storage of thetage a tree hierarchy (with ability
to expand / collapse branches).

* Upon request, presents any given branch of thefsediorage as an S-APL Notation
3 text.

* Enables the developer to execute the agent stegpelpy-with step meaning a S-APL
engine run-time cycle iteration (as in Section 1.3)

© 2008 UBIWARE Deliverable D1.3 16

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

UBIWARE Deliverable D1.3:
Workpackage WP2:
Task T1.2 w2:

2 UbiBlog — Managing Distributed
Resource Histories

In UBIWARE, every resource is represented by a vei® agent. Among major
responsibilities of such an agent is monitoring ttendition of the resource and the
resource’s interactions with other components efdyisstem and humans. The beliefs storage
of the agent will, therefore, naturally include thistory of the resource, in a sense “blogged”
by the agent. Obviously, the value of such a resouistory is not limited to that particular
resource. A resource may benefit from the inforomatcollected with respect to other
resources of the same (or similar) type, e.g. sit@ation which it faces for the first time
while other may have faced that situation beforésoA mining the data collected and
integrated from many resources may result in disgpef some knowledge important at the
level of the whole ubiquitous computing system.calable solution requires mechanisms for
inter-agent information sharing and data mining integrated information which would
allow keeping the resource histories distributethaut need to copy those histories to a
central repository.

During WP2'’s Year 1 (th&haringphase), needed mechanisms were designed foriedfect
and efficient sharing of information between diffet agents, e.g. representing different
resources. S-APL was used as the communicatiorebl@inguage, which has enabled:

« One agent to query another agent for some infoomatising the query constructs
similar to that of SPARQL but with even wider rarafgossible filtering conditions

* One agent to inform another agent, i.e. to proabtipush some information of any
complexity.

e One agent to request another agent to perform sactiens, either an atomic
behavior or a complex plan involving a set of ridesl atomic of complex behaviors.

As to UBIWARE 1.0 platform, the development conttibn of WP2 consists of:

© 2008 UBIWARE Deliverable D1.3 17

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

* A set of standard S-APL models: Communication.lnete Communication.Informer,
Communication.Follower and Communication.Believssg below).

« A set of enhancements to the standard RABs MessagefBehavior and
MessageReceiverBehavior which are used for messexghange between
UBIWARE agents (see Katasonov , 2008)

« Some modification in the behavior engine to enabl@ementation of the approach.

Agent communication in S-APL

IEEE FIPA developed a set of standard specificatifim agent communication including
ACL for message envelopes and SL for contents. &\ihie standard position of ACL is
unguestionable, the value of SL is less certaithdlgh meaning "semantic language”, SL is
not based on W3C’s RDF semantic data model. Ratblerfollows the traditional agent
design approaches where the agents’ beliefs arsdatiso the atoms of their communications
are nary predicates. However, N-ary predicatesatanmake the meaning of data as explicit
as RDF triples do. Also, only the whole messagelmafinked to an ontology, as compared
to the ability of RDF to link every individual resice to its own ontology, if needed.

In this section, we describe how we use S-APL as tbntent language in agent
communications. Since one of the important commatnie actions is querying for
information, this role of S-APL overlaps with thait SPARQL. The problem with SPAQRL
is that while being a language for querying RDFisinot RDF itself. Also obviously, a
content language for agent communication must stppiher types of communicative
actions, for example, request for action. For thesssons we did not considered using
SPARQL as such. Rather, when designing S-APL wided into it features analogous to
most of the SPARQL’s ones (see Chapter 1).

The beliefs storage of an S-APL agent can be quienxernally by other agents, of course
subject to security and other policies. The corea ofuery is the same as if the agent itself
would query its beliefs to check the premises alile, i.e. it can use all the constructs
allowed for the left side of => (see Chapter 1)e Tore of the query has to be wrapped with
sapl:l sapl:want { {sapl:You sapl:answer {..quef\}}. The use of "sapl:l sapl:want” may
look unnecessary. However, this allows distinguighbetween sapl:l sapl:want {...} and
e.g. :Boss sapl:want {...}, i.e. mediating a wishamother agent. Both cases may require
exactly the same action to be taken, however, nff@gtadifferently on whether the agent
will comply or not.

As the response, the agent has to send the matgohihgf its belief storage, or, if no match,
the query itself wrapped with sapl:l sapl:doNotBe& {...}. Below, we list two small S-APL
programs that an agent has to load in order tobbeta be queried this way. The first one,
Listener.sapl, instructs the agent to continuousBit for incoming messages marked
with "SAPL” ontology. The additional rule of theqgram adds for every incoming request
an additional existsWhile statement so that thei@stjis removed after 5 seconds if no rule
has taken it for processing.

© 2008 UBIWARE Deliverable D1.3 18

h»
b

F Sadaa
- =

» —
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

[*Listener.sapl*/

{sapl:l sapl:do java:ubiware.shared.MessageReceiverBehavior}

sapl:configuredAs {p:matchOntology sapl:is "SAPL".

p:waitOnlyFirst sapl:is false}.

{{{?requestID p:received *} sapl:ID ?id. sapl:Now sapl:is ?time.
sapl:l sapl:doNotBelieve {?x sapl:existsWhile *. ?x sapl:hasMember ?id}
}=>{

{?id sapl:is sapl:true} sapl:existsWhile

{sapl:Now sapl:is ?newtime. ?newtime < ?time+5000}
}
} sapl:is sapl:Rule

The second program, Informer.sapl, implements thegssing of a query and sending back
the response (we do not include here any accesstonother checks, just the basic logic).
As can be seen, the logic of moving from queryesponse is as simple as {?query sapl:is
sapl:itrue} -> {?requestID :response {?query saplsapl:itrue}}. The parameter
p:cleanContent of MessageSenderBehavior set todauses removing from the response
residual wrappings like sapl:Optional, sapl.or, a®ll as filtering statements and
sapl:hasMember/sapl:memberOf statements. Wrappitige sapl:All, sapl:OrderBy
disappear automatically as soon as their objeetsatrvariables anymore.

I*Informer.sapl*/
{{?requestID p:received
{p:sender sapl:is ?agent. p:conversation|D sapl:is ?conviID.
p:content sapl:is
{sapl:l sapl:want {sapl:You sapl:answer ?query}}}.
sapl:l sapl:doNotBelieve {sapl:l :handle ?requestID}
}=>{
sapl:l :handle ?requestID.
{?query sapl:is sapl:true} ->
{?requestID :response {?query sapl:is sapl:true}. ?requestID :result true}
; sapl:else {?requestID :response {sapl:l sapl:doNotBelieve ?query}.
?requestID :result false}.
{?requestID :response ?response. ?requestID :result ?result
}=>{
{sapl:l sapl:do java:ubiware.shared.MessageSenderBehavior}
sapl:configuredAs
{p:receiver sapl:is ?agent. p:ontology sapl:is "SAPL".

p:content sapl:is ?response. p:performative sapl:is inform.

