
 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 1

UBIWARE Deliverable D1.3:

UBIWARE Platform Prototype v.1.0

May, 2008

Date May 8, 2008
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Artem Katasonov, Olena Kaykova, Oleksiy Khriyenko,

Sergiy Nikitin
Work component WP1-WP5
Deliverable Code D1.3
Deliverable Owner IOG, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 2

Table of Contents

Introduction... 3
1 UbiCore – Core Distributed AI platform design... 4

1.1 Platform Architecture.. 4
1.2 Semantic Agent Programming Language (S-APL) .. 6
1.3 S-APL engine run-time cycle.. 11
1.4 UBIWARE Platform elements.. 12
1.5 Visualizer / debugger .. 15

2 UbiBlog – Managing Distributed Resource Histories.. 17
Agent communication in S-APL... 18

3 SURPAS – Smart Ubiquitous Resource Privacy and Security....................................... 23
3.1 Ontological modeling of operations.. 23
3.2 Specifying access control policies .. 26

4 Self-Management, Configurability and Integration.. 29
4.1 Resource adaptation .. 29
4.2 Configurability of atomic behaviors ... 32

5 Smart Interfaces: Context-aware GUI for Integrated Data (4i technology) 34
5.1 Background ... 34
5.2 SmartInterface... 36
5.3 Future work... 42

Bibliography ... 44
Appendix A: UBIWARE Publications List .. 45

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 3

Introduction

The UBIWARE project aims at a new generation middleware platform which will allow
creation of self-managed complex industrial systems consisting of distributed, heterogeneous,
shared and reusable components of different nature, e.g. smart machines and devices, sensors,
actuators, RFIDs, web-services, software components and applications, humans, etc. The
technologies, on which the project relies, are the Software Agents for management of
complex systems, and the Semantic Web, for interoperability, including dynamic discovery,
data integration, and inter-agent behavioral coordination.

Work in this project is divided into seven work packages which are running in parallel:
1. Core agent-based platform design
2. Managing Distributed Resource Histories
3. Security in UBIWARE
4. Self-Management and Configurability
5. Context-aware Smart Interfaces for Integrated Data
6. Middleware for Peer-to-Peer Discovery
7. Industrial cases and prototypes.

Work-packages 1 through 6 are research work packages; however, the research efforts are
combined with agile software development processes. Prototypes of the UBIWARE platform,
integrating the work in these 6 work packages at different levels of their readiness, are
developed during each project year, as UBIWARE 1.0, UBIWARE 2.0 and UBIWARE 3.0.

UBIWARE deliverable D1.1 reported on the research results from work packages 1 through
5 (it was decided not to perform the work at the WP6 during the first project year due to
limitation in resources). This deliverable, D1.3, presents the integrated development results
from those work packages, i.e. the current state of the UBIWARE platform prototype.
Naturally, during the development stage, solutions described previously in D1.1 have
undergone some changes and improvements.

Formally, D1.3 consists of the software system itself and this accompanying report. The
present report includes a separate chapter for the results of every work-package involved.
Note that the work package 1 sets the general architecture of UBIWARE, and therefore the
description of results from WP1 is important for understanding the results from other WPs.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 4

UBIWARE Deliverable D1.3:
Workpackage WP1:

Task T1.2_w1:

1 UbiCore – Core Distributed AI platform
design

The main objective of the core platform is to ensure a predictable and systematic operation of
the components and the system as a whole by:

• enforcing that the smart resources, while might to have own “personal” goals, act as
prescribed by the roles they play in a organization and by general organizational
policies,

• maintaining the “global” ontological understanding among the resources, meaning
that a resource A can understand all of (1) the properties and the state of a resource B,
(2) the potential and actual behaviors of B, and (3) the business processes in which A
and B, and maybe other resources, are jointly involved

During WP1’s Year 1 (the Representation phase), the Semantic Agent Programming
Language (S-APL) was developed which is a semantic tool sufficient for describing all of the
following: resources’ properties, agents’ behaviors, organizational policies, business
processes, ontologies, etc. Having a common language for all those ensures that any type of
information in UBIWARE is semantic and facilitates intertwining those: e.g. one can easily
prescribe that in a certain business process, if some properties of some resource have some
certain values this must lead to some specific action taken by some agent unless prohibited
by some organizational (e.g. security) policy.

1.1 Platform Architecture

The central to the core platform is the architecture of a UBIWARE agent depicted in the
Figure 1. The basic 3-layer agent structure is similar to, for example, the Agent Factory’s
ALPHA/AFAPL (see Section 2). There is the behavior engine implemented in Java, a
declarative middle layer, and a set of sensors and actuators which are again Java components.
The latter we refer to as Reusable Atomic Behaviors (RABs). We do not restrict RABs to be

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 5

only sensors or actuators, i.e. components sensing or affecting the agent’s environment. A
RAB can also be a reasoner (data processor) if some of the logic needed is impossible or is
not efficient to realize with the S-APL means, or if one wants to enable an agent to do some
other kind of reasoning beyond the rule-based one.

Figure 1. The UBIWARE agent architecture

The middle layer is the S-APL beliefs storage. The main factor that differentiates S-APL
from traditional APLs like AgentSpeak or ALPHA is that S-APL is RDF-based. An
additional immediate advantage is that in S-APL the difference between the data and the
program code (rules and plans) is only logical but not any principal. They use the same
storage, not two separate. This also means that: a rule upon its execution can add or remove
another rule, the existence or absence of a rule can be used as a premise of another rule, and
so on. None of these is normally possible in traditional APLs treating rules as special data
structures principally different from normal beliefs which is n-ary predicates. S-APL is a
very symmetric in this respect – anything that can be done to or with a simple statement can
also be done to any belief structure of any complexity.

Technically, our implementation is built on the top of the Java Agent Development
Framework (JADE, Bellifemine et al. 2007), which is a Java implementation of IEEE FIPA
specifications. The S-APL behavior engine is an extension (subclass) of JADE’s Agent class,
while the base class for all RABs is an extension of JADE’s SimpleBehavior class.

As Figure 1 stresses, an S-APL agent can obtain the needed data and rules not only from
local or network documents, but also through querying S-APL repositories. Such a repository,

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 6

for example, can be maintained by some organization and include prescriptions (lists of
duties) corresponding to the organizational roles that the agents are supposed to play. In our
implementation, such querying is performed as inter-agent action with FIPA ACL messaging,
but does not involve any query or content languages beyond S-APL itself. As can be seen
from Figure 1, agents also can to load RABs remotely. This is done as an exception
mechanism triggered when a rule prescribes engaging a RAB while the agent does not have it
available. Thus, organizations are able to provide not only the rules to follow but also the
tools needed for that.

We also equip each agent with a blackboard, through which RABs can exchange arbitrary
Java objects. Similar solution can be found e.g. in the Cougaar framework (Helsinger, 2004).
The reason for that is not to unnecessarily restrict the range of applications that could be
realized with S-APL. Without such a blackboard, RABs would be always forced to translate
all data into RDF (even when the S-APL code of the agent is not concerned with the content
of data, or could not process it) or at least serialize it as text string to put the as object of a
statement. This could restrict the performance and, more importantly, significantly reduce the
wish to use S-APL. Blackboard is also necessary to accommodate objects like Socket,
HttpServletResponse or similar to enable an agent to process and respond to HTTP requests,
which may be needed in many applications. With the blackboard extension, the developers of
a specific application can use S-APL in different ways:

• Semantic Reasoning. S-APL rules operating on S-APL data.

• Semantic Data. RABs (i.e. Java components) operating on S-APL semantic data.

• Workflow management. RABs operating on Java blackboard objects, with S-APL
used only as workflow management tool, specifying what RABs are engaged and
when.

• Any combination of the three options above.

1.2 Semantic Agent Programming Language (S-APL)

This section briefly describes S-APL language. For a detailed description, see (Katasonov,
2008).
S-APL has as an axiom that everything inside an agent’s mind is a belief. All other mental
attitudes such as goals, commitments, behavioral rules are just compound beliefs. Thus, an S-
APL document is basically a statement of some agent’s current or expected (by an
organization) beliefs.

S-APL is based on Notation3 (N3) (http://www.w3.org/DesignIssues/Notation3.html). N3
was proposed by Tim Berners-Lee as a more compact, better readable and more expressive
alternative to the dominant notation for RDF, which is RDF/XML. One feature of N3, which
goes beyond the plain RDF, is the concept of formula that allows RDF graphs to be quoted
within RDF graphs, e.g. {:room1 :hasTemperature 25} :measuredBy :sensor1. An important

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 7

convention is that a statement inside a formula is not considered as asserted, i.e., as a general
truth. In a sense, it is a truth inside a context defined by the statement about the formula and
the outer formulas. This is in contrast to the plain RDF where every statement is asserted as a
truth. In S-APL, we refer to formulae as context containers. The top level of the S-APL
document, i.e. of what is the general truth for the agent, we refer to as general context or just
G. Below, we describe the main constructs of S-APL. We use three namespaces: ”sapl:” for
S-APL constructs, ”java:” for RABs, and ”p:” for RAB parameters. Empty namespace ”:” is
used for resources that are assumed to be defined elsewhere locally.

The two constructs below are equivalent and define a simple belief. The latter is introduced
for syntactic reasons.

:room1 :hasTemperature 25

{:room1 :hasTemperature 25} sapl:is sapl:true

The next two constructs add context information:

{:room1 :hasTemperature 25} :measuredBy :sensor1

{:room1 :hasTemperature 25} sapl:is sapl:true ; :measuredBy :sensor1

The former states that ”sensor1 measured the temperature to be 25” without stating that ”the
agent believes that the temperature is 25”. In contrast, the latter states both. This
demonstrates a specific convention of S-APL: rather than doing several statements about one
container, ”{...} P O; P O” leads to linking the statements inside the formula to two different
containers. Then, using sapl:true it is also possible to link some statements to a container and
to one of its nested containers.

