
 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 1

UBIWARE Deliverable D2.1:

Individual resources and inter- resource
communication in UBIWARE

October, 2008

Date October 29, 2008
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Arnim Bleier, Yevgeniy Ivanchenko, Artem

Katasonov, Olena Kaykova, Joonas Kesäniemi,
Oleksiy Khriyenko, Michal Nagy, Sergiy Nikitin,
Michal Szydlowski, Mikko Vapa

Work component WP1, WP2, WP4, WP5, WP6
Deliverable Code D2.1
Deliverable Owner IOG, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 2

Table of Contents

Introduction... 3
1 UbiCore – Core Distributed AI platform design... 4

1.1 Ontological Coordination in Multi-Agent Systems Built with S-APL........................... 5
1.2 Market-based Evaluation of Alternative Actions ... 5
1.3 Observation is Multi-Agent Systems .. 18

2 UbiBlog – Managing Distributed Resource Histories .. 35
2.1 Distributed Querying Scenario in Paper Industry... 35
2.2 ONTONUTS concept.. 37
2.5 Conclusions... 48

3 SURPAS – Smart Ubiquitous Resource Privacy and Security....................................... 49
4 Self-Management, Configurability and Integration.. 50

4.1 Self-configuration and its benefits .. 50
4.2 DCOP as a mathematical model ... 52
4.3 Local optimization vs. global optimization .. 54
4.4 Reconfiguration... 54
4.5 Comparison of existing algorithms... 55
4.6 Test cases .. 58
4.7 Conclusion and future work.. 64

5 Smart Interfaces: Context-aware GUI for Integrated Data (4i technology) 66
5.1 SmartInterface: GUI-Shell enhancements .. 67
5.2 Distance measurement function.. 71
5.3 SmartInterface: MetaProvider architectures ... 79

6 Middleware for Peer-to-Peer Discovery ... 82
6.1 Background ... 83
6.2 Agent Platform architecture overview .. 83
6.3 Inter-platform and agent discovery in multi-platform environment 85
6.4 Actively Adapting Topologies.. 92
6.5 Social networks and resource discovery ... 94
6.6 Conclusions and future work .. 102

Appendix A: Section 1.1... 107
Appendix B: UBIWARE Publications List .. 115

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 3

Introduction

The UBIWARE project aims at a new generation middleware platform which will allow
creation of self-managed complex industrial systems consisting of distributed, heterogeneous,
shared and reusable components of different nature, e.g. smart machines and devices, sensors,
actuators, RFIDs, web-services, software components and applications, humans, etc. The
technologies, on which the project relies, are the Software Agents for management of
complex systems, and the Semantic Web, for interoperability, including dynamic discovery,
data integration, and inter-agent behavioral coordination.

Work in this project is divided into seven work packages which are running in parallel:
1. Core agent-based platform design
2. Managing Distributed Resource Histories
3. Security in UBIWARE
4. Self-Management and Configurability
5. Context-aware Smart Interfaces for Integrated Data
6. Middleware for Peer-to-Peer Discovery
7. Industrial cases and prototypes.

Work-packages 1 through 6 are research work packages; however, the research efforts are
combined with agile software development processes. Prototypes of the UBIWARE platform,
integrating the work in these 6 work packages at different levels of their readiness, are
developed during each project year, as UBIWARE 1.0, UBIWARE 2.0 and UBIWARE 3.0.

UBIWARE deliverable D2.1 reports on the research results from work packages WP1, WP2,
WP4, WP5 and WP6 (it was decided not to perform the work at the WP3 during the second
project year due to reduced resources).

The further text describes new developments on scientific concepts and results of the second
project year, which are based on previously defined concepts and results obtained during the
runtime of the UBIWARE project and which can be seen through attached UBIWARE list of
publications (see Appendix B).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 4

UBIWARE Deliverable D2.1:
Workpackage WP1:

Task T2.1_w1:
Workpackage leader: Artem Katasonov

1 UbiCore – Core Distributed AI platform
design

The main objective of the core platform is to ensure a predictable and systematic operation of
the components and the system as a whole by

• enforcing that the smart resources, while might to have own “personal” goals, act as
prescribed by the roles they play in a organization and by general organizational
policies,

• maintaining the “global” ontological understanding among the resources, meaning
that a resource A can understand all of (1) the properties and the state of a resource B,
(2) the potential and actual behaviors of B, and (3) the business processes in which A
and B, and maybe other resources, are jointly involved

In the core platform that resulted from the research during Year 1, the behavior of an agent is
prescribed by a set of behavioral models written in Semantic Agent Programming Language
(S-APL). So far, it remained the full responsibility of the designer to ensure the absence of
conflicts between different behavior models, e.g. roles, of one agent, as well as conflicts
between different agents. During WP1’s Year 2 (the Deliberation phase), the goal is to put
more conflict-resolution intelligence into the platform, so that the agent would be able to
resolve conflicts dynamically rather than rely on the absence of conflicts. The original plan
for Year 2 included the following research questions:

• How to realize organizational policies as restrictions put on the behavior of individual
agents?

• What mechanisms are needed for flexibly treating the potential (and likely) conflicts
among the behavioral models (roles, policies) used by one agent?

• Is it possible and if yes then how to implements a mechanism so that agents could
“see” what other agents are doing, in so creating the basis for coordination through
observation in addition to traditional coordination through communication?

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 5

The work related to the first question has resulted in that the scope of the considered problem
has been extended towards more general ontological coordination among autonomous agents.
The traditional policies, such as of access control, are considered as a special case of
coordination: an agent with an authority sets some restrictions on the behavior of other agents
to avoid possible conflicts of interests. A more general case of coordination is where only
when two autonomous behaviors conflict over the use of a resource some policy mechanism
is applied. Such a resolution policy may dictate, for example, that the agent with a higher
organizational authority gets the priority in using the resource.

The work related to the second question also resulted in somewhat extending the scope of the
problem considered and shifting the focus – towards general-case agent’s decision making
when confronted with several options. Selecting among actions dictated by different roles is a
special case of this.

The sections 1.1, 1.2, and 1.3 describe the research results achieved with respect to the there
questions above, correspondingly.

1.1 Ontological Coordination in Multi-Agent Systems Built
with S-APL
The research results of this Section are presented in the form of a separate scientific article.
To avoid reformatting, the article is included as APPENDIX A of this report.

1.2 Market-based Evaluation of Alternative Actions
In this section, we try to answer the following detailed questions: (1) How to specify
behavior in terms of high-level objectives, at the design time, but avoiding over
determination at the run-time? (2) How to evaluate the performance of an agent in regard to
its behavioral models? (3) Is a mapping possible between the behavioral models of a group of
agents and its members and if yes how to formalize it? (4) What mechanisms are needed to
resolve potential (and likely) conflicts among behavioral models of an agent or a group of
agents?

1.2.1 Theoretic Foundations
In this first section, the theoretical foundations are lined out. Thus, in the first paragraph
Utility Functions are introduced (question 1). In the next paragraph, the deployed utility
model is shortly investigated (questions 2 and 3). In the last paragraph a mechanism is
introduced to foster joint acting (question 4).

1.2.1.1 Utility Functions
Utility Maximizing Agents are widely recognized as the most developed type of software
agent, and Utility Function strategies codify their agenthood. Utility Function strategies
determine a real-valued scalar for a given state of the agent’s knowledge base (KB),
expressing the preference for facts in the KB of an agent. Those strategies enable the exact

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 6

specification of tradeoffs; thus, the decision-making in potential conflict situations. However,
the challenge in the design of Utility Function policies is to specify an n-dimensional set of
facts on which preferences are imposed as well as to find an optimal solution for the Utility
Function.

1.2.1.2 A Utility Model
Subsequently it will be referred to a set of statements that describe a potential state of the KB
as context C of the attributes A. Thus, a set of attributes A = {A1, A2,..., An} is a subset of a
context C. The values a j of attribute A j can either be discrete a j ∈ {a j1,a j 2,...,a jm} or
continuous a j ∈ {min j ≤ a j ≤max j}. The possible attribute space S is an n-dimensional set
characterized by the Cartesian product S = A1 × A2 × ...An . Consequently, Utility Functions
that map the attribute space, within a context, to a real-valued scalar are multiple parameter
functions. A concrete set of attributes is denoted by s∈ S .
A preference structure is constructed by a transitive, reflexive and complete binary relation ≥ .
The structure of preferences can be inferred from an evaluation function f : S → R , that
maps a state to a real-valued scalar, where the condition ∀sx,sy ∈ S : sx ≥ sy ≡ f (sx) ≥ f (sy)
holds.