© 2008 UBIWARE Deliverable D1.3 19

h»
b

sz T
it Py
L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

p:cleanContent sapl:is ?result. p:addBeliefs sapl:is false.
p:conversationlD sapl:is ?convID.
sapl:End sapl:remove {?requestID * *. sapl:| :handle ?requestiD}}}

}

} sapl:is sapl:Rule

For example, let's assume that there is an agahtlistener and Informer programs loaded
and having the following beliefs in its storage:

:factoryl :hasSpace :room3, :room1, :room2.
:room1 :hasTemperature 25; :hasHumidity 80.
:room2 :hasTemperature 20; :hasHumidity 90.
{?room :hasTemperature 30} =>

{sapl:l ex:sendAlarm {:source sapl:is ?room}}

Then, the following queries (only the core is shpwiil get the corresponding responses:

* (Q) :factoryl :hasSpace :rooml
(R) :factoryl :hasSpace :room1l

* (Q) {{:factoryl :hasSpace ?room} sapl:All ?room}dzrderBy ?room
(R) :factoryl :hasSpace :rooml. :factoryl :hasSpawn?2. :factoryl :hasSpace :roo
m3

e (Q) :factory2 :hasSpace ?room
(R) sapl:l sapl:doNotBelieve {:factory2 :hasSpaoceon}

e (Q) {factoryl :hasSpace <?room. {?room :hasTempeeat ?temp} sapl:is
sapl:Optional} sapl:All ?room

(R) .factoryl ‘hasSpace ‘room2. :room2 ‘hasTempezat
20. :factoryl :hasSpace :room3. :factoryl :hasSpacenl. :rooml :hasTemperature
25

* (Q) {{{?r1 ‘hasTemperature ?temp. ?temp > 24} sapl:
{?r2 :hasHumidity ?hum. ?hum > 85}} sapl:All ?risapl:All ?r2
(R) :room2 :hasHumidity 90. :room1 :hasTemperafiie

o (Q) ?left => ?right. ?left sapl:hasMember {:roorhAsTemperature ?t}
(R) {?room :hasTemperature 30} => {sapl:| ex:serabAh {:source sapl:is ?room}}

The last of the example queries above demonsteatesportant feature of S-APL — ability
of agents to exchange rules. Therefore, an agenasia another agent how that will react if
some situation occurs. Alternatively, an agent magry another agent if that knows a plan
leading to achieving a goal. The above example @dsoonstrates a specific convention of S-
APL - the data against which a query is evaluated e implicitly universally quantified
through use of wvariables. This is why the query foa specific
room "{;room1l :hasTemperature ?t} => {}” yields aiversal rule "{?room :hasTemperature
30} => {}".

The next simple program below, Believer.sapl, g the agent to add to its beliefs
everything that it receives in messages with thétm” performative. This program can, for

© 2008 UBIWARE Deliverable D1.3 20

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

example, be used by an employee agent which is abadhto comply with any of its boss’
statements. Some similar code is also needed fagaent that queried some information
from an Informer (see above) to add the respongts tbeliefs. Note that substituting the
line "?content saplis saplitrue” with something keli "{?content sapl:is
sapl:true} :accordingTo :John” will lead to anotheffect: instead of believing into the
information provided, the agent will record it wpsgal as "John thinks that ...”.

[*Believer.sapl*/
{ {?requestID p:received {p:content sapl:is ?content.
p:performative sapl:is inform}
}=>{
sapl:l sapl:remove {?requestID p:received *}.

?content sapl:is sapl:true

}

} sapl:is sapl:Rule
Due to the fact that in S-APL there is no princigidlerence between data and program code,
the content of the message to a Believer agentidoalude commitments, unconditional or
conditional, and the Believer would comply and perf those actions. In this sense, the
Believer with the code as above is more like aeslaly controlled by its master. In less
dependent settings, agents can request other agep&form some actions, corresponding
either to a RAB or an abstract capability. The aofréhe request is the same as in a normal
unconditional commitment, only with sapl:You in gdaof sapl:l, and in addition wrapped
with sapl:l sapl:want: sapl:l sapl:want { {sapl:Yeapl:do ...} sapl.configuredAs {...} }. The
small program below, Follower.sapl, is to be uskentby an agent to perform actions
requested in this way (again, only the basic legjimcluded without access control or other
checks).

[*Follower.sapl*/
{ {?requestID p:received {p:content sapl:is {
sapl:l sapl:want {{sapl:You sapl:do ?action}
sapl:configuredAs ?params}}}
}=>{
sapl:l sapl:remove {?requestID p:received *}.
{sapl:l sapl:do ?action} sapl:configuredAs ?params
}

} sapl:is sapl:Rule

Use of S-APL as a communication language is quataral because the communication over
S-APL is easily organized with S-APL programmingrad. An obvious additional benefit is

the level of integration that in no-effort is thachieved between the communication and the
agent behavior prescriptions. For example, an agantquery another agent for behavior
rules — either to understand how that will react dertain situation occurs or to learn itself

© 2008 UBIWARE Deliverable D1.3 21

TEKES D1.3: UBIWARE Platform Prototype v.1.0

how to achieve a certain goal. Similarly, agenta exchange commitments, plans, or
basically belief structures of any complexity. Temtion, in our current implementation the
S-APL repositories (see Chapter 1) are manageddeynta with Listener and Informer

programs loaded and answering queries of the typesépl:belongs <some_sapl_program>".

© 2008 UBIWARE Deliverable D1.3 22

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

UBIWARE Deliverable D1.3:
Workpackage WP3:
Task T1.3 wa3:

3 SURPAS — Smart Ubiquitous Resource
Privacy and Security

The security is often seen as an add-on featueesystem. However, in many systems (and
UBIWARE is one of them), the system remains nothingre but a research prototype,
without a real potential of practical use, untiladequate security infrastructure is embedded
into it. The main objective of this work packagehs design of the SURPAS infrastructure
for policy-based optimal collecting, composing, figaring and provisioning of security
measures in multi-agent systems like UBIWARE. SUBHaIllows the general UBIWARE
vision — configuring and adding new functionality the underlying industrial environment
on-the-fly by changing high level declarative dgstons. Regarding security, this means
that SURPAS will be able of smoothly including neamd reconfiguring existing, security
mechanisms, for the optimal and secure state dJBI®VARE-based system, in response to
the dynamically changing environment. The optimiates is always a tradeoff between
security and other qualities like performance, fiorality, usability, applicability and other.

During WP3's Year 1 (théAccessphase), WP3 developed an infrastructure for semant
access control in UBIWARE, with S-APL used for dfieation of access control policies.
Such policies may prohibit or allow an operationao€ertain class to be performed by an
agent of a certain class on some resource of aicetass.

As to UBIWARE 1.0 platform, the development contitibn of WP3 consists of:

e Introducing into S-APL and the behavior engine twscept of a meta-rule (see
Chapter 1).
» Standard S-APL models Security. SBACReasoner andn@oritation.Ontology.

3.1 Ontological modeling of operations

Semantics-based access control (SBAC) in UBIWARfrsts from following observations:

© 2008 UBIWARE Deliverable D1.3 23

3
o

o
1]

D1.3: UBIWARE Platform Prototype v.1.0

From the basic S-APL axiom, an operation (a commitiio executing a RAB, or a
communicative action) is just a belief structurgefat’s mental attitude). Therefore, it
is possible to specifgn S-APL queryas those used in the left side of rules in WP1 or
as those sent from between agents wrapped as saplvant {sapl:You sapl:answer
<query>} in WP2), which can be matched against Girtd if the agent has such a
mental attitude.