The goals of the agent and the things that the agent believes to be false are defined,
correspondingly, as:

sapl:I sapl:want {:room1 :hasTemperature 25}

{:room1 :hasTemperature 25} sapl:is sapl:false

sapl:I is a special resource that is defined inside the beliefs of an agent owl:sameAs the URI
of that agent. A specific convention of S-APL is that e.g. ”sapl:I sapl:want {A B C}. sapl:I
sapl:want {D E F}” is the same as ”sapl:I sapl:want {A B C. D E F}”. In other words, the
context containers are joined if they are defined through statements with the same two non-
container resources.

The commitment to an action is specified as follows:

{sapl:I sapl:do java:ubiware.shared.MessageSenderBehavior}

sapl:configuredAs {

p:receiver sapl:is :John.

p:content sapl:is {:get :temperatureIn :room1}

sapl:Success sapl:add {:John :informs :temperature}

}

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 8

The ”java:” namespace indicates that the action is a RAB. Otherwise, it would be an abstract
action (capability) that a rule was supposed to translate into a plan. When the behavior engine
finds such a belief in G, it executes the RAB and removes the commitment. In the
configuration part, one may use special statements to add or remove beliefs. The subject can
be sapl:Start, sapl:End, sapl:Success, and sapl:Fail. The predicate is either sapl:add or
sapl:remove. Using such statements, one can easily specify sequential plans: {sapl:I sapl:do ...}
sapl:configuredAs {... sapl:Success sapl:add {{sapl:I sapl:do ...} sapl:configuresAs {...}}} .

The commitments to mental actions are as follows:

sapl:I sapl:remove {:John :informs :temperature}

sapl:I sapl:add {:John :informs :temperature}

sapl:remove uses its object as a pattern that is matched with G and removes all beliefs that
match. sapl:add does not need to be normally used, since just stating something is the same
as adding it to beliefs. This construct is needed when one wants to postpone the creating of
the belief until the stage of the agent run-time cycle iteration when commitments are treated
(see in the end of this section), or when one uses the object as a variable holding the ID of a
statement or a container (see below).

The conditional commitment is specified as:

{ {?room :hasTemperature ?temp} :measuredBy *. ?temp > 30 }

=> {...}

?room and ?temp are variables. => and > are shorthands for sapl:implies and sapl:gt. *
means ”anything”. The object of sapl:gt and other filtering predicates (>=, <, <=, =, !=) is an
expression that can utilize arithmetic operations, functions like abs, floor, random, etc. and
string-processing functions like length, startsWith, substring, etc. When the behavior engine
finds in G a belief as above and finds out that all the conditions in the subject context
container are met, it copies to G, substituting variables with their values, all the beliefs from
the object container. Those can be plain beliefs and/or commitments, unconditional or
conditional. S-APLallows a variable value to substitute a part of a resource,
e.g. ”logs/?today/received”. Such a liberty is in contrast with, e.g., the approach used in the
CWM semantic reasoner (http://www.w3.org/2000/10/swap/doc/cwm) where a variable
value can only be a substitute for the whole resource; however, it was shown to greatly
simplify the programming.

As with any commitments, the conditional commitment is removed after successful
execution. In order to create a persistent rule, the => statement has to be wrapped as:

{ {...} => {...} } sapl:is sapl:Rule

It is possible to define a guard for a conditional commitment so it is dropped if the guard
becomes false:

{ {...} => {...} } sapl:is sapl:true ;

 sapl:existsWhile {...}

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 9

We introduce sapl:existsWhile as a way of creating commitment guards because APLs
normally require the ability of defining commitments that are dropped as unachievable or
not relevant anymore. However, in S-APL sapl:existsWhile can of course be used with any
type of beliefs.

There are also a couple of alternatives to =>:

{...} -> {...} ; sapl:else {...}

{sapl:I sapl:want {...} } >> {...}

-> and >> are the shorthands for sapl:impliesNow and sapl:achievedBy. -> specifies a
conditional action rather than a commitment: it is checked only once and removed even if it
was false. One can also combine it with sapl:else to specify the beliefs that have to be added
if the condition was false. >> works the same as => with the only difference that if the left
side of it refers to some goals, commitments or interface (GUI or HTTP) events, those are
removed automatically when the rule fires. Thus, >> has the meaning of logical transition
rather than pure inference.

A specific convention of S-APL is that if there are several possible solutions to the query in
the left side of =>, -> or >>, the right side is copied by default for the first-found solution
only. One can use sapl:All wrappings to define that the right part has to be copied several
times: for every unique value of some variable of every unique combination of the values of
some variables. These wrapping can be used in either the left or the right side:

{ {{ ... } sapl:All ?x} sapl:All ?y } => {...}

{...} => { {{...} sapl:All ?x} sapl:All ?y }

sapl:All on the right side is allowed to enable defining different wrappings for different (top-
level) resulting statements, e.g. ”{...} => {X Y Z. {{?x L ?y } sapl:All ?y. A B ?x}
sapl:All ?x}”. On the left side of =>, sapl:All must always wrap the whole contents of the
container. Other solutions set modifier wrappings are also available, namely sapl:OrderBy,
sapl:OrderByDescending, sapl:Limit, and sapl:Offset. The meaning of those are the same as
of their equivalents in SPARQL (http://www.w3.org/TR/rdf-sparql-query/). One can also
wrap a condition in the left side of => with sapl:Optional to have the same effect as
SPARQL’s OPTIONAL, and connect two conditions with sapl:or to have the same effect as
SPARQL’s UNION. It is also possible to specify exclusive conditions, i.e. ones that must not
be know to be true, by using the wrapping sapl:I sapl:doNotBelieve {...}.

One can also define new calculated variables:

{?person :height ?h. ?feet sapl:expression ”?h/0.3048”. ?m sapl:min ?feet } => {...}

sapl:expression gives to the new variable the value coming from evaluating an expression.
sapl:min is a special predicate operating on the set of matching solutions rather than on a
particular solution. The other predicates from the same group are sapl:max, sapl:sum,
sapl:count (number of groups when grouped by values of some variables) and
sapl:countGroupedBy (number of members in each group).

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 10

Variable can also refer to IDs of statements and context containers, and one can use the
predicates sapl:hasMember, sapl:memberOf, rdf:subject, rdf:predicate and rdf:object. After
obtaining the ID of the container with ”?x :according to :Bill”, one can do the following
things:

{ ... {?x sapl:is sapl:true} :accordingTo :John } => {...}

?x sapl:is sapl:true

sapl:I sapl:add ?x

sapl:I sapl:remove ?x

sapl:I sapl:erase ?x

?x sapl:hasMember {:room1 :hasTemperature 25}

The first construct defines a query that is evaluated as true if any belief that is found in the
context container ?x has a match in the context container {} :accordingTo :John. The second
one links the statements from ?x to G, while the third copies them to G. The fourth uses the
contents of ?x as the pattern for removing beliefs from G, while the fifth removes the
container ?x itself. Finally, the sixth add to the container ?x a new statement.

There are several ways to create a variable holding IDs of some statements (we hope that the
meanings are clear):

{ {* :hasTemperature 25} sapl:ID ?x } :accordingTo :Bill

{?x rdf:predicate :hasTemperature} :accordingTo :Bill

{?x sapl:is sapl:true} :accordingTo :Bill

?c :accordingTo :Bill. ?c sapl:hasMember ?x

One can use a query like ”{ {?x sapl:is sapl:true} :according to :Bill. {?x sapl:is
sapl:true} :accordingTo :John } => {...}”, which is evaluated as true if there is at least one
belief from the first container that has a match in the second container. One can also use
sapl:true, sapl:add, sapl:remove, sapl:erase, sapl:hasMember and sapl:memberOf to do the
same things as explained above, but for one statement only.

There is also possibility to define meta-rules:

{ {...} => {...} } sapl:is sapl:MetaRule

Meta-rules behave exactly as normal behavior rules. The difference is only in their position
in the agent’s run-time cycle. Meta-rules are processed twice: just before starting processing
normal rules and conditional commitments, and just after that - just before starting processing
commitments to external actions (see below). Therefore, the actual difference is in intended
purpose: meta-rules are supposed to modify/block normal rules or commitments, to
implement some organizational, e.g. security, policies.

The final remark on S-APL syntax is that the behavior engine automatically generates and
maintains several special beliefs that can be used in queries. One example is ”sapl:Now
sapl:is <current system time in milliseconds>”.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 11

1.3 S-APL engine run-time cycle

Figure 2 presents a simplified view of the run-time cycle that the UBIWARE agent’s
behavior engine implements to act based on S-APL behavior models.

Check all existsWhile conditions found in G

Remove beliefs

Remove the goals that match with G

Check all inference predicates (=>, >>, ->, requires) in MetaRule context

Add beliefs. Check all add, remove and erase in G. Add and remove

Check all inference predicates in both G and Rule context

Add and remove beliefs. Check all add, remove add erase in G. Add and remove beliefs.

Sleep

Check all configuredAs in G and schedule RABs for excution

Changes made to beliefs?

Collect garbage

Check and apply MetaRules again

NO

YES

Figure 2. S-APL run-time cycle

In each iteration, the engine performs the following:

• First, it checks and removes all goals, both in “sapl:I sapl:want {}” or “sapl:I
sapl:achieving {}” that match with G, i.e. have already been achieved.

• Then, it checks all sapl:existsWhile conditions found in G and removes the beliefs,
whose existsWhile conditions are not met anymore.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 12

• Then, it checks all the inference predicate (sapl:implies =>, sapl:impliesNow ->,
sapl:achievedBy >>, and sapl:requires) found in {…} sapl:is sapl:MetaRule context.
If some rules are executed, the result is that some new beliefs are added to G. If
there are several executable rules in one iteration, all are executed. Immediately after
that, the engine check all sapl:add, sapl:remove and sapl:erase commitments in G,
and then adds and remove the needed beliefs as well as the commitments themselves.

• Then, exactly the same is done for inference predicates in both is G (conditional
commitments) and in the context {…} sapl:is sapl:Rule (behavior rules). Beliefs are
added only after both G and Rules are processed. Then, also the executed
conditional commitments are removed.