However, the number of possible attribute combinations grows exponentially with respect to
the attributes and their values. Fortunately, in many practical situations the attributes are
mutual independent, also known as additive severability. The assumption of additive
severability does hold if and only if there exist functions f1, f2,..., fn such that
f (a1,a2,...an) = f1(a1) + f2(a2) + ...+ fn (an) . Relying on additive severability improves the

compactness and manipulability by decomposing f (S) into multiple one-dimensional
functions.

In economics two different notions of the utility concept are distinguished; the ordinal utility
concept and the cardinal utility concept. When an ordinal utility notion is used differences in
the valuations carry only the information of the preference ordering between the members of
a choice set (i.e. the different sets of attributes whose utilities should be compared). Thus,
ordinal utility theory can only be used to determine which of the alternatives is the best one.
The cardinal utility concept carries the objective utility of a concrete set of attributes; thus,
allows deciding whether a set of attributes is describing something whose utility is big
enough. In particular, the cardinal utility concept allows the comparison of levels of
satisfaction across different agents; if a particular item gives one agent 4 utility units but
another gets 2 from the same thing, the item described by a set of attributes is said to give the
one twice as much as the other one. This sort of comparison is of great use in Multi-Agent
Systems when it comes to the evaluation of how well the system is doing overall.
Consequently, under the framework of utilitarianism actions are judged by their contribution
to the reaching of the overall goal of the system.

1.2.1.3 Auctions
In the previous paragraph, a mechanism that is potentially capable of determining the value

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 7

of actions in terms of utility, associated with the state reached upon the application of an
action, has been introduced. However, a negotiation mechanism is needed, if an action has
not only positive consequences but also negative ones, to determine weather an action leads
to an overall increase of utility and who has to pay the costs. A negotiation mechanism can
be seen as such a protocol, prescribing how agents interact to determine a contract. This work
uses the mechanism of the Second Price auction, also known as Vickrey auction, in which
bidding agents submit their bids without knowing the bids of the other agents. The highest
bidding agent wins, but the price to be paid is the one in the second highest bid. The idea of
this mechanism is that each agent in the auction pays the opportunity costs that their presence
puts on all the other agents. Payments between agents are done by the use of Util’s. Whereby,
the valuation function f (util) = util neglects the diminishing marginal utility of an additional
Util for the sake of simplicity and to use the valuation derived by a Utility Function as the
willingness to pay.

1.2.2 Modeling Atomic Utility Functions
In this section and the following ones, the incorporation of the research finding is in the
centre; it is started with the functions for the evaluation of attributes. To acknowledge the
different types of attributes (i.e. discrete and continuous ones) not only one function is
introduced, but three. In the first paragraph Discrete functions are introduced. In the next
paragraph, Linear functions are introduced. In the last paragraph Polynomial functions are
introduced. To give the reader a broad overview on the design of the functions the pervious
figure (Figure 1.1) shows their ontology in graph form.

Figure 1.1

1.2.2.1 Discrete Functions
Functions of the rdf:type org:DiscreteFunction are connected to a set of
individuals of the rdf:type org:Point, by the predicate org:hasPoint. Each
individual point is connected via the property org:hasAttribute to a org:Attribute, and
via the datatype property org:hasUtility to one utility value of the type xsd:double.
Subclasses of org:Attribute can be used to define which values a specific attribute can
adopt. Axiom A.1 and A.2 formalize this notion.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 8

org : Point ⊆ owl : Thing∧=1 org : hasAttribute.owl : Thing
∧=1org : hasUtility.xsd : double (A.1)

org : DiscreteFunction ⊆ org : AtomicFunction∧>0 org : hasPoint .org : Point (A.2)
In the next step rules are required to evaluate the introduced concepts and their semantics.
The formula below checks the set of points, of a discrete function f, to find the utility value
for a given attribute value; thus, it declares how the value of a attribute can be determined.

{ sapl:I :calculate {?a ?f *}.

 ?f rdf:type org:DiscreteFunction; org:hasPoint ?p.

 ?p org:hasAttribute ?ar; org:hasUtility ?u.

 ?a = ?ar.

} => { sapl:I :calculate {?a ?f ?u}}

In the formula above the testing whether a given fact satisfies the attribute defined by a point
is done by a simple equals-relationship. However, different types of attributes require
different rules of entailment. Thus, this predicate should be altered according to the type
attribute that is evaluated. While in some cases simple string matching is sufficient, other
attributes demand a test whether at least the rdfs:subclass-relationship for the type of the
attribute holds.

Figure 1.2

Ontologically modelling Functions is a relation between an org:Attribute, an instance
of the class org:AtomicFunction, and a valuation to which the later maps the former.
To represent such a three value relation the container in the statement
sapl:I :calculate _:containerID has in its subject part the attribute, in its
predicate part the Function URI, and in its object part the valuation of the subject by the
predicate.

1.2.2.2 Linear Functions
Linear functions allow an ordering between given attribute values, of the type xsd:double,
to specify a continuous range. They are an extension of the already introduced discrete
functions in that way that points with neighbouring value attributes are connected by a line to
make up a linear function. For each pair of points (x1,v1) and (x2,v2) as well as a given

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 9

attribute value x, a utility value is calculated by the equation: u = [(v2 − v1) * (x − x1)]/(x2 − x1),
for x1 < x ≤ x2 . Axiom A.3 formalizes the ontological status of the class
org:LinearFunction.

Figure 1.3

org : LinearFunction ⊆ org : AtomicFunction∧>1 org : hasPoint .org : Po int (A.3)
The formula, given above, calculates the utility u of a given attribute value v and ensures that
only neighbouring points are taken into account for the calculation. The adding of the result
of the function, to the KB, is analogue to the last paragraph.

{ sapl:I :calculate {?a ?f *}.

 ?f rdf:type org:LinearFunction; org:hasPoint ?1p, ?2p.

 ?1p org:hasAttribute ?1v; org:hasUtility ?1u.

 ?2p org:hasAttribute ?2v; org:hasUtility ?2u.

 ?1v < ?a. ?2v > ?a. ?v1v sapl:max ?1v. ?v2v sapl:min ?2v.

 ?1v = ?v1v. ?2v = ?v2v.

 ?u sapl:expression "?1u+(?a-?1v)*((?2u-?1u)/(?2v-?1v))".

} => {sapl:I :calculate {?a ?f ?u}}

1.2.2.3 Polynomial Functions
In addition to the previous paragraphs functions for continuous facts, such as the float
datatype, can be modelled by means of polynomial functions. The class
org:PolynomialFunction denotes functions constructed from one or more variables
and constants using the operations of addition, subtraction, multiplication, and raising to
constant non-negative integer powers. In general it can be written
f (x) = a1x

p1 + a2x p2 + ...+ an x pn , where an and pn represent parameters that have to be given
to create the function.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 10

Figure 1.4

The ontology of polynomial functions is defined as follows. Instances of these function are
connected to a set of terms by the predicate org:hasTerm; each individual term has
exactly one multiplicand and one exponent. Axiom A.4 in conjunction with A.5 formalizes
this notion.
org : PolynomialFunction ⊆ org : AtomicFunction∧>1 org : hasTerm.org : Term (A.4)

org : Term ⊆ owl : Thing∧=1 org : hasMultiplicand.xsd : double
∧=1org : hasExponent.xsd : double (A.5)

The following formula calculates the sum of all terms specified for a polynomial function as
well as the value of the terms itself. The adding of the result of the function is done likewise
to the previous formulas.

{{ sapl:I :calculate {?a ?f *}.

 ?f rdf:type org:PolynomialFunction; org:hasTerm ?p.

 ?p org:hasMultiplicand ?w; org:hasExponent ?e.

 ?x sapl:count ?p } sapl:All ?p.

} => {{ ?u sapl:expression "?w*pow(?a,?e)"

 }=>{ ?p :hasResult ?u}.

 {* :hasResult ?zu. ?y sapl:count ?zu.

 ?y = ?x. ?h sapl:sum ?zu.

 }=>{ sapl:I :calculate {?a ?f ?h}}}.

1.2.3 Mapping a Graph to a Value
Preferences of an agent towards states of its KB can be expressed upon Utility Functions that
map a set of RDF statements, describing the current state of its KB, to a real-valued scalar.
These Utility Functions provide a view on the world, from the perspective of the agent in the

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 11

way that they reduce the complexity of the state of the world, of which the KB of the agent is
a model of, to a one-dimensional utility valuation. Such utility valuations can be used to
compare two states of the world. Thus, the comparison of utility valuations, for states of the
KB before and after a hypothetical action, indicate the value of an action for the agent.