Such a query, when universally quantified by usiagables, presents a pattern for
matching againsh classof such mental attitudes and, therefore, can leel as the
definition of this class.

It is common to have an inheritance (class-subglassarchy of operations. In terms
of S-APL queries, the definition of a subclass liguanly introducessome additional
restriction on the variableased in the definition of the super-class.

In UBIWARE, using SBAC assumes that the inheritaniegarchy of operations is modelled
in a following fashion:

Cons

The top of the hierarchy is defined using <classpl:& <query>. Normally, <query>
has only one (compound) statement which identifiesmental attitude in question.
The top-hierarchy class is not supposed to be useaublicy definitions, only its
subclasses.

The subclasses are defined using <subclass> rd@lassOf <class>;
owl:Restriction <extension to query>. Starting frtme second from the top class, the
variables ?subject and ?object must be includedtive query, so that after evaluating
the query it will be known who is the subject (aftand who is the object of the
operation.

ider the following example:
:ActionCommitment sapl:is {
{sapl:l sapl:do ?behavior} sapl:configuredAs ?parameters
}
:Action rdfs:subClassOf :ActionCommitment;
owl:Restriction {sapl:| owl:sameAs ?subject. sapl:| owl:sameAs ?object}.
:Print rdfs:subClassOf :Action;

owl:Restriction {?behavior = :Print. ?parameters sapl:hasMember {p:print
sapl:is ?print}}.

:Swear rdfs:subClassOf :Print;

owl:Restriction {:BadWord sapl:is ?word. sapl:true = "contains(?print,?word)"}.

Here, we define some simple ontology the top-atdsshich is :ActionCommitment and the
first subclass that can be used in SBAC statemen#sction. :Action adds to the basic query
of :ActionCommitment two additional statements whi@are supposed to initialize

both
actor

?subject and ?object variables to the URhefdgent (it is considered to be both an
and the object in this case).

© 2008 UBIWARE Deliverable D1.3 24

h»
b

S >
Fie = .

- LS80
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

Then, a specific action :Print is defined by pwgtenrestriction on the variable ?behavior so
that it has to be equal to “:Print”. The definitioh:Print also bring forward the text that is to
be printed and puts it into an additional variaBferint. Finally, even more specific
action :Swear is describing that :Swear is :Prihere ?print contains one of the words that
are known to be bad. Note that this requires artiaddl query statement “:BadWord
sapl:is ?word” and assumes that the agent mays@we beliefs of this form. Obviously, the
practical idea behind this example is that we maptwo prohibit swearing, so that the agent
will never be able to print out anything that cansaany bad words (see next subsection).

The next example is the content of Communicatioto@gy model, which defines the
hierarchy of communicative actions between agehése(the prefix com: is defined as
<http://www.ubiware.jyu.fi/communication#>):

[*Classes of communicative actions*/
com:Message sapl:is {
?messagelD p:received { p:sender sapl:is ?subject. p:performative sapl:is ?performative.
p:content sapl:is ?content. p:ontology sapl:is ?ontology }
}
com:SpeechAct rdfs:subClassOf com:Message;
owl:Restriction {sapl:l owl:sameAs ?object}.
com:ProactiveSpeechAct rdfs:subClassOf com:SpeechAct;
owl:Restriction { ?content sapl:hasMember {sapl:l sapl:want {
{sapl:You ?actType ?actContent}
sapl:or

{{sapl:You ?actType ?actContent} * *}

1}
com:Query rdfs:subClassOf com:ProactiveSpeechAct;
owl:Restriction {?actType = sapl:answer}.
com:Order rdfs:subClassOf com:ProactiveSpeechAct;
owl:Restriction {?actType = sapl:do}.
com:Persuade rdfs:subClassOf com:ProactiveSpeechAct;

owl:Restriction {?actType = sapl:add}.

Note that ?subject of a communicative actions swho has sent the message, while ?object
is one who received it, i.e. the agent in questidme class com:Query corresponds to the
communicative actions that an Informer (see Cha@lehandles. The class com:Order
corresponds to the communicative actions that dowel handles, while the class
com:Persuade to the communicative actions thatliavge handles. Obviously, the practical
idea here is that we can now define SBAC policlest will restrict what agents answer

© 2008 UBIWARE Deliverable D1.3 25

sz T
e £

- £ =
TEKES D1.3: UBIWARE Platform Prototype v.1.0

gueries or follow orders of what other agents -haitt the need to modify the models
Informer, Follower or Believer, so they can remasnsimple as described in Chapter 2.

3.2 Specifying access control policies

SBAC policies in UBIWARE are specified using sSim@BAC statements (here, prefix sbac:
is defined as <http://www.ubiware.jyu.fi/sbac#>):
» {<class of subjects> <class of operations> <cldssbgects>} sapl:is sbac:Prohibition.
» {<class of subjects> <class of operations> <cldssbgects>} sapl.is sbac:Privelege.

The effect is then that any mental attitude is reedoif there is a Prohibition that covers it
while there is no Privelege that covers it. FordélRample of prohibiting swearing, one could
define the domain ontology and the policy as fohow

sapl:l owl:sameAs fg:Bill.

fg:Bill rdf:type fg:Boss.

fg:John rdf:type fg:Employee.
fg:Boss rdf:subClassOf fg:Employee.

{fg:Employee :Swear fg:Employee} sapl:is shac:Prohibition.

Such policy implies no employee is allowed to swéais also possible to use * in place of
the subject and the object leading to that thecgaliill apply to any resource.

For the example about communicative actions, omddatefine the domain ontology and the
policy as follows:

sapl:l owl:sameAs fg:John.

fg:John rdf:type fg:Employee.

fg:Bill rdf:type fg:Boss.

fg:Boss rdfs:subClassOf fg:Employee.

bill owl:sameAs fg:Bill.

{* com:ProactiveSpeechAct *} sapl:is sbac:Prohibition.
{fg:Boss com:Query *} sapl:is sbac:Privelege.
Such a policy defines that the agent in questiostmot comply with any proactive speech

act, with the only exception of a com:Query origethfrom an agent belonging to the class
fg:Boss.

The SBAC run-time operation is implemented thenobg rule and one meta-rule in the

standard Security.SBACReasoner S-APL model (hasbé¢o loaded by the agent).
SBACReasoner must be used together with RDFSReasonthat the class hierarchy of

© 2008 UBIWARE Deliverable D1.3 26

\F A" N
Fie =t

L —
TEKES D1.3: UBIWARE Platform Prototype v.1.0

resources will be inferred. So, in the first exaenpbove, RDFSReasoner is needed to infer
that the agent is question is an Employee, beddasg is a subclass of Employee.

{
//Make the owl:Restriction of actions full by adding the owl:Restriction of their super-classes
{
{{
?X owl:Restriction ?own. ?X rdfs:subClassOf ?C.
?C owl:Restriction ?super. ?super sapl:hasMember ?id.
sapl:l sapl:doNotBelieve {?own sapl:hasMember ?id}
} sapl:All ?X } sapl:All ?2C
}=>{
?own sapl:hasMember ?super
}

} sapl:is sapl:Rule.