• Then, the MetaRules are processed again (to block/modify any action commitments
that were made).

• Finally, all the {sapl:I sapl:do …} sapl:configuredAs (action commitments) that are
found in G are executed (this leads to putting the corresponding RAB into the
execution queue) and then removed.

• If any changes to beliefs were made, the engine schedules the new iteration. The
new iteration will actually start after all the active RABs will be executed once.

• Otherwise, the engine collects garbage (unreferenced contexts and statements) and
blocks the run-time cycle until a new message arrives or some of running RABs
makes some modification to the beliefs. If there are any active RABs, they will
continue execution.

As it stressed in the Figure 2, actual modifications to the belief storage (adding and removing)
are to be done after all the checks are completed. In this way, e.g. the effect of execution of
one rule could not prevent another executable rule from execution.

Garbage collection involves, in an iterative fashion:

• Removing all contexts that are not referenced, i.e. do not appear as the subject or the
object of any statement.

• Removing all statements that are not referenced, i.e. are not linked to any context

• Removing all empty contexts, i.e. not having any member statements.

In result, any “hanging” sub-graph of beliefs will be removed as garbage. Therefore, it is
always enough to explicitly remove just the top statement, e.g. {} sapl:configuredAs {}, and
let the garbage collector to remove the rest – the contexts appearing as the subject and the
object.

1.4 UBIWARE Platform elements

The UBIWARE agent architecture depicted in Figure 1 implies that a particular UBIWARE-
based software application will consist of a set of S-APL documents (data and behavior
models) and a set of specific atomic behaviors needed for this particular application.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 13

Since reusability is an important UBIWARE concern, it is reasonable that the UBIWARE
platform provides some of those ready-made. Therefore, the UBIWARE platform as such can
be seen as consisting of the following three elements:

• The behavior engine
• A set of “standard” S-APL models.
• A set of “standard” RABs.

Then, also the development outputs of other UBIWARE work packages are exactly some
sets of such “standard” S-APL models and RABs that can be used by the developers to
embed into their applications certain UBIWARE features such as security or flexible
declarative (re-)configuration.

The table below lists the Reusable Atomic Behaviors (RABs) that are included into
UBIWARE 1.0. For detailed description of those, see (Katasonov, 2008).
Print Prints to the screen (and to the log) specified

text.
PrintBeliefs Prints to the screen (and to the log) the

contents of specified context container.
ModifyGUI Sends a request to a GUI to perform some

actions, mainly related to modifying GUI
(enabling/disabling elements, putting text to
labels, etc.).

ExternalAppStarterBehavior

Starts an external software application.

UnzipperBehavior

Unzips a ZIP archive.

HttpDataFetcherBehavior Downloads a document (e.g. an HTML
page) from an Internet server.

EmailSenderBehavior Sends an email.
FilesSensorBehavior Generates a belief structure describing the

contents of a file-system folder, including all
the subfolders.

XmlReaderBehavior Reads an XML file and generates a
predefined hierarchical belief structure.

XmlWriterBehavior Writes XML data based on a predefined
belief structure.

TextTableReaderBehavior Reads a text file containing a data-table, for
example a CSV file.

ExcelReaderBehavior Reads data from a worksheet of a Microsoft
Excel file.

SQLReaderBehavior Submits an SQL query to a relational
database and generates from the results a
hierarchical belief structure.

RdfXmlReaderBehavior Reads am RDF/XML file and loads its
contents into the agents’ beliefs into the
specified context container.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 14

BeliefsBackupBehavior Saves a sub-graph of agents’ beliefs as an S-
APL Notation3 string.

BeliefsLoadBehavior Loads an S-APL Notation3 string (given
directly or from file) into the agents’ beliefs.

HttpResponseSenderBehavior Sends an HTTP response to an request
arrived earlier.

CreateAgentBehavior Creates a new agent in the same JADE
container.

MessageSenderBehavior Sends a message to another agent on the
same platform.

MessageReceiverBehavior Listens for incoming message(s) matching
defined parameters.

SecurityCheckBehavior Checks with Directory Facilitator whether
the agent in question plays a role that would
authorize it for something.

DFRegisterBehavior Register with the Directory Facilitator the
services (e.g. roles) provided by this agent.

DFLookupBehavior Finds with the Directory Facilitator names of
agents playing a particular role.

SeveralButtonsGUI Gives a very simple interface with N buttons
and possibility to enable and disable those
buttons.

DebugBehavior Starts the visualizer / debugger interface (see
next subsection).

The following table below lists the standard S-APL models provided with UBIWARE 1.0.
Some of those are described in chapters on other WPs.

startup Enables agents to access S-APL documents

remotely, from an OntologyAgent.
RABLoader Enables agents to access RABs remotely,

from a RABRepositoryAgent.
OntologyAgent The script for an OntologyAgent.
RABRepositoryAgent The script for an RABRepositoryAgent.
Reasoning.RDFSReasoner Implements RDF Schema reasoning rules

(class-subclass relation, etc.)
Reasoning.OWLReasoner Implements a subset of OWL reasoning rules

(symmetric, inverse and transitive properties,
sameAs)

Communication.Listener Receives messages (see Chapter 2)
Communication.Informer Agent answering queries (see Chapter 2)
Communication.Follower Agent doing what it is asked to do (see

Chapter 2)
Communication.Believer Agent adding to its beliefs what it was

informed about (see Chapter 2)

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 15

Communication.Ontology Defines an ontology of communicative
actions for, e.g., policy-based control (see
WP3).

Security.SBACReasoner Semantics-Based Access Control Reasoner
(see Chapter 3).

Configurability.RABConfigurator Modifies unconditional commitments to
actions (e.g. RABs) based on the global
configuration settings for those actions (see
Chapter 4)

1.5 Visualizer / debugger

Figure 3. The visualizer interface

In the future, an important additional element of the UBIWARE platform is a set of tools
facilitating the development of UBIWARE-based applications. One tool in this group has
already been under development and its first version is included with UBIWARE 1.0. It is
the beliefs-visualizer / debugger interface. Any agent can start its own visualizer (it is done
by using DebugBehavior RAB) to enable the developer to monitor the agent’s beliefs and
also to control the agent’s execution.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 16

The screenshot of the visualizer is shown in Figure 3. The current state of the visualizer:

• Shows the content of the beliefs storage of the agent as a tree hierarchy (with ability
to expand / collapse branches).

• Upon request, presents any given branch of the beliefs storage as an S-APL Notation
3 text.

• Enables the developer to execute the agent step-by-step, with step meaning a S-APL
engine run-time cycle iteration (as in Section 1.3)

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 17

UBIWARE Deliverable D1.3:
Workpackage WP2:

Task T1.2_w2:

2 UbiBlog – Managing Distributed
Resource Histories

In UBIWARE, every resource is represented by a software agent. Among major
responsibilities of such an agent is monitoring the condition of the resource and the
resource’s interactions with other components of the system and humans. The beliefs storage
of the agent will, therefore, naturally include the history of the resource, in a sense “blogged”
by the agent. Obviously, the value of such a resource history is not limited to that particular
resource. A resource may benefit from the information collected with respect to other
resources of the same (or similar) type, e.g. in a situation which it faces for the first time
while other may have faced that situation before. Also, mining the data collected and
integrated from many resources may result in discovery of some knowledge important at the
level of the whole ubiquitous computing system. A scalable solution requires mechanisms for
inter-agent information sharing and data mining on integrated information which would
allow keeping the resource histories distributed without need to copy those histories to a
central repository.

During WP2’s Year 1 (the Sharing phase), needed mechanisms were designed for effective
and efficient sharing of information between different agents, e.g. representing different
resources. S-APL was used as the communication content language, which has enabled:

• One agent to query another agent for some information, using the query constructs
similar to that of SPARQL but with even wider range of possible filtering conditions

• One agent to inform another agent, i.e. to proactively push some information of any
complexity.

• One agent to request another agent to perform some actions, either an atomic
behavior or a complex plan involving a set of rules and atomic of complex behaviors.

As to UBIWARE 1.0 platform, the development contribution of WP2 consists of:

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 18

• A set of standard S-APL models: Communication.Listener, Communication.Informer,
Communication.Follower and Communication.Believer (see below).

• A set of enhancements to the standard RABs MessageSenderBehavior and
MessageReceiverBehavior which are used for message exchange between
UBIWARE agents (see Katasonov , 2008)

• Some modification in the behavior engine to enable implementation of the approach.

Agent communication in S-APL

IEEE FIPA developed a set of standard specifications for agent communication including
ACL for message envelopes and SL for contents. While the standard position of ACL is
unquestionable, the value of SL is less certain. Although meaning ”semantic language”, SL is
not based on W3C’s RDF semantic data model. Rather, SL follows the traditional agent
design approaches where the agents’ beliefs and thus also the atoms of their communications
are nary predicates. However, N-ary predicates do not make the meaning of data as explicit
as RDF triples do. Also, only the whole message can be linked to an ontology, as compared
to the ability of RDF to link every individual resource to its own ontology, if needed.

In this section, we describe how we use S-APL as the content language in agent
communications. Since one of the important communicative actions is querying for
information, this role of S-APL overlaps with that of SPARQL. The problem with SPAQRL
is that while being a language for querying RDF, it is not RDF itself. Also obviously, a
content language for agent communication must support other types of communicative
actions, for example, request for action. For these reasons we did not considered using
SPARQL as such. Rather, when designing S-APL we included into it features analogous to
most of the SPARQL’s ones (see Chapter 1).

The beliefs storage of an S-APL agent can be queried externally by other agents, of course
subject to security and other policies. The core of a query is the same as if the agent itself
would query its beliefs to check the premises of a rule, i.e. it can use all the constructs
allowed for the left side of => (see Chapter 1). The core of the query has to be wrapped with
sapl:I sapl:want { {sapl:You sapl:answer {..query..} }}. The use of ”sapl:I sapl:want” may
look unnecessary. However, this allows distinguishing between sapl:I sapl:want {...} and
e.g. :Boss sapl:want {...}, i.e. mediating a wish of another agent. Both cases may require
exactly the same action to be taken, however, may affect differently on whether the agent
will comply or not.