1.2.3.1 A Makeup for States of the World
Since it can be assumed that an agent has only a preference ordering for those parts of its KB
that describe states of the world, a mechanism has to be introduced that distinguishes the
states of the world from the rest of the KB. Individual states are made up by the class
org:Thing. Each state has exactly one container associated, describing what the state is, as
formalized in by axiom A.6. For example consider water owned by an agent.
org : Thing ⊆ owl : Thing∧=1 org : description.sapl : Container (A.6)

1.2.3.2 Modeling Complex Functions
In the next step the definition of multi attribute functions itself is in the focus. Multi attribute
functions are modelled not as instances of a class, but as subclasses of the class
org:ComplexFunction. This is because such a function is used to be matched not only
against one single state, but to specify a class of states to whom it can by applied to; i.e. it
specifies which individual states are instances that can be evaluated. The specification, which
states satisfy the condition of evaluation, is done by a container connected to the class
org:ComplexFunction upon the predicate sapls:Restriction. The container
hosts those statements that have to be part of the state description to be evaluated by the
complex function. Consider the graph in the upper part of the next figure (Figure 1.5) as an
example. The description connected with the state in the previous figure satisfies the
restriction, since all required statements, in the schema, are part of the description.
org : ComplexFunction ⊆ owl : Thing∧=1 sapls : Re striction.sapl : Container
∧=1org : hasAssociatedFunctions.sapl : Container

 (A.7)

Figure 1.5

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 12

However, such a definition of a schema allows only to search for those states for which the
Complex Function applies, but does not contain any information about how to valuate the
statements in the description of a state. Thus, a further container is connected, to
org:ComplexFunction, by the predicate org:hasAssociatedFunctions (axiom
7). This container has three purposes; first, those parts of the description are identified that
are attributes; second, the identified attributes are connected to a real-value number upon the
predicate org:hasWeight to determine their relative weight; third, the identified attributes are
connected to an instance of org:AtomicFunction that is used for their valuation.

1.2.3.3 Evaluating Complex Functions
The first part of the evaluation formula is a rule triggered by a org:ComplexFunction in
connection with its schema and using this schema then as part of its own antecedent.
However, the traditional satisfy relation between a set of statements and an antecedent of a
rule is no longer sufficient, but only a necessary condition, additional information for the
calculation of the valuation of a graph has to be taken into account. Thus, in the next step the
variables in the container hosting the functions, of a Complex Function, are connected to the
variables in its schema part, by string matching of its names. This allows to derive for each
variable (attribute) its associated weight and function. The body of the evaluation rule
triggers then the evaluation of all attributes according to the appropriate org:AtomicFunction.
The value calculated by the function, multiplied with the weight of the attribute, can be
interpreted as the valuation that a single attribute contributes to the overall valuation of a
Complex Function. In the last step of the sum of weighted individual valuations, of attributes,
is calculated. The formula below shows the central aspects, as discussed.

{{ sapl:I :calculate {?state ?complexFunction *}.

 ?complexFunction rdfs:subClassOf org:ComplexFunction;

 sapls:restriction ?schema;

 org:hasAssociatedFunctions ?functionContainer.

 ?state ?perdic {?schema sapl:is sapl:true }.

 ?functionContainer sapl:hasMember {

 ?attribute org:hasFunction ?atribut_function;

 org:hasWhight ?atribut_weight }.

 {?schema sapl:hasMember {?match * *}. ?attribute = ?match} sapl:or {?schema
sapl:hasMember {* * ?match}. ?attribute = ?match}.

?NumberOfAttributes_1 sapl:count ?attribute } sapl:All ?attribute.

} => {

 sapl:I :calculate {?attribute ?atribut_function *}.

 { sapl:I :calculate {?attribute ?atribut_function ?valuation}.

 ?weightValuation sapl:expression "?atribut_weight*?valuation".

 }=>{ ?attribute :hasValue ?weightValuation}.

 { * :hasValue ?weightValuation.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 13

 ?NumberOfAttributes_2 sapl:count ?weightValuation.

 ?NumberOfAttributes_2 = ?NumberOfAttributes_1.

 ?result sapl:sum ?weightValuation.

 }=>{sapl:I :calculate {?state ?complexFunction ?result}.

 ?state org:hasValuation ?result. }}.

The aggregation of the values for each attribute to the overall result and the adding of the
result are done in the THEN-part. Analogue to the previous section modelling Complex
Functions is a relation between a concrete description of a org:Thing, a
org:ComplexFunction and a real-valued scalar, to which the later maps the former. In
addition to the adding of the result into the container sapl:I :calculate {}, the thing
evaluated upon a Complex Function gets connected to the result of the evaluation by the
predicate org:hasValuation. The benefit of such a straight connection becomes visible
in the next section.

1.2.4 Contracts
It is shown in this section how a utility valuation can be used to determine the value of
actions, and to decide which actions should be made and which not. Since the context of this
report is an economic one, the actions that will be considered are selling and buying. To
establish a mutual beneficial agreement, in a potential cooperative situation between a seller
and a buyer, a contract is needed to mark the terms to which both agree. Auctions are such a
coordination mechanism to establish mutual beneficial agreements.

1.2.4.1 Auctions
In the first step it has to be determined how to offer something; thus, how to set up an
auction. Since agents have to have the ability to determine the value of what the auction is
about, the class org:Auction is modeled as a subclass of the class org:Thing. A
Vickery auction, as a special kind of auction, is modeled as a subclass of the class auction
as formalized in axiom A.8. and A.9.
org : Auction ⊆ org : Thing∧=1 org : hasAuctioneer.sapl : Agent (A.8)
org :Vic ker yAuction ⊆ org : Auction∧<2 org : hasDurnation.xsd : int
∧org : hasMin Pr ice.xsd : double∧org : hasBid.org : Bid
∧<2org : hasWinner.sapl : Agent∧<2 org : hasMarket Pr ice.xsd : double

 (A.9)

org : Bid ⊆=1 org : hasAgent.sapl : Agent∧=1 org : hasValuation.xsd : double (A.10)
org : hasMinPr ice ⊆ org : hasValuation.xsd : double (A.11)

The predicate org:hasAuctioneer connects an auction with the name of the agent
making the offer. The parameter org:hasDuration acknowledges the pragmatic
assumption of not having a point market, but giving the agents time to response. The
parameter org:hasMinPrice is the restriction that the Utility Function, of the auctioneer,
puts on the potential action of selling something; in other words, a policy constraining the

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 14

acceptance of offers. Thus, the datatype property org:hasMinPrice is a sub predicate of
org:hasValuation as discussed in the previous section, see Axiom A.11.

1.2.4.2 Bidding
An agent can determine if it has received an offer by searching for instances of the Vickrey
auctions whose property org:hasAuctioneer is different from its own name. If an
agent finds such an offer a second evaluation of the auction starts. However this time, not by
the Utility Function of the seller, but upon its own Utility Function a valuation is calculated.
Thus, in this stage an agent is in the position to compare its own utility valuation, for the
thing the auction is about, with the minimal price set by the seller. Likewise to the seller’s
side the Utility Function determines now in which potential trades (actions) the agent is
interested in, as well as the policy for the maximal willingness to pay. In the next step an
agent makes a bid by creating an instance of the class org:Bid and connecting it together
with its name and its utility valuation to the auction.

1.2.4.3 The Evaluation
In the last step of an auctioning process the winner and the price to be paid have to be
determined. If bids are made the next formula determines in the first step, which is the top
bid; in the second step, which is the second highest bid; and in the last step who has made the
top bid. In the consequent graph the property org:hasWinner and the datatype property
org:hasMarketPrice are added to the auction; the first connecting the name in the top
bid, the second connecting the valuation in the second highest bid.

 {{ ?auct rdf:type org:VickreyAuction;

 org:hasMinPrice ?minprice;

 org:hasBid [org:hasAgent ?agent;

 org:hasValuation ?bidPrice, ?SecBidPrice].

 ?SecBidPrice < ?bidPrice.

 ?SecMaxBidPrice sapl:max ?SecBidPrice.

 ?auct org:hasBid [org:hasAgent ?winner;

 org:hasUtility ?SecMaxBidPrice].