{

//IRemove a mental attitude if there is a Prohibition that covers it while there is no Privelege that
covers it

{
{

{?no_subject ?no_action ?no_object} sapl:is sbac:Prohibition.
{?no_action sapl:is ?base. { ?base sapl:is sapl:true } sapl:ID ?id}
sapl:or {?no_action rdfs:subClassOf ?act_root.
?act_root sapl:is ?act_base.
{ ?act_base sapl:is sapl:true } sapl:ID ?id.
?no_action owl:Restriction ?act_restriction.
?act_restriction sapl:is sapl:true}.
{?subject = ?no_subject} sapl:or {{?subject owl:sameAs ?no_subject}
sapl:or {?subject rdf:type ?no_subject}}.
{?0object = ?no_object} sapl:or {{?object owl:sameAs ?no_object}
sapl:or {?object rdf:type ?no_object}}.
sapl:I sapl:doNotBelieve {
{?yes_subject ?yes_action ?yes_object} sapl:is sbac:Privelege.
{?subject = ?yes_subject}
sapl:or {{?subject owl:sameAs ?yes_subject}
sapl:or {?subject rdf:type ?yes_subject}}.

{?0object = ?yes_object} sapl.or {{?object owl:sameAs ?yes_object}

© 2008 UBIWARE Deliverable D1.3 27

B
I
i

o
1]

D1.3: UBIWARE Platform Prototype v.1.0

sapl:or {?object rdf:type ?yes_object}}.
{?no_action = ?yes_action}
sapl:or {{?no_action rdfs:subClassOf ?yes_action}
sapl:or { ?yes_action rdfs:subClassOf ?no_action.
?yes_action owl:Restriction ?restriction2.

?restriction2 sapl:is sapl:true}}

}
} sapl:All ?id
}=>{
sapl:l sapl:erase ?id.
{sapl:l sapl:do :Print} sapl:configuredAs {
p:print sapl:is "Security has blocked a case of ?no_action"}
}

} sapl:is sapl:MetaRule.

© 2008 UBIWARE Deliverable D1.3 28

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

UBIWARE Deliverable D1.3:
Workpackage WPA4:
Task T1.3 w4

4 Self-Management, Configurability and
Integration

UBIWARE aims to be a platform that can be appliaddifferent application areas. This
implies that the elements of the platform havedabjustable, could be tuned or configured
allowing the platform to run different businessrs#os in different business environments.
Such flexibility calls for existence of a sophistied configuration layer of the platform. All
building blocks of the UBIWARE platform, i.e. sofane agents, agent behaviors, resource
adapters, etc, become subject to configurationtf@nother hand, a flexible system should
have a long lifespan. Hence, the platform shoulvagextensions, component replacements,
and component adjustments during the operation .tifftf@s work package aims at
introducing configurability as a pervasive charaste of UBIWARE and developing the
technology which will systemize and formalize tf@ature of the platform.

During WP4'’s Year 1 (th€omponenphase), we developed solutions for configurabibty
basic UBIWARE elements such as resource adapterfRansable Atomic Behaviors, with
S-APL used as the tool for both describing the igumétion and for applying it.

As to UBIWARE 1.0 platform, the development conttibn of WP4 consists of:

e« A set of RABs - TextTableReaderBehavior, @ SQLReadbe¥ior,
ExcelReaderBehavior, XmIReaderBehavior, XmIWritdi®e&or - as a part of the
general approach towards resource adaptation E®$4.1)

« Standard S-APL models Configurability. RABConfigunasee Section 4.2)

4.1 Resource adaptation

Roughly speaking, resource adaptation involves sstieg data from an industrial resource
(either physical through sensors or a digital keatabase) in its own proprietary format and
transforming this data into an ontological S-APlegentation. The UBIWARE’s general
approach towards configurable resource adaptatidepicted in Figure 4.

© 2008 UBIWARE Deliverable D1.3 29

TEKES D1.3: UBIWARE Platform Prototype v.1.0

Original
Data =

Standard RAL

Figure 4. UBIWARE approach to resource adaptation

The resource adaptation is performed in two phases:

» First, the original data from the resource is tfamsed into an S-APL representation
based orthe ontology of the data model the original data. This transformation is
performed by a Reusable Atomic Behavior (RAB).

* Second, the data from the data-model-ontology S-AsPfransformed into the final
domain-ontology S-APL using S-APL own means, iées.

At present, most of the data in the industrial eapions is encoded using eithable data
model (relational databases, comma-separated files,oetEML tree data modelUbiware
1.0 provides a set of standard transformation RAB&luding TextTableReaderBehavior
(file), SQLReaderBehavior (relational database)cdi#ReaderBehavior (MS Excel table),
and XmIReaderBehavior (XML file). These 4 RABs alilg cover a large share of industrial
adaptation cases.

TextTableReaderBehavior, SQLReaderBehavior and|ReeelerBehavior are different in a
sense that they read different media, but all Bowolthe table data modebnd produce
similar output. The ontology of tables consistsso€h concepts asble, row andcolumn.
All 3 RABs produce the following output structutet is based on this ontology:

<input name> :table {
<row number> :row {

<column name or number> :column <value>.

}

XmlReaderBehavior follow th¥ML tree data modelThe ontology of XML trees consists of
such concepts asee, branch, leaf, tag, and attribute. XmIReaderBehavior produces the
following output structure that is based on thisotogy:

<input file name> :tree {
{<child number> :tag <tag name>} :branch {
{<child number> :attribute <attribute name>} :leaf <attribute value>.

<child number> :leaf <literal value>.

© 2008 UBIWARE Deliverable D1.3 30

sz T
e £
- £ =

TEKES D1.3: UBIWARE Platform Prototype v.1.0

{<child number> :tag <tag name>} :leaf :empty.

{<child number> :tag < tag name>} :branch {

}

}
}

As can be seen, XML tree is described as a hiecktructure of branches and 3 types of
leafs: XML attributes, literal nodes, and emptynedmts (e.g.
). Child numbering is
inside one given branch.

Note UBIWARE 1.0 also includes XmlWriterBehavior ieh performs the transformation in
the opposite direction. Given a S-APL structureabsve, it produces corresponding XML
string. Obviously, the whole resource adaptati@tess in Figure 3 may be performed in the
opposite direction - we transform some domain-agplbased S-APL into XML-tree-based
S-APL and then apply XmlWriterBehavior to get theaf XML document. We use this
approach in the industrial cases to produce HTMeérfaces.

The transformation between data-model ontology $-ARd domain ontology S-APL is an
easy and straightforward task. Below is an exarfijgsed on Fingrid case, but not the exact
code):

{
* :table {?rowld :row { ALARMTEXT :column ?text. TIME :column ?time
AORMASKGRP?2 :column ?area.
}
}
?year sapl:expression "substring(?time,6,10)".
}=>{
{
fg:EventHistory fg:hasEvents {{
fg:alarm :is ?text. fg:time :is ?time.
fg:year :is ?year. fg:area :is ?area.
} fg:id ?rowld}.
} sapl:All ?rowld .
}

Since the resource adaptation is performed in thases, each of the phases can be subject
to (re-)configuration. The S-APL transformation igtris configurable by default since
modifiability is an inherent S-APL feature. The belor of the transformation RAB can be
adjusted through the mechanism described in thesudssection.