As the response, the agent has to send the matching part of its belief storage, or, if no match,
the query itself wrapped with sapl:I sapl:doNotBelieve {...}. Below, we list two small S-APL
programs that an agent has to load in order to be able to be queried this way. The first one,
Listener.sapl, instructs the agent to continuously wait for incoming messages marked
with ”SAPL” ontology. The additional rule of the program adds for every incoming request
an additional existsWhile statement so that the request is removed after 5 seconds if no rule
has taken it for processing.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 19

/*Listener.sapl*/

{sapl:I sapl:do java:ubiware.shared.MessageReceiverBehavior}

sapl:configuredAs {p:matchOntology sapl:is "SAPL".

 p:waitOnlyFirst sapl:is false}.

{ {{?requestID p:received *} sapl:ID ?id. sapl:Now sapl:is ?time.

 sapl:I sapl:doNotBelieve {?x sapl:existsWhile *. ?x sapl:hasMember ?id}

 } => {

{?id sapl:is sapl:true} sapl:existsWhile

{sapl:Now sapl:is ?newtime. ?newtime < ?time+5000}

 }

} sapl:is sapl:Rule

The second program, Informer.sapl, implements the processing of a query and sending back
the response (we do not include here any access control or other checks, just the basic logic).
As can be seen, the logic of moving from query to response is as simple as {?query sapl:is
sapl:true} -> {?requestID :response {?query sapl:is sapl:true}}. The parameter
p:cleanContent of MessageSenderBehavior set to true causes removing from the response
residual wrappings like sapl:Optional, sapl:or, as well as filtering statements and
sapl:hasMember/sapl:memberOf statements. Wrappings like sapl:All, sapl:OrderBy
disappear automatically as soon as their objects are not variables anymore.

/*Informer.sapl*/

{ {?requestID p:received

{p:sender sapl:is ?agent. p:conversationID sapl:is ?convID.

p:content sapl:is

{sapl:I sapl:want {sapl:You sapl:answer ?query}}}.

 sapl:I sapl:doNotBelieve {sapl:I :handle ?requestID}

 } => {

sapl:I :handle ?requestID.

{?query sapl:is sapl:true} ->

{?requestID :response {?query sapl:is sapl:true}. ?requestID :result true}

; sapl:else {?requestID :response {sapl:I sapl:doNotBelieve ?query}.

 ?requestID :result false}.

{?requestID :response ?response. ?requestID :result ?result

} => {

{sapl:I sapl:do java:ubiware.shared.MessageSenderBehavior}

sapl:configuredAs

{p:receiver sapl:is ?agent. p:ontology sapl:is "SAPL".

p:content sapl:is ?response. p:performative sapl:is inform.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 20

p:cleanContent sapl:is ?result. p:addBeliefs sapl:is false.

p:conversationID sapl:is ?convID.

sapl:End sapl:remove {?requestID * *. sapl:I :handle ?requestID}}}

}

} sapl:is sapl:Rule

For example, let’s assume that there is an agent with Listener and Informer programs loaded
and having the following beliefs in its storage:

:factory1 :hasSpace :room3, :room1, :room2.

:room1 :hasTemperature 25; :hasHumidity 80.

:room2 :hasTemperature 20; :hasHumidity 90.

{?room :hasTemperature 30} =>

{sapl:I ex:sendAlarm {:source sapl:is ?room}}

Then, the following queries (only the core is shown) will get the corresponding responses:
• (Q) :factory1 :hasSpace :room1

(R) :factory1 :hasSpace :room1
• (Q) {{:factory1 :hasSpace ?room} sapl:All ?room} sapl:OrderBy ?room

(R) :factory1 :hasSpace :room1. :factory1 :hasSpace :room2. :factory1 :hasSpace :roo
m3

• (Q) :factory2 :hasSpace ?room
(R) sapl:I sapl:doNotBelieve {:factory2 :hasSpace ?room}

• (Q) {:factory1 :hasSpace ?room. {?room :hasTemperature ?temp} sapl:is
sapl:Optional} sapl:All ?room
(R) :factory1 :hasSpace :room2. :room2 :hasTemperature
20. :factory1 :hasSpace :room3. :factory1 :hasSpace :room1. :room1 :hasTemperature
25

• (Q) {{{?r1 :hasTemperature ?temp. ?temp > 24} sapl:or
{?r2 :hasHumidity ?hum. ?hum > 85}} sapl:All ?r1 } sapl:All ?r2
(R) :room2 :hasHumidity 90. :room1 :hasTemperature 25

• (Q) ?left => ?right. ?left sapl:hasMember {:room1 :hasTemperature ?t}
(R) {?room :hasTemperature 30} => {sapl:I ex:sendAlarm {:source sapl:is ?room}}

The last of the example queries above demonstrates an important feature of S-APL – ability
of agents to exchange rules. Therefore, an agent can ask another agent how that will react if
some situation occurs. Alternatively, an agent may query another agent if that knows a plan
leading to achieving a goal. The above example also demonstrates a specific convention of S-
APL – the data against which a query is evaluated can be implicitly universally quantified
through use of variables. This is why the query for a specific
room ”{:room1 :hasTemperature ?t} => {}” yields a universal rule ”{?room :hasTemperature
30} => {}”.

The next simple program below, Believer.sapl, instructs the agent to add to its beliefs
everything that it receives in messages with the ”inform” performative. This program can, for

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 21

example, be used by an employee agent which is committed to comply with any of its boss’
statements. Some similar code is also needed for an agent that queried some information
from an Informer (see above) to add the response to its beliefs. Note that substituting the
line ”?content sapl:is sapl:true” with something like ”{?content sapl:is
sapl:true} :accordingTo :John” will lead to another effect: instead of believing into the
information provided, the agent will record it wrapped as ”John thinks that ...”.

/*Believer.sapl*/

{ {?requestID p:received {p:content sapl:is ?content.

p:performative sapl:is inform}

 } => {

sapl:I sapl:remove {?requestID p:received *}.

?content sapl:is sapl:true

 }

} sapl:is sapl:Rule

Due to the fact that in S-APL there is no principal difference between data and program code,
the content of the message to a Believer agent could include commitments, unconditional or
conditional, and the Believer would comply and perform those actions. In this sense, the
Believer with the code as above is more like a slave fully controlled by its master. In less
dependent settings, agents can request other agents to perform some actions, corresponding
either to a RAB or an abstract capability. The core of the request is the same as in a normal
unconditional commitment, only with sapl:You in place of sapl:I, and in addition wrapped
with sapl:I sapl:want: sapl:I sapl:want { {sapl:You sapl:do ...} sapl:configuredAs {...} }. The
small program below, Follower.sapl, is to be used then by an agent to perform actions
requested in this way (again, only the basic logic is included without access control or other
checks).

/*Follower.sapl*/

{ {?requestID p:received {p:content sapl:is {

sapl:I sapl:want {{sapl:You sapl:do ?action}

sapl:configuredAs ?params}}}

 } => {

sapl:I sapl:remove {?requestID p:received *}.

 {sapl:I sapl:do ?action} sapl:configuredAs ?params

 }

} sapl:is sapl:Rule

Use of S-APL as a communication language is quite natural because the communication over
S-APL is easily organized with S-APL programming alone. An obvious additional benefit is
the level of integration that in no-effort is then achieved between the communication and the
agent behavior prescriptions. For example, an agent can query another agent for behavior
rules – either to understand how that will react if a certain situation occurs or to learn itself

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 22

how to achieve a certain goal. Similarly, agents can exchange commitments, plans, or
basically belief structures of any complexity. To mention, in our current implementation the
S-APL repositories (see Chapter 1) are managed by agents with Listener and Informer
programs loaded and answering queries of the type ”?x sapl:belongs <some_sapl_program>”.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 23

UBIWARE Deliverable D1.3:
Workpackage WP3:

Task T1.3_w3:

3 SURPAS – Smart Ubiquitous Resource
Privacy and Security

The security is often seen as an add-on feature of a system. However, in many systems (and
UBIWARE is one of them), the system remains nothing more but a research prototype,
without a real potential of practical use, until an adequate security infrastructure is embedded
into it. The main objective of this work package is the design of the SURPAS infrastructure
for policy-based optimal collecting, composing, configuring and provisioning of security
measures in multi-agent systems like UBIWARE. SURPAS follows the general UBIWARE
vision – configuring and adding new functionality to the underlying industrial environment
on-the-fly by changing high level declarative descriptions. Regarding security, this means
that SURPAS will be able of smoothly including new, and reconfiguring existing, security
mechanisms, for the optimal and secure state of the UBIWARE-based system, in response to
the dynamically changing environment. The optimal state is always a tradeoff between
security and other qualities like performance, functionality, usability, applicability and other.

During WP3’s Year 1 (the Access phase), WP3 developed an infrastructure for semantic
access control in UBIWARE, with S-APL used for specification of access control policies.
Such policies may prohibit or allow an operation of a certain class to be performed by an
agent of a certain class on some resource of a certain class.

As to UBIWARE 1.0 platform, the development contribution of WP3 consists of:

• Introducing into S-APL and the behavior engine the concept of a meta-rule (see
Chapter 1).

• Standard S-APL models Security.SBACReasoner and Communication.Ontology.

3.1 Ontological modeling of operations

Semantics-based access control (SBAC) in UBIWARE steams from following observations:

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 24

• From the basic S-APL axiom, an operation (a commitment to executing a RAB, or a
communicative action) is just a belief structure (agent’s mental attitude). Therefore, it
is possible to specify an S-APL query (as those used in the left side of rules in WP1 or
as those sent from between agents wrapped as sapl:I sapl:want {sapl:You sapl:answer
<query>} in WP2), which can be matched against G to find if the agent has such a
mental attitude.

• Such a query, when universally quantified by using variables, presents a pattern for
matching against a class of such mental attitudes and, therefore, can be used as the
definition of this class.