}=>{?auct org:hasWinner [org:hasAgent ?winner;

 org:hasValuation ?SecMaxBidPrice]}.
The figure (Figure 1.6) shows an exemplary situation, utilizing the concepts introduced, so
far. Agent Mary launches the auction of :water with the minimal pricing of 5 Utils. Agent
John receives the offer, evaluates it, with its Utility Function upon the value of 10 Utils, and
places his bid accordingly. The same applies to agent Bob; however, his Utility Function
results only with a valuation in the height of 6 Utils. After both agents have made their bids,
the auctioneer Mary determines the winner John and the price to be paid in the amount of 6
Utils, leading to an overall increase in the utility for the agents in the amount of 1+4=5 Utils.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 15

Figure 1.6

1.2.5 Dynamic Allocation
The approach discussed so far enables agents to express a utility for goods and to acquire
them. However, the approach runs into a problem if not only one item can be acquired, but
multiple ones. In other words, it is possible to express the utility an agent gets from the
ownership of a print service, but it remains open how to model that an agent might have a
lower benefit from acquiring an additional unit of the resource than in the first place.
To solve this the already introduced concept of auctions will be changed in two ways: First,
the minimal bidding price and the bidding price itself will not longer be derived upon the
valuation by the Utility Function, but by the difference a loss or gain (i.e. Border-use), of the
thing the auction is about, would bring. Second, not only one auction will be considered, but
also a series of auctions will be used to achieve an optimal solution.

1.2.5.1 Looking into the Future
The class org:Thing can be used to host the agents representation of the state of the world
in a very general way. Since this work has an economic context, the state of the world is
determined for an agent by its ownership and the class org:Thing is used to represent this
ownership. Three types of such an (economic) Knowledge Base have to be distinguished:
current KB, hypothetical KB, and a KB representing the difference between the former and
the later.
The representation of the amount of things currently controlled by the agent is modelled by
the class org:CurrentKb, subclass of org:Thing; whereby each agent, participating in the
dynamic allocation process described here, has to have exactly one instance of
org:CurrentKb.

org : CurrentKb ⊆ org : Thing (A.12)
org : HypotheticalKb⊆ org : Thing (A.13)

Neglecting eventual productive capabilities of agents the change to an instance of the class
org:CurrentKb is reduced to exchange with other agents; thus, to auctioning as it is
discussed in the previous section. Likewise, the change to the current KB will be represented
by instances of the class org:Auction.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 16

However, to prohibit that an agent gives something away below its own valuation for it, the
preference for the thing an auction is about has to be calculated. In other words, the
difference a change in the current KB would cause to the utility level of an agent is needed to
determine the policy. To accomplish this a hypothetical KB has to be constructed. To identify
the hypothetical KB as such the class org:HypotheticalKb is introduced (axiom A.13),
analogously to the class org:CurrentKb.

Figure 1.7

1.2.5.2 Determining the Value of Change
The calculation of the value of a possible action, leading to a change in the KB, can be
reduced to the calculation of the difference between the current and the hypothetical KB, as
well as the construction of the hypothetical KB.
The construction of a hypothetical KB, for a given current KB and a given change to it,
depends on the schema of the KB. Thus, no general formula can be given, but a continuation
of the example org:Thing used in the previous paragraphs illustrating the very steps of the
construction of a hypothetical KB. In the head of the formula the current KB as well as the
change, which will potentially be applied to it, are bound to variables. In the next step the
difference is calculated. In the body of the formula the hypothetical KB is constructed and
evaluated along with the current KB by the Utility Function of the agent.

{ ?currentKb org:Description {* :hasLiter ?lCur};

 rdf:type org:CurrentKb.

 ?change org:hasDescription {* :hasLiter ?lChange};

 rdf:type org:Auction

 ?lHyp sapl:expression "?lCur-lChange".

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 17

}=>{

 _:hypKB org:hasDescription {* :hasLiter ?lHyp}.

 sapl:I org:calculate {?currentKb ex:UtilityFunction *}.

 sapl:I org:calculate {_:hypKB ex:UtilityFunction *}}.

Likewise, this formula has to be implemented also for the agent on the buyer’s side. However,
constructing the hypothetical KB on the sum of the change, a won auction would bring, to the
current KB.
The calculation of the value of the change to the agent is the calculation of the difference in
valuation between the current KB and the hypothetical, as depicted in formula below.

{sapl:I org:calculate {?currentKb ex:UtilityFunction ?currentUtility}.

sapl:I org:calculate {_:hypKB ex:UtilityFunction ?hypotheticalUtility}.

?currentKb rdf:type org:CurrentKb.

?hypotheticalValuation sapl:expression "?hypotheticalUtility-?currentUtility". ?change rdf:type
org:Auction.

}=>{?change org:hasValuation ?hypotheticalValuation}.

1.2.5.3 An Application Example
In this final paragraph it is presented how the approach can be used to dynamically distribute
water between agents in such a way that a global utility maximum is reached.
The need of an agent for a share of the globally constraint resource (water), is expressed by
the Utility Functions of the agent. Conforming to standard utility theory the Utility Functions
are concave so that the first derivative (i.e. the bidding price) decreases with increased share
of the resource. Thus, the second derivative of the Utility Functions is negative. Beginning
from the Utility Functions and the initial distribution of the resource the market mechanism
settles the distribution of the water. The goal is to maximize the global utility Uglob of all
agents that they have from the resource water R. Whereby the global utility is the sum of the
utilities the agents have uglob (r1,...,rn) = u1(r1) + ...+ un (rn), and the sum of water is the globally
constraint by R = r1 + ...+ rn . The global utility maximum is reached if the so-called Kuhn-
Tucker conditions are fulfilled; thus, if all first derivatives of the agents Utility Functions are
equal to a shared value. In other words, an optimal distribution of energy is reached if all
agents express the same need (bidding price) for an additional unit of the resource.
In the figure (Figure 1.8), the performance of a simulation is shown. Three agents are
assigned with initial share of the available water of 1.5 L; one agent is assigned with 3.5 L.
From such an initial, not necessarily optimal, distribution equilibrium is reached after one
round. A round is finished after each agent has enacted the auctioneer role. In the second
round an agent tries to reduce the amount of water it holds by changing its Utility Function
and consequently having a lower valuation for a share of the resource. Again, the system
settles in the next round.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 18

Figure 1.8

1.3 Observation in Multi-Agent Systems
This chapter focuses on the issue of observation in multi-agent systems (MAS). The term
observation can be used to denote both the act of observation and the state of being observed.
In the context of MAS the act of observation is clearly part of the perspective of an agent.
The agent, as an autonomous and pro-active entity, can use its observational capabilities in
order to achieve some goal or complete a task by taking advantage of the perceived
information. We argue however that state of being observed should not be the concern of an
agent, rather the environment it inhabits. More importantly the observability should not be
entirely subjective decision of the agent, especially in competitive or open environments. Let
us consider for instance a hostile agent that enters the MAS, observers cannot rely on it to
make its suspicious actions observable. There is a call for component with predictable and
configurable behavior that is in charge of managing each agent's observable state and
behavior.

The proposed framework for Agent Observable Environment (AOE) builds upon the idea of
explicit modeling of the environment in multi-agent systems, which was first put forward by
Weyns et al in (Weyns et al., 2004). In the article, they argue for the importance of
recognizing the environment as a first class entity in MAS with its own clear cut
responsibilities, apart from agents. This is quite a different approach compared to the implicit
and ad hoc treatment of the environment found often in the MAS literature (Weyns et al.,
2004). Providing observability is identified as one of the main responsibilities of the
environment (Holvoet and Weyns, 2005) and the AOE is designed to offer just that. Whereas
the environment is said to cross-cut the MAS (Platon et al., 2007), we argue that the
observation cross-cuts the environment.

1.3.1 Agent Observation Environment
The Agent Observable Environment (AOE) is a framework that allows the modeling of
indirect interaction in MAS through observable changes to the persistent state of the agent's
soft-body. The term soft-body was introduces to the MAS context by (Platon et al.,2005). In
the context of AOE, soft-body can be thought of as an agent specific repository, which is
modeled as part of the agent, but is managed by the environment. Figure 1.9 illustrates the

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 19

logical architecture of AOE using the MAS layers as presented by (Viroli et al, 2007). The
figure shows the two top most layers of the MAS. In addition to MAS middleware layer, the
execution platform includes also the software deployment context that consists of operating

systems, virtual machines and other middleware. The bottom most layer is the physical
support, which is divided into hardware and physical world sub layers.