© 2008 UBIWARE Deliverable D1.3 31

sz T
e £

- £ =
TEKES D1.3: UBIWARE Platform Prototype v.1.0

4.2 Configurability of atomic behaviors

In UBIWARE, the meta-rule mechanism, which has bewtmally introduced for realizing
security access control policies, is also used donfigurability of Reusable Atomic
Behaviors (RABs) (Actually the approach works foryainconditional commitments - also
to complex actions not having “java:” or “” namesgs, but we will speak here about
RABS).

When using this approach, the configuration sedtiog RABs are specified using the
following structure (here, prefix cfg: is defineds a<http://www.ubiware.jyu.fi/
configurability#>):
<RAB> cfg:configuredAs {

<parameter to override or add> sapl:is <value>.

<parameter to add if not defined> cfg:isDefault knez.

}

The idea is that any call of this <RAB> will be thenodified - meaning that list of
parameters specified in the call itself will beemded / overridden. Any parameter specified
with predicate sapl:is will be overridden (or addédvas not given), while any predicate
specified in with cfg:isDefault will be added orifyit was not given in the call itself. Note
that the RAB configuration settings are specifieding cfg:configuredAs, not
sapl:configuredAs (same local name, different ngpaess).

Consider the following example of a RAB configuoati
java:ubiware.shared.TextTableReaderBehavior cfg:configuredAs {
p:selectColumns cfg:isDefault "1 3".
p:encoding sapl:is "UTF-16".
1.
Then, if the call to this RAB was like:
{sapl:l sapl:do java:ubiware.shared.TextTableReaderBehavior} sapl:configuredAs {
p:input sapl:is “test.csv”.
p:columnSeparator sapl:is ",|\\s+".
p:encoding sapl:is "default".
}
The actual call will be performed as:
{sapl:l sapl:do java:ubiware.shared.TextTableReaderBehavior} sapl:configuredAs {
p:input sapl:is “test.csv”.
p:columnSeparator sapl:is ",|\\s+".
p:encoding sapl:is "UTF-16".

p:selectColumns sapl:is "1 3".

© 2008 UBIWARE Deliverable D1.3 32

h»
b

F Sadaa
- =

» —
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

In result, the assumed encoding of the CSV docuilpeing loaded with be modified to
Unicode, as well as the columns that are includéealthe result will be reduced to only first
and third (default value is all). Note that in teisample, if the RAB call was specifying
p:selectColumns itself, the value would not be geah

The run-time operation of this approach is thenlem@nted then single meta-rule in the
standard Configurability.RABConfigurator S-APL modeas to be loaded by the agent):

{
{
{sapl:l sapl:do ?action} sapl:configuredAs ?config.
?action cfg:configuredAs ?default.
{?default sapl:hasMember {?param sapl:is ?value}.
sapl:I sapl:doNotBelieve {?config sapl:hasMember {?param sapl:is ?value}}}
sapl:or {?default sapl:hasMember {?param cfg:isDefault ?value}.
sapl:I sapl:doNotBelieve {?config sapl:hasMember {?param sapl:is *}}}
}=>{
{
sapl:l sapl:remove {?config sapl:hasMember {?param sapl:is *}}.
{
sapl:l sapl:add {?config sapl:hasMember {?param sapl:is ?value}}
} sapl:All ?value
} sapl:All ?param
}

} sapl:is sapl:MetaRule.

© 2008 UBIWARE Deliverable D1.3 33

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

UBIWARE Deliverable D1.3:
Workpackage WP5:
Task T1.3 w5:

5 Smart Interfaces: Context-aware GUI
for Integrated Data (4i technology)

This workpackage studies dynamic context-aware AgehRluman interaction in
UBIWARE, and elaborates on a technology which werro as 4i (FOR EYE technology).
From the UBIWARE point of view, a human interfacejust a special case of a resource
adapter. We believe, however, that it is unreasentd embed all the data acquisition,
filtering and visualization logic into such an atl&p Instead, external services and
application should be effectively utilized. Thenmefpthe intelligence of a smart interface will
be a result of collaboration of multiple agentse tuman’s agent, the agents representing
resources of interest (those to be monitored orfmdrolled), and the agents of various
visualization services. This approach makes humgerfaces different from other resource
adapters and indicates a need for devoted resefr@thnology will enable creation of such
smart human interfaces through flexible collabaratof an Intelligent GUI Shell, various
visualization modules, which we refer to as MetaRter-services, and the resources of
interest.

During the Project Year 1, the work in this WP vd#velop the general principles of the 4i
approach and will aim at developing an appropi@itd Shell.

The WP development tagkask T1.2_wS5or the Year 1 is concentrated on development of a
simple MetaProvider for context dependent resowisaalization, development of initial
GUI-Shell able to communicate with the MetaProvider

5.1 Background

Now, when human becomes very dynamic and proacdgeurce of a large integration
environment with a huge amount of different hetermpus data, it is quite necessary to
provide a technology and tools for easy and handydn information access and
manipulation. Semantically enhanced context-depgndenultidimensional resource
visualization (Khriyenko, 2007a, Khriyenko, 2007kprovides an opportunity to create

© 2008 UBIWARE Deliverable D1.3 34

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

intelligent visual interface that presents relevanformation in more suitable and
personalized for user form. Context-awareness atelligence of such interface brings a
new feature that gives a possibility for user torge just raw data, but required information
based on a specified context.

Now it has become evident that we cannot separsiiivaspects of both data representation
and graphical interface from interaction mechanisinas help a user to browse and query a
data set through its visual representation. FolgwiGUN-Resource centric approach
(Kaykova et al., 2005), let us consider user izt for context-based resource access and
contextually related information retrieving. Theattenging task is to create a visual
interface that provides integrated information fromriety of information providers in
context-dependent way. Following new technologicaids, it is time to start a new stage in
user visual interface development — a stage of sBobased context-dependent
multidimensional resource visualization. Presemtedechnology is a step to achieve this
goal Khriyenko, 2007x

4i (FOR EYE) is an ensemble of GUN Resource Platfdntelligent GUI Shell (smart
middleware for context dependent use and combimatdd a variety of different
MetaProviders depending on user needs) and Metalergy visualization
modules/platforms that provide context-dependeieréid representation of resource data
and integration on two levels (information/dateegration of the resources to be visualized
and integration of resource representation viewh wihandy resource browsing) (see Figure
5). Context-awareness and intelligence of suchrfexte brings a new feature that gives a
possibility for user to get not just raw data, bequired integrated information based on a
specified context. GUI Shell allows user dynamidtsiwng between MetaProviders for more
suitable information representation depending aromtext or resource nature. From other
side, MetaProvider plays fore main roles:

- Context-aware resource visualization module twasents information regarding to

specified context in more suitable and personalfzedser form;

- Interface for integrated information visualizatiwith intelligent context-aware filtering

mechanism to present only relevant information, idimg a glut of unnecessary

information;

- Visual Resource Platform that allows resourceistegfion, search, access and

modification of needed information/data in a spatceegistered resources;

- Mediator that facilitates resource to resourc2RRcommunication.
Such switching and filtering process is a kind isiial semantic browsing based on semantic
description of the context and resource properties.