• It is common to have an inheritance (class-subclass) hierarchy of operations. In terms
of S-APL queries, the definition of a subclass usually only introduces some additional
restriction on the variables used in the definition of the super-class.

In UBIWARE, using SBAC assumes that the inheritance hierarchy of operations is modelled
in a following fashion:

• The top of the hierarchy is defined using <class> sapl:is <query>. Normally, <query>
has only one (compound) statement which identifies the mental attitude in question.
The top-hierarchy class is not supposed to be used in policy definitions, only its
subclasses.

• The subclasses are defined using <subclass> rdfs:subClassOf <class>;
owl:Restriction <extension to query>. Starting from the second from the top class, the
variables ?subject and ?object must be included into the query, so that after evaluating
the query it will be known who is the subject (actor) and who is the object of the
operation.

Consider the following example:

:ActionCommitment sapl:is {

 {sapl:I sapl:do ?behavior} sapl:configuredAs ?parameters

}.

:Action rdfs:subClassOf :ActionCommitment;

 owl:Restriction {sapl:I owl:sameAs ?subject. sapl:I owl:sameAs ?object}.

:Print rdfs:subClassOf :Action;

owl:Restriction {?behavior = :Print. ?parameters sapl:hasMember {p:print
sapl:is ?print}}.

:Swear rdfs:subClassOf :Print;

owl:Restriction {:BadWord sapl:is ?word. sapl:true = "contains(?print,?word)"}.

Here, we define some simple ontology the top-class of which is :ActionCommitment and the
first subclass that can be used in SBAC statements is :Action. :Action adds to the basic query
of :ActionCommitment two additional statements which are supposed to initialize
both ?subject and ?object variables to the URI of the agent (it is considered to be both an
actor and the object in this case).

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 25

Then, a specific action :Print is defined by putting a restriction on the variable ?behavior so
that it has to be equal to “:Print”. The definition of :Print also bring forward the text that is to
be printed and puts it into an additional variable ?print. Finally, even more specific
action :Swear is describing that :Swear is :Print where ?print contains one of the words that
are known to be bad. Note that this requires an additional query statement “:BadWord
sapl:is ?word” and assumes that the agent may have some beliefs of this form. Obviously, the
practical idea behind this example is that we may want to prohibit swearing, so that the agent
will never be able to print out anything that contains any bad words (see next subsection).

The next example is the content of Communication.Ontology model, which defines the
hierarchy of communicative actions between agents (here, the prefix com: is defined as
<http://www.ubiware.jyu.fi/communication#>):

/*Classes of communicative actions*/

com:Message sapl:is {

 ?messageID p:received { p:sender sapl:is ?subject. p:performative sapl:is ?performative.

 p:content sapl:is ?content. p:ontology sapl:is ?ontology }

}.

com:SpeechAct rdfs:subClassOf com:Message;

owl:Restriction {sapl:I owl:sameAs ?object}.

com:ProactiveSpeechAct rdfs:subClassOf com:SpeechAct;

 owl:Restriction { ?content sapl:hasMember {sapl:I sapl:want {

 {sapl:You ?actType ?actContent}

 sapl:or

{{sapl:You ?actType ?actContent} * *}

 }

 }}.

com:Query rdfs:subClassOf com:ProactiveSpeechAct;

owl:Restriction {?actType = sapl:answer}.

com:Order rdfs:subClassOf com:ProactiveSpeechAct;

owl:Restriction {?actType = sapl:do}.

com:Persuade rdfs:subClassOf com:ProactiveSpeechAct;

owl:Restriction {?actType = sapl:add}.

Note that ?subject of a communicative actions is one who has sent the message, while ?object
is one who received it, i.e. the agent in question. The class com:Query corresponds to the
communicative actions that an Informer (see Chapter 2) handles. The class com:Order
corresponds to the communicative actions that a Follower handles, while the class
com:Persuade to the communicative actions that a Believer handles. Obviously, the practical
idea here is that we can now define SBAC policies that will restrict what agents answer

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 26

queries or follow orders of what other agents - without the need to modify the models
Informer, Follower or Believer, so they can remain as simple as described in Chapter 2.

3.2 Specifying access control policies

SBAC policies in UBIWARE are specified using simple SBAC statements (here, prefix sbac:
is defined as <http://www.ubiware.jyu.fi/sbac#>):

• {<class of subjects> <class of operations> <class of objects>} sapl:is sbac:Prohibition.
• {<class of subjects> <class of operations> <class of objects>} sapl:is sbac:Privelege.

The effect is then that any mental attitude is removed if there is a Prohibition that covers it
while there is no Privelege that covers it. For the example of prohibiting swearing, one could
define the domain ontology and the policy as follows:

sapl:I owl:sameAs fg:Bill.

fg:Bill rdf:type fg:Boss.

fg:John rdf:type fg:Employee.

fg:Boss rdf:subClassOf fg:Employee.

{fg:Employee :Swear fg:Employee} sapl:is sbac:Prohibition.

Such policy implies no employee is allowed to swear. It is also possible to use * in place of
the subject and the object leading to that the policy will apply to any resource.

For the example about communicative actions, one could define the domain ontology and the
policy as follows:

sapl:I owl:sameAs fg:John.

fg:John rdf:type fg:Employee.

fg:Bill rdf:type fg:Boss.

fg:Boss rdfs:subClassOf fg:Employee.

bill owl:sameAs fg:Bill.

{* com:ProactiveSpeechAct *} sapl:is sbac:Prohibition.

{fg:Boss com:Query *} sapl:is sbac:Privelege.

Such a policy defines that the agent in question must not comply with any proactive speech
act, with the only exception of a com:Query originated from an agent belonging to the class
fg:Boss.

The SBAC run-time operation is implemented then by one rule and one meta-rule in the
standard Security.SBACReasoner S-APL model (has to be loaded by the agent).
SBACReasoner must be used together with RDFSReasoner so that the class hierarchy of

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 27

resources will be inferred. So, in the first example above, RDFSReasoner is needed to infer
that the agent is question is an Employee, because Boss is a subclass of Employee.

{

//Make the owl:Restriction of actions full by adding the owl:Restriction of their super-classes

 {

 {{

 ?X owl:Restriction ?own. ?X rdfs:subClassOf ?C.

 ?C owl:Restriction ?super. ?super sapl:hasMember ?id.

sapl:I sapl:doNotBelieve {?own sapl:hasMember ?id}

 } sapl:All ?X } sapl:All ?C

 } => {

 ?own sapl:hasMember ?super

 }

} sapl:is sapl:Rule.

{

//Remove a mental attitude if there is a Prohibition that covers it while there is no Privelege that
covers it

 {

 {

 {?no_subject ?no_action ?no_object} sapl:is sbac:Prohibition.

 {?no_action sapl:is ?base. { ?base sapl:is sapl:true } sapl:ID ?id}

 sapl:or {?no_action rdfs:subClassOf ?act_root.

?act_root sapl:is ?act_base.

{ ?act_base sapl:is sapl:true } sapl:ID ?id.

 ?no_action owl:Restriction ?act_restriction.

?act_restriction sapl:is sapl:true}.

 {?subject = ?no_subject} sapl:or {{?subject owl:sameAs ?no_subject}

sapl:or {?subject rdf:type ?no_subject}}.

 {?object = ?no_object} sapl:or {{?object owl:sameAs ?no_object}

sapl:or {?object rdf:type ?no_object}}.

 sapl:I sapl:doNotBelieve {

 {?yes_subject ?yes_action ?yes_object} sapl:is sbac:Privelege.

 {?subject = ?yes_subject}

 sapl:or {{?subject owl:sameAs ?yes_subject}

 sapl:or {?subject rdf:type ?yes_subject}}.

 {?object = ?yes_object} sapl:or {{?object owl:sameAs ?yes_object}

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 28

 sapl:or {?object rdf:type ?yes_object}}.

 {?no_action = ?yes_action}

sapl:or {{?no_action rdfs:subClassOf ?yes_action}

 sapl:or { ?yes_action rdfs:subClassOf ?no_action.

 ?yes_action owl:Restriction ?restriction2.

?restriction2 sapl:is sapl:true}}

 }

 } sapl:All ?id

 } => {

 sapl:I sapl:erase ?id.

 {sapl:I sapl:do :Print} sapl:configuredAs {

p:print sapl:is "Security has blocked a case of ?no_action"}

 }

} sapl:is sapl:MetaRule.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 29

UBIWARE Deliverable D1.3:
Workpackage WP4:

Task T1.3_w4:

4 Self-Management, Configurability and
Integration

UBIWARE aims to be a platform that can be applied in different application areas. This
implies that the elements of the platform have to be adjustable, could be tuned or configured
allowing the platform to run different business scenarios in different business environments.
Such flexibility calls for existence of a sophisticated configuration layer of the platform. All
building blocks of the UBIWARE platform, i.e. software agents, agent behaviors, resource
adapters, etc, become subject to configuration. On the other hand, a flexible system should
have a long lifespan. Hence, the platform should allow extensions, component replacements,
and component adjustments during the operation time. This work package aims at
introducing configurability as a pervasive characteristic of UBIWARE and developing the
technology which will systemize and formalize this feature of the platform.

During WP4’s Year 1 (the Component phase), we developed solutions for configurability of
basic UBIWARE elements such as resource adapters and Reusable Atomic Behaviors, with
S-APL used as the tool for both describing the configuration and for applying it.

As to UBIWARE 1.0 platform, the development contribution of WP4 consists of:

• A set of RABs - TextTableReaderBehavior, SQLReaderBehavior,
ExcelReaderBehavior, XmlReaderBehavior, XmlWriterBehavior - as a part of the
general approach towards resource adaptation (see Section 4.1)

• Standard S-APL models Configurability.RABConfigurator (see Section 4.2)

4.1 Resource adaptation

Roughly speaking, resource adaptation involves accessing data from an industrial resource
(either physical through sensors or a digital like a database) in its own proprietary format and
transforming this data into an ontological S-APL presentation. The UBIWARE’s general
approach towards configurable resource adaptation is depicted in Figure 4.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 30

Original
Data

Data
Transformation

Script
Data-model-

ontology
S-APL

Data-model-

ontology
S-APL

Domain-
ontology

S-APL
 Standard RAB

Figure 4. UBIWARE approach to resource adaptation

The resource adaptation is performed in two phases:

• First, the original data from the resource is transformed into an S-APL representation
based on the ontology of the data model of the original data. This transformation is
performed by a Reusable Atomic Behavior (RAB).