Observable environment is basically the sum of all the soft-bodies in MAS and can be
distributed across the nodes of the agent platform. The dotted lines in figure represent an
inclusion relationship between the two objects. For example on the application layer the soft-
bodies (SB) are modeled as part of every agent. Soft-body is created when agent is born and
removed when the agent is killed. On the middleware layer the soft-bodies are managed by
the distributed set of AOE service instances. When an agent migrates from one node to
another, its soft-body must also migrate with it. If there is no AOE instance running on the
target node, the agent must be informed about the situation before executing the migration. If
the agent decides to migrate to a node with out AOE service, its soft-body is removed.

AOE uses RDF as the storage format for soft-bodies. RDF was chosen because of its status
as the lowest common denominator between different semantic web (Berners-Lee et al.,
2001) technologies. The requirement for successful utilization of AOE is, that the observing
agents understand the sensed information at least on some level. For more sophisticated
agents this might mean using ontologies and complex inference mechanisms, whereas the
simpler agents might be hard coded with the logic that handles one very specific task based
on its observations. Another benefit for using semantic web technologies is that is allows
AOE to use inferred information when matching events related to the state changes with the
observer’s current interests. This kind of behavior naturally requires the use of ontologies.
For example an observer might be interested to receive an observation related event
whenever an object of class alarm or any of its subclasses is created to the AOE. With a
proper ontology in place, the AOE is able to notify the observer when for example a printer
alarm or house alarm is added. Assuming of course that both of the more specific alarms are
modeled in the ontology as subclasses of the alarm the observer was interested in. Finally the

Figure 1.9 - The top application layers of AOE.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 20

event arrow from observable environment towards one of the agents represents a
manifestation of observation i.e. an event caused by state change in AOE that matched the
observation configuration of the agent receiving the event.

1.3.2 The main concepts of AOE
This chapter gives a more detailed description of the ideas behind the AOE including the
soft-body, the act of observing, the use of ontologies and observation related rules.

1.3.2.1 Soft-body
A newly created soft-body is always empty. At runtime, both the agents and the environment
can modify the content of the soft-body.

As noted earlier, the soft-body represents the observable state of an agent using RDF
statements. Soft-body can include both state and behavior driven information. Just like in
our physical world, every external action (as opposed to the activities going on inside the
agent) induces a state change in the observable environment. The approach is similar to the
Ferber's (Ferber, 1999) model of influences (agent actions), which are agents attempts to
change the state of the world, and reactions, which are produced by combining all the
influences of all the agents and local state and rules of the environment that finally result in
state changes of the environment. In AOE, the state of the observable environment (OE) is
changed as soon as the agent starts the execution of an action. For example, if the agent
decides to start to sing, the action (agent X is singing) is reflected to the state of the OE. The
implementation of the singing action can for example use the soft-body to make the lyrics of
the song the agent is currently signing available for observation. The bottom line is that the
description of the act itself is separated from the possible changes to the OE caused by that
action, but they can both be observable.

Agent is only capable of changing the state of its own soft-body. It can receive information
about the state of other soft-bodies in the MAS through observation, but is unable to modify
that state. The selected model makes the handling of concurrent actions simpler, because the
implementation must only manage the modifications made by the agent that owns the soft-
body. If the agent is implemented as one thread, there is no need for synchronization.
Environment based modification of the soft-body allows the designer of MAS to make
selected action or state always observable. For example for BDI based agents, the designer of
the AOE could make all the beliefs matching certain template automatically part of the
agent's soft-body.

The observable actions in AOE are divided into two categories: practical and communicative.
In order to understand the fundamental difference between these action types, we must first
make a distinction between communication and mere interaction. Communication is defined
as goal driven behavior that is aimed at informing the receiver of some fact or for creating
the desired communicative effect, i.e. communicate presumes intention (Tummolini et al.,
2005). Example of communicative action in MAS context is the sending of an ACL message,
or in other words, committing a speech act (Tummolini et al., 2004). But interaction does not
always have to be communication (Tummolini et al., 2005). Interaction can be mere transfer
of data that causes a non-intentional state change to receiver. The receiver Y is the observer

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 21

of some event, which is created as a result of some action performed by agent X. Agents X
and Y are interacting indirectly via AOE, but not necessarily communicating. The agent X
might not even be aware of being observed by the Y. The actual modeling of actions and
choosing between the communicative and practical actions is an application specific task.
This brings us to the subject of ontologies.

1.3.2.2 Ontologies
The original idea was to use one globally shared ontology to model the observable
environment and allow agents to add only modeled entities to their soft-body. The
application specific ontology would have been created by extending the AOE core ontology.
This “ontology first” kind of approach, would have provided up to date model for the
observable environment at all times and steered towards more well structured use of AOE by
removing the possibility of ad hoc usage. However, the flexibility was chosen to be more
important feature, so we decided to let the agents and their designers make the decision
whether or not to use an ontology.

The current model includes very few restrictions on the content of the soft-bodies beyond the
capabilities of RDF. The only restriction is, that only environment is allowed to modify
concepts of the core ontology. The core concepts are illustrated in figure 1.10.

Figure 1.10 - Concept of AOE core ontology.

In addition to the classes, the ontology defines two properties whose domain and range are
described in table 1.1.

Table 1.1 - Core properties of the AOE.

Property Domain Range
aoe:does aoe:Agent aoe:Action
aoe:observes aoe:Agent aoe:Event

The property aoe:does represents the ongoing action performed by some agent. For example,
let us assume that migration of mobile agents is modeled as an action. When agent X starts
its migration the statement X aoe:does :MoveAction is added to the X's soft-body. When the
migration is completed the statement is removed. aoe:observes property is used to describe
the observational interests of an agent. It is basically just a short cut for describing
observation action.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 22

1.3.2.3 Observation
If agent wants to observe something it must explicit configure the AOE according to its
needs. The observation ontology (Viroli, 2001) defines two kinds of observation, static and
dynamic. Static observation is suitable for a situation where the agents needs to know the
current state of the environment. For example, the agent could check that the status of the
printer is idle, before sending the document for printing. The result of a static observation is a
snapshot of the observed state. If the agent is instead interested in the changes occurring in
the observable environment, it can observe it dynamically. Dynamic observation means that
the agent is informed whenever an event matching agent’s configuration occurs in AOE.
Possible event types are related to the adding and removing of data. Continuing the example
where the agent is observing the status of a printer, the agent could, in case the status of the
printer is busy, observe the status dynamically and be informed when it changes back to idle.
In case of a static observation the observation configuration is removed from the AOE as
soon the observation events matching the configuration have been made available to the
observer. Configurations for dynamic observation are active until they are explicitly removed
by the agent.

In the MAS literature the configuring of the environment is referred as setting the foci
(Weyns te al., 2003) or creating a view (Schelfthout and Leuven, 2005). The dynamic
configuration of the AOE allows agents to focus its observational capabilities to
accommodate the task at hand. This does not however mean that an agent can receive
information about any state or state change in the AOE. The agent's capabilities to observe
can be limited by rules enforced by the environment.

1.3.2.4 Observational Rules
Rules are used in AOE to limit the visibility of information stored in the observable
environment. They can be seen as controlling the reading rights of the information stored in
AOE. Observational rules do not apply any restrictions on the information stored in the AOE
nor can they be used to modify its state. Every rule has a level and a priority. The so called
“laws of nature” or environmental rules, are the rules added by the designers of MAS. These
first level rules always take the precedence over any other rules, but there is currently no
sophisticated way beyond the use of rule priorities to handle conflicting rules of the same
level. The second level rules are the ones added by the agents. Both rules can be added
dynamically at runtime. The environmental rules and rules added by the agents are concrete
tools for implementing objective and subjective coordination (Omicini and Ossowski, 2003)
respectively.

The evaluation context for the rules is the content of the observer’s soft-body. So for
example, the rule can limit the visibility of the files made observable by agent X, to the
agents that can be observed to be part of the same organization as agent X. Provided that the
organizational information is part of the soft-body. We acknowledge the security issues
related to the current arrangement. If the access to the files is only related to the value in the
soft-body, it is easy for the observing agent to change that value on its own soft-body to
something that grants the access. One way to improve the situation would be to make it
possible to model some properties to be only modifiable by the environment and then create
environmental rules for modifying those properties.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 23

1.3.3 The prototype
This chapter describes the implementation details of the software component that aims to
bring the features of the theoretical framework described in the previous chapter available to
the designer of agent based applications. The implementation is at the prototype phase and
does not at the moment implement all the functionalities envisioned by the theoretical
framework.