© 2008 UBIWARE Deliverable D1.3 35

D1.3: UBIWARE Platform Prototype v.1.0

!
S

p
/
h

!
y

;

MetaProviders

Register of
MetaProviders

___________ 28
Context-dependent retrieving
of appropriate MetaProviders

~

odo.d |lemxa3u0)

GUN-Resource
1 ! 7 % i
IRequest (physical condition)1 A

____________ S Y GUN Platform
“Response (fire, forest work)l /"=
<Reaquest (weather condition)

Figure 5- Intelligent Interface for Integrated Informati¢hi technology) Khriyenko, 20073

Now, when unlimited interoperability and collabéoat demand data and information
sharing, we need more open semantic-based apptisathat are able to interoperate and
collaborate with each other. Ability of the systemperform semantically enhanced resource
search/browsing based on resource semantic desaoriptings a valuable benefit for today
Web and for the Web of the future with unlimiteda@amt of resources. Proposed resource
visualization approach can find a place and camutbzed in various visual systems and
especially in next-generation human-centric opevirenments for resource collaboration
with enhanced semantic and context-based visualires browsing. It can be considered as
a new valuable extension of text-based Semanticidlédi to Context-based Visual
Semantic MediaWiki. This is a good basis for thdfedent business, production,
maintenance, healthcare, social process modelsareand multimedia content management.

5.2 Smartinterface

As mentioned above, Smartinterface is presentedsby-Shell (central browser of the
system) and remote distributed visualization moslulletaProviders.

© 2008 UBIWARE Deliverable D1.3 36

h»
b
9

/

- .
- . ==

TEKES D1.3: UBIWARE Platform Prototype v.1.0

5.2.1 GUI-Shell

GUI-Shell is presented by Html-page and remoteesgpart that plays role of search engine
and performs all necessary complex calculationsnNtdml-page contains five areas (see
Figure 6):
» Resource Search AreBased on keywords, which describe a resource (iylpss of
resources) and a content of a resource, user gjstécorresponding resources;
= Resource Description Areddere, properties of current (currently selectexbource
are displayed to the user. In current version effilototype, user may just observe
resource properties and cannot make any chandksrtg
= Visualization Context AregHere system provides a list of visualization eods for
currently visualized resources;
= MetaProviders AreaDepending on chosen resource visualization congexist of
appropriate visualization modules (MetaProvidesg)resented for user in this area;
» Resource Visualization Aredhis is an area, where visualization page of ehos
MetaProvider is loading and performs.

llocalhost:B080/ Smartinterface, - Windows Internet Explorer

@F\ + & hitep:ffiacahost :E0a0) smartinterfacef = [o [[vs Seaca o5l
§F 4[] http:focaihost ie0B0/Smantinterface By B - i eaas ek -

4i (FOR EYE) TECHNOLOGY

Intelligent Interface for Integrated Information

RESOURCE RESOURCE VISU

reln

JyufiiaiOntoGroun Copyright ©:2007 industral Onfologies Group: »'J'ﬂ rights reseved.
1
Bane [T R Cocdinanst

T
L]

1 1
Resource Description Area MetaProviders Area

Resource Visualization Area S
~ Resource Search Area Visualization Context Area ="

Figure 6— GUI-Shell.

© 2008 UBIWARE Deliverable D1.3 37

N
J;;éff

TEKES D1.3: UBIWARE Platform Prototype v.1.0

Another important part of the GUI-Shell is servartpof it. As a search engine, it performs
several tasks:
» based on keyword of resource type and resourcerbdescriptions, returns a list of
matched resource back to Html-page;
= parses Ontology and returns a list of correspondientlization contexts relevant for
class of selected resource;
= returns a list of appropriate MetaProviders basedpecified resource (resource class)
and visualization context.

Doing the first year prototype, we decided to usBlLXfiles for storing resource’s,
visualization context’s, MetaProvider's descripsoand for information exchange between
the parts of the system. Below you can see the XMictures we have used:

Resource description:

<resource>

<resld>...</resld> resource id
<resd ass>...</resC ass> class of the resource
<nane>. .. </ nane> resource name
<resTypeDes>
<rtditemr...</rtdltem keywords for resource type (class) description...
</ resTypeDes>
<r esCont Des>
<rcdltenp...</rcdltenmr keywords for resource content description...

</ r esCont Des>
<properties>
<property>
<prop_id>...</prop_id>
<prop_name>. . . </ pr op_nane> other resource properties...
<prop_val ue>...</prop_val ue>
</ property>

</ properties>
</resource>

Resource visualization context description:

<cont ext >
<contld>...</contld> context id
<nanme>. .. </ nane> name of the context
<f or Cl asses>
<cl ass>...</cl ass> set of resource classes for which current visuéira

C context is applicable
</ forCl asses>
</ cont ext >

© 2008 UBIWARE Deliverable D1.3 38

h»
b

F Sadaa
- =

» —
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

MetaProvider description:

<np=> MetaProvider id

<npl d>... </ npld> .
<name>. . . </ nane> name of the MetaProvider

<link>...</link> link to the MetaProvider
<rescont >
<resCl ass>...</resCl ass> class of a resource to be visualized...
<cont > . o
<contld>...</contld> visualization context for the resource...

<in>..</_in> set of required properties of the resource...

e

<ins refProp="..."> set of required properties of context related reses,
<in>..</ _in> which have relation to the subject resource viafPep”
C property...
</ _ins>
< out>...</ out> Out property — in our case it is” resld” (id of asource)
</ cont >

</rescont >
< >

Present structures are built with a purpose to dmlyeconverted to RDF representation
without any logic to be lost.

Following figure (see Figure 7) presents a fulenaction model of the system. On the first
step, user performs search for initial resourcettst through-resource browsing process.
Based on keywords that describe type and contend oésource, GUI-Shell searches
resources via accessible databases or with a HeMetaProviders that have own data
storages. Then, user can choose proper resouroedfiist of found resources. On the second
step, GUI-Shell brows ontology and gets a list @levant resource visualization contexts.
Based on specified context for current resource,l-Shll searches for appropriate
visualization modules (MetaProviders). There are ba number of them (with different
implementations, sets of features, etc.) When iceietaProvider has been chosen, it sets
up communication with GUI-Shell and, based on dptiresource and context, decides
what the relevant resources (in this context) ackvahat data needed for proper visualization
is. On the fourth step, MetaProvider starts toiee& necessary information from own
databases, through communication with GUI-Shelitber MetaProviders. When all (at least
necessary part) the data is collected, MetaProvmforms visualization inrResource
Visualization Areaof the GUI-Shell. Fifth interaction step betweerUl&hell and
MetaProviders is reserved for feedback when Metda@eo informs the GUI-Shell about
selected resource. Thus, whole through-resourcgding cycle ends and starts here.

Current implementation is not based on UBIWARE Agéatform. For the first year
prototype of 41 Technology we decided to check plossibility of newly elaborated idea
implementation and do not base development on degiefopment prototype of UBIWARE
Platform. For the next year we are going to impletnvehole system based on the first year
version of UBIWARE Platform.