• Second, the data from the data-model-ontology S-APL is transformed into the final
domain-ontology S-APL using S-APL own means, i.e. rules.

At present, most of the data in the industrial applications is encoded using either table data
model (relational databases, comma-separated files, etc) or XML tree data model. Ubiware
1.0 provides a set of standard transformation RABs, including TextTableReaderBehavior
(file), SQLReaderBehavior (relational database), ExcelReaderBehavior (MS Excel table),
and XmlReaderBehavior (XML file). These 4 RABs already cover a large share of industrial
adaptation cases.

TextTableReaderBehavior, SQLReaderBehavior and ExcelReaderBehavior are different in a
sense that they read different media, but all 3 follow the table data model and produce
similar output. The ontology of tables consists of such concepts as table, row and column.
All 3 RABs produce the following output structure that is based on this ontology:

<input name> :table {

<row number> :row {

<column name or number> :column <value>.

 …

}.

 …

}

XmlReaderBehavior follow the XML tree data model. The ontology of XML trees consists of
such concepts as tree, branch, leaf, tag, and attribute. XmlReaderBehavior produces the
following output structure that is based on this ontology:

<input file name> :tree {

 {<child number> :tag <tag name>} :branch {

 {<child number> :attribute <attribute name>} :leaf <attribute value>.

 <child number> :leaf <literal value>.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 31

 {<child number> :tag <tag name>} :leaf :empty.

 {<child number> :tag < tag name>} :branch {

…

}

 }

}

As can be seen, XML tree is described as a hierarchical structure of branches and 3 types of
leafs: XML attributes, literal nodes, and empty elements (e.g.
). Child numbering is
inside one given branch.

Note UBIWARE 1.0 also includes XmlWriterBehavior which performs the transformation in
the opposite direction. Given a S-APL structure as above, it produces corresponding XML
string. Obviously, the whole resource adaptation process in Figure 3 may be performed in the
opposite direction - we transform some domain-ontology-based S-APL into XML-tree-based
S-APL and then apply XmlWriterBehavior to get the final XML document. We use this
approach in the industrial cases to produce HTML interfaces.

The transformation between data-model ontology S-APL and domain ontology S-APL is an
easy and straightforward task. Below is an example (based on Fingrid case, but not the exact
code):

 {

 * :table {?rowId :row { ALARMTEXT :column ?text. TIME :column ?time

 AORMASKGRP2 :column ?area.

 }

}.

 ?year sapl:expression "substring(?time,6,10)".

 } => {

 {

 fg:EventHistory fg:hasEvents {{

 fg:alarm :is ?text. fg:time :is ?time.

 fg:year :is ?year. fg:area :is ?area.

 } fg:id ?rowId}.

 } sapl:All ?rowId .

 }

Since the resource adaptation is performed in two phases, each of the phases can be subject
to (re-)configuration. The S-APL transformation script is configurable by default since
modifiability is an inherent S-APL feature. The behavior of the transformation RAB can be
adjusted through the mechanism described in the next subsection.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 32

4.2 Configurability of atomic behaviors

In UBIWARE, the meta-rule mechanism, which has been initially introduced for realizing
security access control policies, is also used for configurability of Reusable Atomic
Behaviors (RABs) (Actually the approach works for any unconditional commitments - also
to complex actions not having “java:” or “:” namespaces, but we will speak here about
RABs).

When using this approach, the configuration settings of RABs are specified using the
following structure (here, prefix cfg: is defined as <http://www.ubiware.jyu.fi/
configurability#>):
<RAB> cfg:configuredAs {

<parameter to override or add> sapl:is <value>.
<parameter to add if not defined> cfg:isDefault <value>.

}
The idea is that any call of this <RAB> will be then modified - meaning that list of
parameters specified in the call itself will be extended / overridden. Any parameter specified
with predicate sapl:is will be overridden (or added if was not given), while any predicate
specified in with cfg:isDefault will be added only if it was not given in the call itself. Note
that the RAB configuration settings are specified using cfg:configuredAs, not
sapl:configuredAs (same local name, different namespaces).

Consider the following example of a RAB configuration:

java:ubiware.shared.TextTableReaderBehavior cfg:configuredAs {

p:selectColumns cfg:isDefault "1 3".

p:encoding sapl:is "UTF-16".

}.

Then, if the call to this RAB was like:

{sapl:I sapl:do java:ubiware.shared.TextTableReaderBehavior} sapl:configuredAs {

 p:input sapl:is “test.csv”.

p:columnSeparator sapl:is ",|\\s+".

 p:encoding sapl:is "default".

}

The actual call will be performed as:

{sapl:I sapl:do java:ubiware.shared.TextTableReaderBehavior} sapl:configuredAs {

 p:input sapl:is “test.csv”.

p:columnSeparator sapl:is ",|\\s+".

 p:encoding sapl:is "UTF-16".

p:selectColumns sapl:is "1 3".

}

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 33

In result, the assumed encoding of the CSV document being loaded with be modified to
Unicode, as well as the columns that are included into the result will be reduced to only first
and third (default value is all). Note that in this example, if the RAB call was specifying
p:selectColumns itself, the value would not be changed.

The run-time operation of this approach is then implemented then single meta-rule in the
standard Configurability.RABConfigurator S-APL model (has to be loaded by the agent):

{

 {

 {sapl:I sapl:do ?action} sapl:configuredAs ?config.

 ?action cfg:configuredAs ?default.

 {?default sapl:hasMember {?param sapl:is ?value}.

 sapl:I sapl:doNotBelieve {?config sapl:hasMember {?param sapl:is ?value}}}

 sapl:or {?default sapl:hasMember {?param cfg:isDefault ?value}.

 sapl:I sapl:doNotBelieve {?config sapl:hasMember {?param sapl:is *}}}

 } => {

 {

 sapl:I sapl:remove {?config sapl:hasMember {?param sapl:is *}}.

 {

 sapl:I sapl:add {?config sapl:hasMember {?param sapl:is ?value}}

 } sapl:All ?value

 } sapl:All ?param

 }

} sapl:is sapl:MetaRule.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 34

UBIWARE Deliverable D1.3:
Workpackage WP5:

Task T1.3_w5:

5 Smart Interfaces: Context-aware GUI
for Integrated Data (4i technology)

This workpackage studies dynamic context-aware Agent-to-Human interaction in
UBIWARE, and elaborates on a technology which we refer to as 4i (FOR EYE technology).
From the UBIWARE point of view, a human interface is just a special case of a resource
adapter. We believe, however, that it is unreasonable to embed all the data acquisition,
filtering and visualization logic into such an adapter. Instead, external services and
application should be effectively utilized. Therefore, the intelligence of a smart interface will
be a result of collaboration of multiple agents: the human’s agent, the agents representing
resources of interest (those to be monitored or/and controlled), and the agents of various
visualization services. This approach makes human interfaces different from other resource
adapters and indicates a need for devoted research. 4i technology will enable creation of such
smart human interfaces through flexible collaboration of an Intelligent GUI Shell, various
visualization modules, which we refer to as MetaProvider-services, and the resources of
interest.

During the Project Year 1, the work in this WP will develop the general principles of the 4i
approach and will aim at developing an appropriate GUI Shell.
The WP development task Task T1.2_w5 for the Year 1 is concentrated on development of a
simple MetaProvider for context dependent resource visualization, development of initial
GUI-Shell able to communicate with the MetaProvider.

5.1 Background

Now, when human becomes very dynamic and proactive resource of a large integration
environment with a huge amount of different heterogeneous data, it is quite necessary to
provide a technology and tools for easy and handy human information access and
manipulation. Semantically enhanced context-dependent multidimensional resource
visualization (Khriyenko, 2007a, Khriyenko, 2007b) provides an opportunity to create

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 35

intelligent visual interface that presents relevant information in more suitable and
personalized for user form. Context-awareness and intelligence of such interface brings a
new feature that gives a possibility for user to get not just raw data, but required information
based on a specified context.

Now it has become evident that we cannot separate visual aspects of both data representation
and graphical interface from interaction mechanisms that help a user to browse and query a
data set through its visual representation. Following GUN-Resource centric approach
(Kaykova et al., 2005), let us consider user interfaces for context-based resource access and
contextually related information retrieving. The challenging task is to create a visual
interface that provides integrated information from variety of information providers in
context-dependent way. Following new technological trends, it is time to start a new stage in
user visual interface development – a stage of semantic-based context-dependent
multidimensional resource visualization. Presented 4i technology is a step to achieve this
goal (Khriyenko, 2007a).

4i (FOR EYE) is an ensemble of GUN Resource Platform Intelligent GUI Shell (smart
middleware for context dependent use and combination of a variety of different
MetaProviders depending on user needs) and MetaProviders, visualization
modules/platforms that provide context-dependent filtered representation of resource data
and integration on two levels (information/data integration of the resources to be visualized
and integration of resource representation views with a handy resource browsing) (see Figure
5). Context-awareness and intelligence of such interface brings a new feature that gives a
possibility for user to get not just raw data, but required integrated information based on a
specified context. GUI Shell allows user dynamic switching between MetaProviders for more
suitable information representation depending on a context or resource nature. From other
side, MetaProvider plays fore main roles:

- Context-aware resource visualization module that presents information regarding to
specified context in more suitable and personalized for user form;
- Interface for integrated information visualization with intelligent context-aware filtering
mechanism to present only relevant information, avoiding a glut of unnecessary
information;
- Visual Resource Platform that allows resource registration, search, access and
modification of needed information/data in a space of registered resources;
- Mediator that facilitates resource to resource (R2R) communication.