1.3.3.1 General architecture
JADE was selected as the basis for implementation because it is the platform of choice for
the UBIWARE project. It provides excellent facilities for extending the platform at both
agent and kernel level. Developing an application with JADE usually involves the
specification and development of set of agents, their behaviors and the relationships amongst
them. The AOE implementation could include for example a set of lower level agents with
roles for intercepting information, query processing and match making. However, since the
role the AOE is more infrastructural one, the most natural place to implement it is at the
execution platform level, not at the agent level. In this way the implementation also follows
the logical model. AOE is part of the medium through which agent interaction is mediated.
JADE framework offers convenient way to extend the platform with new kernel level
services, thanks to its aspect inspired architecture.

With the version 3.1, the JADE moved away from the old monolithic and not so extendable
kernel to the current service-oriented one. The new kernel architecture is based on the
distributed version of the composition filter pattern. The idea behind the original composite
filter is based on concerns and filters. Concern is the primary behavior of the program entity.
The crosscutting concerns that extend and enhance the primary behavior are represented by
filters. Filters can be used to inspect and manipulate both incoming and outgoing messages to
the program entity. JADE extends this model by allowing concerns to be implemented in
distributed manner.

The main components of a distributed kernel service are filters and sinks for incoming and
outgoing messages, the slice, and vertical and horizontal commands. When an agent invokes
a method in the service interface, the actual service can implement the operation directly or
encapsulate the information about the method call into a vertical command and forward it to
outgoing filter chain. Issuing a vertical command means that the actual implementation of
operation is delegated to the outgoing sink. Before hitting the sink, the message travels
through series of filters that can inspect, modify or even interrupt the vertical command. Any
service activated in the node can provide its own filters for handling vertical commands
issued by any other service in the node. In case of distributed service, where the affected
components of the operation can exist on different nodes, the sink can transform the
incoming vertical command into horizontal command and send it to the other nodes for
processing. Horizontal command coming from a remote node is first received by the service
slice. The slice can again implement the operation directly or delegate the execution to the
target sink by creating and incoming vertical command and sending it through the incoming
filter chain. An example of service implementation is illustrated in Figure 1.11, which depicts
the route of an ACL message from one agent to another (Bellifemine et al., 2007).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 24

Figure 1.11 - Complete example of ACL message's route from one container to another.

In addition to the essential services like agent life-cycle management and messaging, the
JADE distribution includes service implementations for event notification and topic based
group messaging. Building your own distributed kernel service is relative simple using the
base classes provided by the JADE framework. The main components needed for service
implementation and their relationships are shown in Figure 1.12.

Implementing AOE as an infrastructural service allows us to get a lower level access to the
JADE platform using filters to the existing core services. First of all this makes is possible to
design the framework to be relative transparent to the agent designers and minimize the work

Figure 1.12 - Components of JADE kernel-level service [1].

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 25

related using the AOE framework, so the agent does not have to worry about explicitly using
the service, but still be observable.

Working at the kernel level makes it also difficult for agents to by-pass or misuse the service.
This assures equal treatment of all the agents in both cooperative and competitive
environments. It does not however mean that there can't be privileged agents in the system,
which could for example modify or add new observational rules to the system.

One downside of service base implementation that might at first feel like major obstacle, is
the fact that the service cannot be added to a running node. This means that the service must
be started at same time as the platform node. With agent based solution, the starting of the
service would be as easy as starting up a new agent. We don't consider this to be a major
drawback. It is still possible to add AOE enabled nodes to the existing platform without
shutting it down. We could for example start a new JADE instance with AOE, join it to the
existing platform and move all the agents to the new instance.

Another implementation option would have been to use aspect oriented programming, for
intercepting method calls related to observable information. This would have also fitted
perfectly with the idea of observation being a crosscutting property of the environment.
However, AOP was not chosen for implementation technology for the first prototype mostly
for the same reasons as identified by the developers of JADE. In an effort to keep things
simple and applicable also on mobile devices, the solution was crafted using JADE's built in
extension mechanisms.

1.3.3.2 Implementation details
AOE is designed to be distributed as JADE plug-in. Figure 1.13 shows the technical
architecture of AOE in relation to the other services existing on the JADE platform.

Figure 1.13 - Overview of technical architecture of AOE for JADE.

The AOE service uses information provided by the notification and messaging services.
Filtering the commands issued by the messaging service, allows us to make the ACL
messages observable to the possible eavesdroppers. It is not technically feasible to store all
the ACL messages to the Sesame repository as suggested by the theoretical model. The
current implementation does not actually store any of the messages, but this does not prevent
the ACL message to be observed, because the event is generated at the AOE level.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 26

The observation of practical action is currently limited to the JADE behaviors. This means
that agent can observe what behaviors other agents are running. A behavior can become
observable in two different ways. First of all, the agent can use the AOE service to
intentionally make its actions observable. Another option is use the AOE service
configuration to list the names of the observable behaviors and system will automatically
make them observable as soon the agents adds it to its scheduler. The configuration based
solution is implemented using events of the notification service to keep track of the behaviors
running on each agent. This notification behavior is not enabled for the agent by default,
because the amount of events even a single agent can create. The processing of large amount
of events naturally has a negative impact on the overall performance of the platform. In the
current implementation this problem has been at least partly solved by modifying the base
class for all the JADE agents, by adding a new private boolean property called
generateObservableBehaviorEvents. By setting this value to true, the agent will only generate
behavior events relevant to the AOE. In other words the events are only generated when a
behavior is added or removed. The solution is a bit of a hack, but it was very easy to
implement and it has no side effects to the normal behavior of JADE. It is also possible to
improve the performance by interrupting the notification events. This solution is only viable
when there are no other services or agents that need to use the events.

We use the Sesame 2.2, an open source RDF repository distributed by Aduna software under
Aduna BSB-style license (see http://openrdf.org), for storing the state of the observable
environment. The soft-body of an agent is implemented as a context in Sesame. When agent
X adds the property currentTemp with value 30 to its soft-body, the statement “X
currentTemp 30” is stored to the context X. using Sesame.

We will next zoom in to the inner workings of the AOE service. The diagram X, shows the
main classes of the AOE service.

1.3.3.2.1 Main classes of AOE implementation for JADE

Figure 1.14 - Design phase class diagram of the AOE service.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 27

AOEService
Responsible for booting and configuring the service. Handles the connections to the underlying RDF repository
and provides methods to matching event to the observation configurations.

AOEServiceHelper
The interface through which the agents use AOEService. Provides methods for soft-body management and
static and dynamic observation. Implementation can be retrieved from the base of class of JADE agent by
calling getHelper() method. Every agent has its own helper instance that works as the event queue for AOE. The
event queue is processed by a simple CyclicBehavior implemented as an inner class of the helper, responsible
for retrieving and executing the event handler associated with the observed event.

AOEServiceSlice
The part of distributed AOE that receives incoming horizontal command from other nodes running AOE.

ObservableResource
Wraps the data of an RDF individual. Implementation is based on LazyDynaBean that is part of the BeanUtils
package distributed by the Apache Commons project. DynaBean is an object that support properties whose
names, data types and values can be dynamically modified. ObservableResource class provides object oriented
way to manage the agent's soft-body. For example when simple reactive agents, the developer can use this class
to interact with the soft-body without any knowledge of RDF.

ObservableEvent
Represent a RDF statement with context. ObservableEvent also includes the type of the repository event
(add/remove) from which the statement originated.

ObservationRule
Observation configuration of an agent. Rules come in two flavors for static and dynamic observation.

ObservationEventHandler
Interface that must be implemented by the classes that handle the results of dynamic observation. Contains only
one method handleObservation(Set<ObservableEvent> events).

AgentEventCommandFilter
Incoming vertical command filter for handling event from the messaging and notification services. Currently the
list of filtered events is as follows:

1. Agent created

2. Agent killed

3. Agent state changed

4. Agent moved

5. Behavior added

6. Behavior removed

7. ACL message sent

1.3.3.2.1Optimizing performance of frequently updated properties
The design decision to use RDF and the only format for storing soft-body data has raised
questions about the overall performance of the approach. This is a valid concern especially if
we consider the case where frequently updated property is being dynamically observed by a

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 28

group of agents. The described situation puts both the repository and the AOE service under
a lot of the stress. AOE service must propagate massive amount of events through out the
possibly distributed platform and the repository must perform both remove and add
operations every time the value of the property changes.

We have come up with couple of designs that should alleviate the problems related to
frequently updated properties at the repository level. The basic idea is to use different types
of repositories for different types of properties. The less time critical data can be stored to the
Sesame repository, while the frequently updated properties can use for example memory
based relational database. The type of the property can be configured to the system by
identifying the repositories using namespaces. If the namespace solution is unusable because
of legacy data for example, it should also be possible to configure repositories for individual
properties. If no configuration is found for certain property, it is stored using the default
repository.