© 2008 UBIWARE Deliverable D1.3 39

EKES D1.3: UBIWARE Platform Prototype v.1.0

MetaProviders

Intelligent GUI Shell

=y selected resource

Knowledge Data Base

resources (relevant properties values)

Figure 7— Smartinterface interaction model.

Communication between GUI-Shell and MetaProvideplaned to be organized based on
Agent communication. Further, in Agent based immetad version, MetaProviders
themselves will decide (reason) what is the necgs$ata and will perform retrieving of it
with a help of the GUI-Shell or via own data retirgy channels. But, in current version, to
avoid non-reusable implementation of communicabetween GUI-Shell and visualization
modules, we put a description of input data (newgssesources’ properties) for
MetaProviders to their descriptions. Thus, GUI-8bellects required input data and sends it
through the request on MetaProvider loading.

To organize dynamic search on-the-fly, we applidd\X technology during the GUI-Shell
development. AJAX (Asynchronous JavaScript and XME)a group of inter-related web
development techniques used for creating interactiweb applications. A primary
characteristic is the increased responsivenessirdaadactivity of web pages achieved by
exchanging small amounts of data with the servehifid the scenes" so that entire web
pages do not have to be reloaded each time tharaegd to fetch data from the server. Thus,
this technology allows us to build dynamic Smasdifdace and increase the interactivity,
speed, functionality and usability of it.

5.2.2 MetaProvider — “Member-Of visualizer”

Concerning development of the simple MetaProvidéviember-Of visualizer”) that
visualizes resource in contexts were “member-ofperty plays main role, with the purpose
to visualize it in more natural for human way, wecided to utilize X303 related
technologies. X3D is a royalty-free open standdildsformat and run-time architecture to
represent and communicate 3D scenes and objecig XML. It is an ISO ratified standard
that provides a system for the storage, retriendl playback of real time graphics content

L AJAX technology - http://www.w3schools.com/AJAXfdelt.asp
2 X3D technology - http://www.web3d.org/

© 2008 UBIWARE Deliverable D1.3 40

I\ Val
J
I

1

TEKES D1.3: UBIWARE Platform Prototype v.1.0

embedded in applications, all within an open aegitre to support a wide array of domains
and user scenarios. The development of real-timmanoanication of 3D data across all

applications and network applications has evolvedfits beginnings as the Virtual Reality

Modeling Language (VRML) to the considerably moratune and refined X3D standard. To
provide communication with X3D scene, we utilizeAl§Scene Access Interface) that

allows a programmer to change or build X3D workts] AJAX technology.

In current implementation the only strict requiretndor MetaProvider development is

“callFunction” input parameter. This parameter exmd the name of callback function of the
GUI-Shell which MetaProvider should call and selnel ID of the current (selected) resource
as a parameter.

“Member-Of visualizer” is a simple MetaProvider thasualizes a resource and related to it
resources via “member-of’ upper-property. For exemmembers of an organization (group)
or projects leaded by this organization, projeaistotium or management board members,
etc. MetaProvider is developed based on X3D tedgylto present resource in more
demonstrative for human form. As the one of thd begresentation forms, the image based
representation has been used to visualize a resoBerson is visualized via his/her photo,
organization — via its logo. That is why, requidata for such visualizer is:

= resource ID, image (photo, logo, etc.), image watd height - of subject resource;

= same data set - of other related resources.

“Member-Of visualizer” is a JSP page that gets esgurom GUI-Shell and, based on
incoming parameters, utilizes server part of thed®Reovider to create an appropriate X3D
file to be loaded in imbedded X3D plug-in. Visualizapplies the same visualization
approach for all the resources (see Figure 8).

Figure 8— “Member-Of visualizer” X3D Scengroject consortium).

© 2008 UBIWARE Deliverable D1.3 41

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

This is a 3D scene with an image (photo or logsudiject resource) in the center of it. All
the other related resources (their images) argddcaround of the main one organizing a
circle/disk. Interface allows rotation of the cefdisk to get the best view point. Pointing on
an image causes highlighting of it and makes cpaordent resource selected. The click on
any, related to the subject one, resource reddltgigualization. If the subject resource is
clicked, the circle/disk of related resources penf® slow rotation on 360 degree to present
all the resources to the user. To be able commimigdah GUI-Shell, MetaProvider gets a
callback function in a request from it. Each tinvéhen user selects a resource on the
MetaProvider, this function is called and GUI-Shygts a correspondent resource ID to show
the resource properties and continue resourcelizatian process.

5.2.3 Useful features

With a purpose to make interaction with a Smartfatee more user-friendly and do not
demand a lot of manipulation from user, we defirdefault visualization contexts for
resource classes and MetaProviders for certairaNesiion context. Further, we plane to add
personalization to the prototype and user will ble &0 choose favorite visualization module
(MetaProvider) for certain resource in certain @igation context. This personalized data
will be stored in own user-profile and will be ajgol with log-in to the system.

Also, we are thinking about a smart and intelligiegehnique for automatic dynamic selection
of a visualization context. The logic will be basmd a history of visualization contexts and
resources that user has browsed/visualized prdyiolikis context ranking technique will
allow us to sort a list of visualization contextsmore appropriate order for user and give
him/her a hint for next logical step in though @@ browsing process. Thus, it can become
a smart search system that leads the user in pdingetion/way.

5.3 Future work

WP5’s Year 2 will elaborate on probably the mospariant part of 4i vision, which can be
called “context provision”. Especially when considg a human, presenting information on
a resource of interest alone is not sufficient ferimation on some “neighboring” objects
should be included as well, which form the contaixthe resource. For example, a resource
can be presented on a map thus shown in the casftekjects which are spatial (geographic)
neighbors of it. What is important is that in drfat decision-making situations, different
contexts are relevant. depending on the situatierrélevant neighborhood function may be
e.g. physical spatial, data-flow connectivity, wha#fects-what, similar-type, etc. The ability
to determine what type of context in right onetfog situation and collecting the information
that forms the context of that type for a speaifisource is central in 4i vision.

During WP5’s Year 2 (theContext-awarenesphase), therefore, the following research
guestions are to be answered:

© 2008 UBIWARE Deliverable D1.3 42

sz T
e £

- £ =
TEKES D1.3: UBIWARE Platform Prototype v.1.0

« What should be the architecture of MetaProvidevises so that they will be able to
effectively retrieve, integrate and deliver the teo information both to for
presenting to humans (in a visual form) and fomégjgorocessing (semantic data)?

* What should be the architecture of the Intellig&til Shell, so that it will allow
situation-dependent selection of MetaProviders @iferent types of context) and
cross-MetaProvider browsing and integration?

The WP tasks for the Year 2 are the following:

Task T2.1_ w5 (researchinswer to the questions above. Design of mechaniems
context-aware (visual) representations creation and
combining.

Task T2.2_w5 (developmentycorporating the research findings to the UBIWARE
prototype.

© 2008 UBIWARE Deliverable D1.3 43

%
A
Y,
E s

J,

o
1]

D1.3: UBIWARE Platform Prototype v.1.0

Bibliography

Bellifemine, F. L., Caire, G., and Greenwood, DO({2). Developing Multi-Agent Systems
with JADE Wiley.