Such switching and filtering process is a kind of visual semantic browsing based on semantic
description of the context and resource properties.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 36

GUN Platform

GUN Platform

MetaProvidersMetaProviders

Register of
MetaProviders

Context-dependent retrieving
of appropriate MetaProviders

GUN-Resource

GUN-Resource

C
o
n
te
x
tu
a
l
p
ro
p
e
rtie
s

IntelligentIntelligent GUI ShellGUI Shell

Search context
(location)

Wind direction – N:E

RequestRequest (physical condition)

ResponseResponse (fire, forest work)
RequestRequest (weather condition)

ResponseResponse (wind direction)

GUN Platform

Fire - true

Forest work - false

GUNGUN--ResourceResourceFilteringFiltering contextcontext (physical damage)

Figure 5 - Intelligent Interface for Integrated Information (4i technology) (Khriyenko, 2007a).

Now, when unlimited interoperability and collaboration demand data and information
sharing, we need more open semantic-based applications that are able to interoperate and
collaborate with each other. Ability of the system to perform semantically enhanced resource
search/browsing based on resource semantic description brings a valuable benefit for today
Web and for the Web of the future with unlimited amount of resources. Proposed resource
visualization approach can find a place and can be utilized in various visual systems and
especially in next-generation human-centric open environments for resource collaboration
with enhanced semantic and context-based visual resource browsing. It can be considered as
a new valuable extension of text-based Semantic MediaWiki to Context-based Visual
Semantic MediaWiki. This is a good basis for the different business, production,
maintenance, healthcare, social process models creation and multimedia content management.

5.2 SmartInterface

As mentioned above, SmartInterface is presented by GUI-Shell (central browser of the
system) and remote distributed visualization modules - MetaProviders.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 37

5.2.1 GUI-Shell

GUI-Shell is presented by Html-page and remote server part that plays role of search engine
and performs all necessary complex calculations. Main Html-page contains five areas (see
Figure 6):

� Resource Search Area: Based on keywords, which describe a resource type (class of
resources) and a content of a resource, user gets a list of corresponding resources;

� Resource Description Area: Here, properties of current (currently selected) resource
are displayed to the user. In current version of the prototype, user may just observe
resource properties and cannot make any changes to them;

� Visualization Context Area: Here system provides a list of visualization contexts for
currently visualized resources;

� MetaProviders Area: Depending on chosen resource visualization context, a list of
appropriate visualization modules (MetaProviders) is presented for user in this area;

� Resource Visualization Area: This is an area, where visualization page of chosen
MetaProvider is loading and performs.

Figure 6 – GUI-Shell.
Resource Search Area

Resource Description Area
Resource Visualization Area

Visualization Context Area

MetaProviders Area

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 38

Another important part of the GUI-Shell is server part of it. As a search engine, it performs
several tasks:

� based on keyword of resource type and resource content descriptions, returns a list of
matched resource back to Html-page;

� parses Ontology and returns a list of correspondent visualization contexts relevant for
class of selected resource;

� returns a list of appropriate MetaProviders based on specified resource (resource class)
and visualization context.

Doing the first year prototype, we decided to use XML files for storing resource’s,
visualization context’s, MetaProvider’s descriptions and for information exchange between
the parts of the system. Below you can see the XML structures we have used:

Resource description:

<resource>
 <resId>...</resId>
 <resClass>...</resClass>
 <name>...</name>
 <resTypeDes>
 <rtdItem>...</rtdItem>
 ...
 </resTypeDes>
 <resContDes>
 <rcdItem>...</rcdItem>
 ...
 </resContDes>
 <properties>
 <property>
 <prop_id>...</prop_id>
 <prop_name>...</prop_name>
 <prop_value>...</prop_value>
 </property>
 ...
 </properties>
</resource>

Resource visualization context description:

<context>
 <contId>...</contId>
 <name>...</name>
 <forClasses>
 <class>...</class>
 ...
 </forClasses>
</context>

resource id

keywords for resource type (class) description…

keywords for resource content description…

other resource properties…

resource name
class of the resource

context id
name of the context

set of resource classes for which current visualization
context is applicable

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 39

MetaProvider description:

<mp>
 <mpId>...</mpId>
 <name>...</name>
 <link>...</link>
 <rescont>
 <resClass>...</resClass>
 <cont>
 <contId>...</contId>
 <_in>...</_in>
 ...

<_ins refProp="...">
 <_in>...</_in>
 ...
 </_ins>
 <_out>...</_out>
 </cont>
 ...
 </rescont>
 ...
</mp>

Present structures are built with a purpose to be easily converted to RDF representation
without any logic to be lost.

Following figure (see Figure 7) presents a full interaction model of the system. On the first
step, user performs search for initial resource to start through-resource browsing process.
Based on keywords that describe type and content of a resource, GUI-Shell searches
resources via accessible databases or with a help of MetaProviders that have own data
storages. Then, user can choose proper resource from a list of found resources. On the second
step, GUI-Shell brows ontology and gets a list of relevant resource visualization contexts.
Based on specified context for current resource, GUI-Shell searches for appropriate
visualization modules (MetaProviders). There are can be number of them (with different
implementations, sets of features, etc.) When certain MetaProvider has been chosen, it sets
up communication with GUI-Shell and, based on specified resource and context, decides
what the relevant resources (in this context) are and what data needed for proper visualization
is. On the fourth step, MetaProvider starts to retrieve necessary information from own
databases, through communication with GUI-Shell or other MetaProviders. When all (at least
necessary part) the data is collected, MetaProvider performs visualization in Resource
Visualization Area of the GUI-Shell. Fifth interaction step between GUI-Shell and
MetaProviders is reserved for feedback when MetaProvider informs the GUI-Shell about
selected resource. Thus, whole through-resource browsing cycle ends and starts here.

Current implementation is not based on UBIWARE Agent Platform. For the first year
prototype of 4I Technology we decided to check the possibility of newly elaborated idea
implementation and do not base development on underdevelopment prototype of UBIWARE
Platform. For the next year we are going to implement whole system based on the first year
version of UBIWARE Platform.

MetaProvider id
name of the MetaProvider

set of required properties of the resource…

link to the MetaProvider

class of a resource to be visualized…

visualization context for the resource…

set of required properties of context related resources,
which have relation to the subject resource via “refProp”
property…

Out property – in our case it is” resId” (id of a resource)

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 40

DB/KBDB/KBDB/KBDB/KB

MetaProviders

Intelligent GUI Shell

DB/KBDB/KB

Knowledge Data Base

DB/KBDB/KB
11

55

22

44

44

wordword--based search requestbased search request

instance or empty instance of a mentioned classinstance or empty instance of a mentioned class
request for the relevant contextsrequest for the relevant contexts

list of the relevant contextslist of the relevant contexts
request for the contextrequest for the context--related resources to be visualizedrelated resources to be visualized

resources (relevant properties values)resources (relevant properties values)

selected resourceselected resource

resource & contextresource & context

References to References to MetoProvidersMetoProviders
33

 Figure 7 – SmartInterface interaction model.

Communication between GUI-Shell and MetaProvider is planed to be organized based on
Agent communication. Further, in Agent based implemented version, MetaProviders
themselves will decide (reason) what is the necessary data and will perform retrieving of it
with a help of the GUI-Shell or via own data retrieving channels. But, in current version, to
avoid non-reusable implementation of communication between GUI-Shell and visualization
modules, we put a description of input data (necessary resources’ properties) for
MetaProviders to their descriptions. Thus, GUI-Shell collects required input data and sends it
through the request on MetaProvider loading.

To organize dynamic search on-the-fly, we applied AJAX technology1 during the GUI-Shell
development. AJAX (Asynchronous JavaScript and XML), is a group of inter-related web
development techniques used for creating interactive web applications. A primary
characteristic is the increased responsiveness and interactivity of web pages achieved by
exchanging small amounts of data with the server "behind the scenes" so that entire web
pages do not have to be reloaded each time there is a need to fetch data from the server. Thus,
this technology allows us to build dynamic SmartInterface and increase the interactivity,
speed, functionality and usability of it.

5.2.2 MetaProvider – “Member-Of visualizer”

Concerning development of the simple MetaProvider (“Member-Of visualizer”) that
visualizes resource in contexts were “member-of” property plays main role, with the purpose
to visualize it in more natural for human way, we decided to utilize X3D2 related
technologies. X3D is a royalty-free open standards file format and run-time architecture to
represent and communicate 3D scenes and objects using XML. It is an ISO ratified standard
that provides a system for the storage, retrieval and playback of real time graphics content

1 AJAX technology - http://www.w3schools.com/AJAX/default.asp
2 X3D technology - http://www.web3d.org/

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 41

embedded in applications, all within an open architecture to support a wide array of domains
and user scenarios. The development of real-time communication of 3D data across all
applications and network applications has evolved from its beginnings as the Virtual Reality
Modeling Language (VRML) to the considerably more mature and refined X3D standard. To
provide communication with X3D scene, we utilized SAI (Scene Access Interface) that
allows a programmer to change or build X3D worlds, and AJAX technology.

In current implementation the only strict requirement for MetaProvider development is
“callFunction” input parameter. This parameter contains the name of callback function of the
GUI-Shell which MetaProvider should call and send the ID of the current (selected) resource
as a parameter.

“Member-Of visualizer” is a simple MetaProvider that visualizes a resource and related to it
resources via “member-of” upper-property. For example, members of an organization (group)
or projects leaded by this organization, project consortium or management board members,
etc. MetaProvider is developed based on X3D technology to present resource in more
demonstrative for human form. As the one of the best representation forms, the image based
representation has been used to visualize a resource. Person is visualized via his/her photo,
organization – via its logo. That is why, required data for such visualizer is:

� resource ID, image (photo, logo, etc.), image width and height - of subject resource;
� same data set - of other related resources.

“Member-Of visualizer” is a JSP page that gets request from GUI-Shell and, based on
incoming parameters, utilizes server part of the MetaProvider to create an appropriate X3D
file to be loaded in imbedded X3D plug-in. Visualizer applies the same visualization
approach for all the resources (see Figure 8).