Using separate repositories is relatively straight forward when it comes to adding and
removing or information. Things get a little bit more complicated for the querying though.

The simplest solution is to allow agent to query (observer) only one repository at a time.
There are mapping tools like SquirrelRDF (http://jena.sourceforge.net/SquirrelRDF/) and
D2RQ (http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/) that allows non-RDF data store, like
relational databases and LDAP servers to be queried using the SPARQL or Sesame API. (see
Figure 1.15). It should be noted though, that both of the introduces tools have their
limitations when it comes to the types of queries they can handle. We also don’t know, if the
data can be used for inference.

Figure 1.15 - Optimizing performance using different types of repositories.

Total separation of repositories might be a reasonable solution if observation can be done
with out any conditions, because the conditions are also evaluated in only one repository at a
time. For example if the currentTemp property is stored to a MySQL database and the name
of the agent in Sesame repository, it would not be possible to condition the observation of the
currentTemp property with the name of the agent. As a matter of fact, if the currentTemp was
the only property stored in MySQL database, the observers would always observe all its
available values. Using multiple repositories can also make it impossible to use inferences for
observation, because there is no global view of the data available.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 29

In order to make the usage of multiple repositories a viable solution for complex application,
we need to be able to distribute the query processing. There are distributed RDF repositories
out there (Cai and Frank, 2004), but they are not the solution, because using RDF only
repositories brings us back to the original performance problem of frequent updates. DARQ
is an engine created by Quilitz and Leser (Quilitz and Leser, 2008) for executing federated
SPARQL queries against multiple data sources in a totally transparent way. Using a
component like DARQ it is possible, at least in theory, to create data access layer for the
AOE that combines the performance of traditional relational databases with flexibility of
RDF. The Figure 1.16 shows the proposed architecture including distributed query
management

Figure 1.16 - Optimizing repositories using multiple repositories with distributed query

management.

1.3.3.2.2 Comparison to the theoretical model and further development
The current prototype version includes the basic functionality to implement application
modeled using agent observable environment framework The most important features still
missing or in their infancy are related to the observational rules and conditions, the range of
observable action types and efficiency of the distributed AOE.

There is currently no way to limit the visibility of the data published to the agent’s soft-body.
The appropriate place for adding the rule processing is the element that compares the events
created by the agents’ actions to the observation configurations. In addition to the context of
the soft-body there might need to use platform specific information for the evaluation of the
rules. For example for performance reasons, the visibility of certain properties can be limited
to the agents residing at the same node as the source.

The simple implementation provided for observing practical actions, might be too coarse for
more complex applications. The execution of a JADE behavior can include nested actions
like invocation of remote services using techniques like web services, RMI or plain HTTP
and of course calls to the methods of the local service components, which might be just as
valuable targets for observation. Using the current filter based approach, the sources of the
action related information are limited to the services of the JADE platform. The next step in
extending the selection of observable actions could be the use of some AOP framework..

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 30

Then the developer of the AOE could bind the observable events to individual methods.
There are AOP solutions available that modify the compiled byte-code in JVM and allow you
to dynamically add aspects to already loaded classes. No source code or recompilation is
needed. That would mean that the observable description of the actions could be totally
separated from the actual implementation.

Finally there is the issue of distributed AOE. The current mechanism for propagating the
observable environment to other nodes is based on complete replication of the state. This is
hardly the most efficient solution. The replication strategy could be improved by dynamically
configuring the data to be replicated using observational rules on each node. For example if
there are no agents observing property X on a remote node Y, there is no need to send state
change events about X to that node. Different kind of optimization could be implemented by
making the agents or their clones to move closer to the entity they are observing. If the agent
X wants to observation the property Y on a remote node Z, the observation would cause the
agent X, or its clone, to automatically migrate to the node Z.

1.3.3.3 UBIWARE integration
Because the JADE implementation of the framework is distributed as plug-in for the standard
JADE library, some integration work is needed in order for it to be useable by the
UBIWARE agents. This chapter describes two main approaches for using AOE from
UBIWARE based agents. The first one is based on RABs and the second one introduces
some AOE specific changes to the UbiwareAgent class. The advantage of the first alternative
is that it makes use of the common extension mechanisms of the UBIWARE platform and
therefore creates no tight coupling between the agent and the new service. The deep
integration in the latter case however offers more possibilities for control over the way
observable information is included to the agent's runtime cycle and for performance tuning.
In general, the integration consists of two parts: The description of the S-APL code needed to
interact with the RABs and the java code.

1.3.3.3.1 Creating new RABs
Reusable atomic behaviors are the basic building blocks for implementing any agent-
environment interaction in UBIWARE. We present three new RABs that allow UBIWARE
agents to observe the environment and modify their soft-body.

In addition to the RABs a generic observation handler implementation is needed. The handler
is responsible for making the data of the events part of the agent’s beliefs. In AOE the result
of an observation, both static and dynamic, is always collection of ObservationEvent
instances. ObservationEvent class provides method toRDF(), which returns RDF
representation of the event. The implementation of the handler then becomes rather trivial
task of iterating over the received events, transforming them to RDF and adding the
statements to the agent’s knowledge base.

StaticObservationBehavior
Action:

Queries the AOE for statements that matches the template.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 31

Inputs:
Name Meaning Mandatory Default
isAsync Whether the method is executed asynchronously or not. No false
RDFTemplate RDF statement template that is used to query the agent's

observable environment. For example * :currentTemp *.
Instances can be queries using property rdf:type.

Yes

context Can be used to limit the query to certain context
(=agent) only. If no context is used, the whole
observable environment is queried.

No

condition Can be used to filter the matching events. Condition is
given in SPARQL. The variables used in the condition
must match the variables introduced in the rdf template.
See the examples.

No

includedProperti
es

List of properties included when querying based on
rdf:type. By default, all the properties are returned. This
parameter has no effect if the queried property is not
rdf:type.

No

Outputs:

Set of beliefs created by filling in the variables in the RDFTemplate parameter are added to
the agent's KB.

Example of usage:
Retrieving all the agents with current temperature more than 30. Please note, that if
the agent has currentTemperature over 30 as part of its own soft-body, it will also be
part of the returned statements.
{ sapl:I sapl:do java:StaticObservationBehavior }
sapl:configuredAs {
 p:RDFTemplate sapl:is {?x :currentTemp ?z} .
 p:condition sapl:is {
 FILTER(?z > 30)
 }
}
Example of output:
X1 :currentTemp 40
X2 :currentTemp 50

Example of usage:
Retrieve all statements related to currently observable alarms.
{ sapl:I sapl:do java:StaticObservationBehavior }
sapl:configuredAs {
 p:RDFTemplate sapl:is {?x rdf:type :Alarm}
}
Example of output:
Alarm1 :type Alarm .

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 32

Alarm1 :message “Out of paper”
Alarm1 :source Printer1
Alarm2 :type Alarm .
Alarm2 :message “Paper jam”
Alarm2 :source Printer2

Example of usage:
Retrieve all alarms associated with the agent X1.
{ sapl:I sapl:do java:...StaticObservationBehavior }
sapl:configuredAs {
 p:RDFTemplate sapl:is {?x :hasAlarms ?z}
 p:context X1
 p:includedProperties sapl:is {
 :predicate :type
 :predicate :source
 }
}
Example of output:
Alarm1 :type Alarm .
Alarm1 :source Printer1 .
Alarm2 :type Alarm .
Alarm2 :source Printer2

DynamicObservationBehavior
Action:
Configures the AOE to notify the agent when the configured event happens.
Inputs:
Name Meaning Mandatory Default
eventType possible values: add, remove Yes
RDFTemplate see StaticObservationBehavior Yes
context see StaticObservationBehavior No
condition see StaticObservationBehavior No
includedProperti
es

see StaticObservationBehavior No

Outputs:
RDF description of the observable event.
Example of usage:
Agent will receive notification whenever some agent in the organization ORG1
executes InterestingAction.
{ sapl:I sapl:do java:DynamicObservationBehavior }
sapl:configuredAs {
 p:eventType “add”
 p:RDFTemplate sapl:is {?subj :does :InterestingAction} .
 p:target sapl:condition {