Collier, R., Ross, R. and O’Hare, G.M.P. (2005)ak&ing reusable agent behaviours with
ALPHA. In Proc. 3rd Conference on Multi-Agent System Teclgieto(MATES-05)
LNCS vol. 3550, pp. 210-215.

Helsinger, A., Thome, M., and Wright, T. (2004). Ugaar: a scalable, distributed multi-
agent architecture. In Proc. IEEE International f€mnce on Systems, Man and
Cybernetics. Volume 2, pp. 1910-1917.

Katasonov, A. (2008) UBIWARE Platform and Semawtgent Programming Language (S-
APL): Developer’s guide, Online: http://users.jyl+&kataso/SAPLguide.pdf.

Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, Aerziyan, V., Zharko, A., (2005).
General Adaption Framework: Enabling Interoperapiior Industrial Web Resources,
In: International Journal on Semantic Web and InformatSystemddea Group, ISSN:
1552-6283, Vol. 1, No. 3, July-September 2005, pin3.

Khriyenko, O., (2007a). "4l (FOR EYE) Technologyitdlligent Interface for Integrated
Information”, In: Proceedings of the 9th International Conference Bmterprise
Information Systems (ICEIS-20Q0Funchal, Madeira — Portugal, 12-16 June 2007.

Khriyenko O., (2007b). "Context-sensitive Multidimsgonal Resource Visualization”, In:
Proceedings of the 7th IASTED International Confieez on Visualization, Imaging,
and Image Processing (VIIP 200Palma de Mallorca, Spain, 29-31 August 2007.

© 2008 UBIWARE Deliverable D1.3 44

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

Appendix A: UBIWARE Publications List

Katasonov A., Terziyan, V., Agent Communicationshws-APL as the Content Language,
In: Proceedings of the International Workshop orddfeware for the Semantic Web in
conjunction with the Second IEEE International Gwahce on Semantic Computing (ICSC-
2008), August 4-7, 2008, Santa Clara, CA, USA, IEEE Press, 6 pp. (submitted 22 April
2008).

Katasonov A., Terziyan, V., Semantic Approach t@iBaering Multi-Agent Systems, In:
Proceedings of the 1st international workshop orerAg for Autonomic Computing (AAC
2008) in conjunction with the 5th International @mence on Autonomic Computing
(ICAC 2008). June 6, 2008, Chicago, USA, IEEE C&sBr8 pp. (submitted 21 April 2008).

Khriyenko O., SMART HUMAN ADAPTER - Multi-agent Cdext-sensitive Visual
Resource Browser, In: Proceedings of the Twelftlerirational Workshop on Cooperative
Information Agents (CIA-2008), September 10-12, 0Prague, Czech Republic, Springer
LNCS, 15 pp. (submitted 21 April 2008).

Katasonov A., Kaykova O., Khriyenko O., Nikitin STerziyan V., Smart Semantic

Middleware for the Internet of Things, IRroceedings of the 5-th International Conference
on Informatics in Control, Automation and Roboti¢4-15 May, 2008, Funchal, Madeira,

Portugal, 11 pp.

Terziyan V., SmartResource — Proactive Self-Maddi Resources in Semantic Web:
Lessons learned, Ininternational Journal of Smart HomeSpecial Issue on Future
Generation Smart Space, 2008, SERSC publisher,:1$$M-4094, 18 pp.

Katasonov, A., Terziyan, V., SmartResource Platf@nd Semantic Agent Programming

Language (S-APL), In: P. Petta et al. (EdBrpceedings of the 5-th German Conference on
Multi-Agent System Technologies (MATES ®4-26 September, 2007, Leipzig, Germany,
Springer, LNAI 4687 pp. 25-36.

Terziyan V., Predictive and Contextual Feature & for Bayesian Metanetworks, In: B.
Apolloni et al. (Eds.),Proceedings of KES-2007 / WIRN-200Zietri sul Mare, Italy,
September 12-14, Vol. lll, Springer, LNAI 4694, Z0@p. 634—644.

Nikitin S., Terziyan V., Pyotsia J., Data IntegoatiSolution for Paper Industry - A Semantic
Storing, Browsing and Annotation Mechanism for @aliFault Data, InProceedings of the
4th International Conference on Informatics in QohtAutomation and Robotics (ICINCQO)
May 9-12, 2007Angers, France, INSTICC Press, ISBN: 978-972-886%, pp. 191-194.

© 2008 UBIWARE Deliverable D1.3 45

h»
b

sz T
it Py

L _—
TEKES

D1.3: UBIWARE Platform Prototype v.1.0

Salmenjoki K., Tsaruk Y., Terziyan V., Viitala MAgent-Based Approach for Electricity
Distribution Systems, InProceedings of the 9-th International ConferenoeEmterprise
Information Systemsl2-16, June 2007, Funchal, Madeira, Portugal NS&78-972-8865-
89-4, pp. 382-389.

Khriyenko O., 41 (FOR EYE) Technology: Intelligehtterface for Integrated Information,
In: Proceedings of the 9th International Conference Emterprise Information Systems
(ICEIS-2007) Funchal, Madeira - Portugal, 12-16 June 2007.

Khriyenko O., 41 (FOR EYE) Multimedia: Intelligersemantically enhanced and context-
aware multimedia browsing, IfProceedings of the International Conference on &ign
Processing and Multimedia Applications (SIGMAP-200Barcelona, Spain, 28-31 July
2007.

Khriyenko O., Context-sensitive Multidimensional dearce Visualization, InProceedings
of the 7th IASTED International Conference on Vigadion, Imaging, and Image
Processing (VIIP 2007Palma de Mallorca, Spain, 29-31 August 2007.

Naumenko A., Semantics-Based Access Control inri&ssi Networks, Jyvaskyla Studies in
Computing,PhD ThesisVolume 78, Jyvaskyla University Printing Hous&b2ages, 2007.

Srirama, S., and Naumenko, A., (2007). Secure Camuation and Access Control for
Mobile Web Service Provisioning, IiProceedings of International Conference on Security
of Information and Networks (SIN2008}10th May, 2007.

Naumenko, A., SEMANTICS-BASED ACCESS CONTROL - Ootpes and Feasibility
Study of Policy Enforcement Function , lroceedings of the 3rd International Conference
on Web Information Systems and Technologies (WEBI§ Barcelona, Spain - March 3-6,
2007, Volume Internet Technologies, INSTICC Pregs,150-155.

Naumenko A., Katasonov A., Terziyan V., A Securisamework for Smart Ubiquitous
Industrial Resources, In: R. Gonzalves, J.P. Mjilker Mertins and M. Zelm (Eds.), In:
Enterprise Interoperability Il: New challenges ampproaches Proceedings of the 3rd
International Conference on Interoperability for terprise Software and Applications
(IESA-07) March 28-30, 2007, Madeira Island, Portugal, i&get, pp. 183-194.

Katasonov A., Kaykova O., Khriyenko O., Loboda ®gumenko A., Nikitin S., Terziyan
V., The Central Principles and Tools of UBIWAREgchnical Report (Deliverable D 1,1)
UBIWARE Tekes Project, Agora Center, UniversityJyfvaskyla, May-October 2007, 118

Pp.

© 2008 UBIWARE Deliverable D1.3 46