Figure 8 – “Member-Of visualizer” X3D Scene (project consortium).

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 42

This is a 3D scene with an image (photo or logo of subject resource) in the center of it. All
the other related resources (their images) are located around of the main one organizing a
circle/disk. Interface allows rotation of the circle/disk to get the best view point. Pointing on
an image causes highlighting of it and makes correspondent resource selected. The click on
any, related to the subject one, resource results its visualization. If the subject resource is
clicked, the circle/disk of related resources performs slow rotation on 360 degree to present
all the resources to the user. To be able communicate with GUI-Shell, MetaProvider gets a
callback function in a request from it. Each time, when user selects a resource on the
MetaProvider, this function is called and GUI-Shell gets a correspondent resource ID to show
the resource properties and continue resource visualization process.

5.2.3 Useful features

With a purpose to make interaction with a SmartInterface more user-friendly and do not
demand a lot of manipulation from user, we defined default visualization contexts for
resource classes and MetaProviders for certain visualization context. Further, we plane to add
personalization to the prototype and user will be able to choose favorite visualization module
(MetaProvider) for certain resource in certain visualization context. This personalized data
will be stored in own user-profile and will be applied with log-in to the system.

Also, we are thinking about a smart and intelligent technique for automatic dynamic selection
of a visualization context. The logic will be based on a history of visualization contexts and
resources that user has browsed/visualized previously. This context ranking technique will
allow us to sort a list of visualization contexts in more appropriate order for user and give
him/her a hint for next logical step in though resource browsing process. Thus, it can become
a smart search system that leads the user in proper direction/way.

5.3 Future work

WP5’s Year 2 will elaborate on probably the most important part of 4i vision, which can be
called “context provision”. Especially when considering a human, presenting information on
a resource of interest alone is not sufficient - information on some “neighboring” objects
should be included as well, which form the context of the resource. For example, a resource
can be presented on a map thus shown in the context of objects which are spatial (geographic)
neighbors of it. What is important is that in different decision-making situations, different
contexts are relevant: depending on the situation the relevant neighborhood function may be
e.g. physical spatial, data-flow connectivity, what-affects-what, similar-type, etc. The ability
to determine what type of context in right one for the situation and collecting the information
that forms the context of that type for a specific resource is central in 4i vision.

During WP5’s Year 2 (the Context-awareness phase), therefore, the following research
questions are to be answered:

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 43

• What should be the architecture of MetaProvider-services so that they will be able to
effectively retrieve, integrate and deliver the context information both to for
presenting to humans (in a visual form) and for agents’ processing (semantic data)?

• What should be the architecture of the Intelligent GUI Shell, so that it will allow
situation-dependent selection of MetaProviders (i.e. different types of context) and
cross-MetaProvider browsing and integration?

The WP tasks for the Year 2 are the following:
Task T2.1_w5 (research): Answer to the questions above. Design of mechanisms for

context-aware (visual) representations creation and
combining.

Task T2.2_w5 (development): Incorporating the research findings to the UBIWARE
prototype.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 44

Bibliography

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Developing Multi-Agent Systems

with JADE. Wiley.
Collier, R., Ross, R. and O’Hare, G.M.P. (2005). Realising reusable agent behaviours with

ALPHA. In Proc. 3rd Conference on Multi-Agent System Technologies (MATES-05),
LNCS vol. 3550, pp. 210–215.

Helsinger, A., Thome, M., and Wright, T. (2004). Cougaar: a scalable, distributed multi-
agent architecture. In Proc. IEEE International Conference on Systems, Man and
Cybernetics. Volume 2, pp. 1910–1917.

Katasonov, A. (2008) UBIWARE Platform and Semantic Agent Programming Language (S-
APL): Developer’s guide, Online: http://users.jyu.fi/~akataso/SAPLguide.pdf.

Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A., Terziyan, V., Zharko, A., (2005).
General Adaption Framework: Enabling Interoperability for Industrial Web Resources,
In: International Journal on Semantic Web and Information Systems, Idea Group, ISSN:
1552-6283, Vol. 1, No. 3, July-September 2005, pp.31-63.

Khriyenko, O., (2007a). "4I (FOR EYE) Technology: Intelligent Interface for Integrated
Information", In: Proceedings of the 9th International Conference on Enterprise
Information Systems (ICEIS-2007), Funchal, Madeira – Portugal, 12-16 June 2007.

Khriyenko O., (2007b). "Context-sensitive Multidimensional Resource Visualization", In:
Proceedings of the 7th IASTED International Conference on Visualization, Imaging,
and Image Processing (VIIP 2007), Palma de Mallorca, Spain, 29-31 August 2007.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 45

Appendix A: UBIWARE Publications List

Katasonov A., Terziyan, V., Agent Communications with S-APL as the Content Language,
In: Proceedings of the International Workshop on Middleware for the Semantic Web in
conjunction with the Second IEEE International Conference on Semantic Computing (ICSC-
2008), August 4-7, 2008, Santa Clara, CA, USA, IEEE CS Press, 6 pp. (submitted 22 April
2008).

Katasonov A., Terziyan, V., Semantic Approach to Engineering Multi-Agent Systems, In:
Proceedings of the 1st international workshop on Agents for Autonomic Computing (AAC
2008) in conjunction with the 5th International Conference on Autonomic Computing
(ICAC 2008). June 6, 2008, Chicago, USA, IEEE CS Press, 8 pp. (submitted 21 April 2008).

Khriyenko O., SMART HUMAN ADAPTER - Multi-agent Context-sensitive Visual
Resource Browser, In: Proceedings of the Twelfth International Workshop on Cooperative
Information Agents (CIA-2008), September 10-12, 2008, Prague, Czech Republic, Springer
LNCS, 15 pp. (submitted 21 April 2008).

Katasonov A., Kaykova O., Khriyenko O., Nikitin S., Terziyan V., Smart Semantic
Middleware for the Internet of Things, In: Proceedings of the 5-th International Conference
on Informatics in Control, Automation and Robotics, 11-15 May, 2008, Funchal, Madeira,
Portugal, 11 pp.

Terziyan V., SmartResource – Proactive Self-Maintained Resources in Semantic Web:
Lessons learned, In: International Journal of Smart Home, Special Issue on Future
Generation Smart Space, 2008, SERSC publisher, ISSN: 1975-4094, 18 pp.

Katasonov, A., Terziyan, V., SmartResource Platform and Semantic Agent Programming
Language (S-APL), In: P. Petta et al. (Eds.), Proceedings of the 5-th German Conference on
Multi-Agent System Technologies (MATES’07), 24-26 September, 2007, Leipzig, Germany,
Springer, LNAI 4687 pp. 25-36.

Terziyan V., Predictive and Contextual Feature Separation for Bayesian Metanetworks, In: B.
Apolloni et al. (Eds.), Proceedings of KES-2007 / WIRN-2007, Vietri sul Mare, Italy,
September 12-14, Vol. III, Springer, LNAI 4694, 2007, pp. 634–644.

Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper Industry - A Semantic
Storing, Browsing and Annotation Mechanism for Online Fault Data, In: Proceedings of the
4th International Conference on Informatics in Control, Automation and Robotics (ICINCO),
May 9-12, 2007, Angers, France, INSTICC Press, ISBN: 978-972-8865-87-0, pp. 191-194.

 D1.3: UBIWARE Platform Prototype v.1.0

© 2008 UBIWARE Deliverable D1.3 46

Salmenjoki K., Tsaruk Y., Terziyan V., Viitala M., Agent-Based Approach for Electricity
Distribution Systems, In: Proceedings of the 9-th International Conference on Enterprise
Information Systems, 12-16, June 2007, Funchal, Madeira, Portugal, ISBN: 978-972-8865-
89-4, pp. 382-389.

Khriyenko O., 4I (FOR EYE) Technology: Intelligent Interface for Integrated Information,
In: Proceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS-2007), Funchal, Madeira - Portugal, 12-16 June 2007.

Khriyenko O., 4I (FOR EYE) Multimedia: Intelligent semantically enhanced and context-
aware multimedia browsing, In: Proceedings of the International Conference on Signal
Processing and Multimedia Applications (SIGMAP-2007), Barcelona, Spain, 28-31 July
2007.

Khriyenko O., Context-sensitive Multidimensional Resource Visualization, In: Proceedings
of the 7th IASTED International Conference on Visualization, Imaging, and Image
Processing (VIIP 2007), Palma de Mallorca, Spain, 29-31 August 2007.

Naumenko A., Semantics-Based Access Control in Business Networks, Jyvaskyla Studies in
Computing, PhD Thesis, Volume 78, Jyvaskyla University Printing House, 215 pages, 2007.

Srirama, S., and Naumenko, A., (2007). Secure Communication and Access Control for
Mobile Web Service Provisioning, In: Proceedings of International Conference on Security
of Information and Networks (SIN2007), 8-10th May, 2007.

Naumenko, A., SEMANTICS-BASED ACCESS CONTROL - Ontologies and Feasibility
Study of Policy Enforcement Function , In: Proceedings of the 3rd International Conference
on Web Information Systems and Technologies (WEBIST-07), Barcelona, Spain - March 3-6,
2007, Volume Internet Technologies, INSTICC Press, pp. 150-155.

Naumenko A., Katasonov A., Terziyan V., A Security Framework for Smart Ubiquitous
Industrial Resources, In: R. Gonzalves, J.P. Müller, K. Mertins and M. Zelm (Eds.), In:
Enterprise Interoperability II: New challenges and Approaches, Proceedings of the 3rd
International Conference on Interoperability for Enterprise Software and Applications
(IESA-07), March 28-30, 2007, Madeira Island, Portugal, Springer, pp. 183-194.

Katasonov A., Kaykova O., Khriyenko O., Loboda O., Naumenko A., Nikitin S., Terziyan
V., The Central Principles and Tools of UBIWARE, Technical Report (Deliverable D 1.1),
UBIWARE Tekes Project, Agora Center, University of Jyvaskyla, May-October 2007, 118
pp.