<http://ex.com/ont#ORG1> :organization ?subj
 }

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 33

}
Example output:
X1 :addedStatement { X1 :does :InterestingAction }
where X1 is the context in which the change occurred i.e. the agent whose soft-body
was changed.
Example of usage:
Agent wants to receive notification whenever an alarm is added to the AOE.
{ sapl:I sapl:do java:...DynamicObservationBehavior }
sapl:configuredAs {
 p:eventType “add”
 p:RDFTemplate sapl:is {
 ?x rdf:type :Alarm
 }
}
Example output:
X2 :addedStatement {
 Alarm1234 :type Alarm .
 Alarm1234 :message “Out of paper”
 Alarm1234 :source Printer1
}

SoftbodyManagementBehavior
Action:
Is used to publish, remove and get information for the softbody
Inputs:
Name Meaning Mandatory Default
action Possible value: show, remove Yes show
target RDF statements for which the

given action is executed. _self
can be used to refer to agent
itself

Yes

Outputs:
None
Example of usage:
Adding currentTemperature and alarm to the soft-body.
{ sapl:I sapl:do java:SoftbodyManagementBehavior }
sapl:configuredAs {
 p:action sapl:is show .
 p:target sapl:is {
 _self :currentTemperature 30 .
 _self :hasAlarm _x .
 _x rdf:type PrinterAlarm .
 _x :message “Out of paper”
 }
}

Removing all statements from the SB

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 34

{ sapl:I sapl:do java:SoftbodyManagementBehavior }
sapl:configuredAs {
 p:action sapl:is remove .
 p:target sapl:is {
 ?x ?y ?z
 }
}

1.3.3.3.2 Modifying the UBIWARE agent
This approach basically means that the AOE is made an integral part of any UBIWARE
agent in a same way that support for GUI or HTTP events is in the current implementation.

Event approach:
The current version of the UBIWARE supports S-APL code that process events from GUI
and network sockets through predicates sapl:eventFromGUI and sapl:eventFromSocket. This
approach could be extended to work also with events from the AOE as well. The UBIWARE
agent would store all the observed events to its blackboard and add the belief of the following
form to its knowledge base:

{…} sapl:eventFromObservableEnvironment {…}

Ontology based solution:
The UBIWARE agent would automatically recognize beliefs containing information
available in the AOE. These belifies could be identified based on some configuration or, if an
ontology is used, based on some parent type or annotation value. For example when
statement “PM1 aoe:currentTemperature ?x” is added to the agent's knowledge base, the
runtime cycle would notice that the property is from the namespace that contains only
observable properties. Based on this information the agent could then initiate a static
observation in order to retrieve the value of the property. Because of the dynamic nature of
the AOE, it is possible that the requested property is not observable by the agent at the time
of the execution runtime cycle. In such case, the agent could automatically configure the
environment to notify it when the value becomes available. Based on the requirements, the
agent can either continue to observe the property of remove the configuration as soon as the
first dynamic observation has been received.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 35

UBIWARE Deliverable D2.1:
Workpackage WP2:

Task T2.1_w2:
Workpackage leader: Sergiy Nikitin

2 UbiBlog – Managing Distributed
Resource Histories

In UBIWARE, every resource is represented by a software agent. Among major
responsibilities of such an agent is monitoring the condition of the resource and the
resource’s interactions with other components of the system and humans. The beliefs storage
of the agent will, therefore, naturally include the history of the resource, in a sense “blogged”
by the agent. Obviously, the value of such a resource history is not limited to that particular
resource. A resource may benefit from the information collected with respect to other
resources of the same (or similar) type, e.g. in a situation which it faces for the first time
while other may have faced that situation before. Also, mining the data collected and
integrated from many resources may result in discovery of some knowledge important at the
level of the whole ubiquitous computing system. A scalable solution requires mechanisms for
inter-agent information sharing and data mining on integrated information which would
allow keeping the resource histories distributed without need to copy those histories to a
central repository.

During WP2’s Year 2 (the Integration phase), we work on the following question:
• How to realize the possibility of querying a set of distributed, autonomous, and,

hence, inevitably semantically heterogeneous resource histories as they were one
virtual database, i.e. how to collect and integrate needed pieces of information
from distributed sources?

The problem of efficient data sharing, exchange and reuse within complex systems plays a
key role for usability of the UBIWARE platform and its commercial success. In this
workpackage we introduce a mechanism for distributed data management within the
UBIWARE platform which allows platform users to build industrial business solutions.

2.1 Distributed Querying Scenario in Paper Industry
The scenario we have selected is based on the real software infrastructure from process
industry. There is a complex production line (e.g. paper producing machine) which is served

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 36

by a number of control and diagnostic systems. Those measurements taken from sensors that
go beyond the range are stored in Alarm History Database. The Diary Database contains
records about critical alarms and comments of the maintenance workers. There are also
comments on actions taken. Also, there is a Scheduled Performance Monitoring database that
stores results of the analysis which is performed once per day. The analysis includes all
nodes with performance indices that indicate how well each node is performing (see Figure
2.1).

Figure 2.1 - The IT-infrastructure of the paper machine.

Suppose, there is a serious fault happened in the paper machine that has led to the subsequent
alarming and maintenance actions. All these events are recorded in the respective databases.
However, in order to analyze the preceding events, say during one week before the fault, an
expert may need to query portions of data from all the databases, then change filtering
parameters and query databases again and again. The easiest way is to provide an expert with
the interfaces to all the databases separately, however, the expert’s decision will be stored (if
will be at all) to a separate file or another database. It will be hard to find it if similar problem
occurs later. Thus there is no integrated view on all the contents of the databases, neither on
other sources of information about paper machine operation. In Semantic Web domain it is
called a proof when any knowledge is connected with the rules and facts that were used to
infer it. The problem of integrated view on the information is really important in the
industrial automation, especially due to the fact that a lot of experienced experts in a majority
of companies are going to retire during next 5-10 years, without proper knowledge transfer to
new experts. On the other hand, semantic linking of the information will be in a great
demand when the standardization efforts taken in companies will go beyond the companies’
boundaries and will call for a unified mechanism of distributed querying for knowledge and
expertise exchange (Figure 2.2).

In the idealistic case, companies will be able to sell information and analytic services to each
other seamlessly with small or no programming efforts. The services sold will be easily
integrated into the company environment with the guaranteed compatibility. We, therefore,
foresee the need for tools and capabilities in the UBIWARE platform that will simplify
distributed querying and information integration.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 37

Experts’
diary

Scheduled
Performance
Monitoring

Alarm
History DB

Standard-based
domain ontology

provider 1

Providers of
IT solutions

Factory 1

provider 2

provider n

Experts’
diary

Scheduled
Performance
Monitoring

Alarm
History DB

Factory 2

Experts’
diary

Scheduled
Performance
Monitoring

Alarm
History DB

Factory n

Figure 2.2 - Inter-company standardization in paper industry.

2.2 ONTONUTS concept
We introduce Ontonuts concept to facilitate the presentation of modular scripts and plans in
the UBIWARE platform. The idea is somewhat similar to the notion of Enterprise Java
Beans, whereas it is semantic by nature and has its own architectural peculiarities. Instances
of Ontonut concept in general represent a capability with known input and expected output.
Then we adapt Ontonuts to the problem of distributed querying.

2.2.1 Ontonuts in the architecture of the UBIWARE platform
The Ontonuts technology is implemented as a combination of a Semantic Agent
Programming Language (S-APL) script and Reusable Atomic Behaviors (RABs), and hence,
can be dynamically added, removed or configured. Being run on the platform, Ontonuts can
be understood as an engine or agent role. From the programming point of view Ontonuts
allow componentization of S-APL code by introducing a semantic annotation to it. Such
annotated pieces of code are called capabilities (analog of function in procedural
programming). The capabilities further can be dynamically combined into plans and put to
the execution by the Ontonuts engine.

The Ontonut capabilities are S-APL descriptions with explicitly defined preconditions and
effects.

},,{: effectprecondscriptOntonut (2.1)

The semantic annotation of Ontonut (by precondition and effect) allows us to automatically
plan (compose) agent’s activities to achieve a specified goal. The script part has an S-APL
code that produces the effect based on the precondition. The whole data model of the
UBIWARE platform is triple-based, therefore goals, preconditions and effects are defined as

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 38

triple sets in S-APL. Suppose we have an initial data set {A A A}, a goal G1 defined as {C C
C} and we have two ontonuts O1 and O2, defined as:

O1 :type :Ontonut
O1 :precondition {A A A}
O1 :effect {B B B}
O1 :script {{A A A}=>... =>{B B B}}

O2 :type :Ontonut
O2 :precondition {B B B}
O2 :effect {C C C}
O2 :script {{B B B}=>...=>{C C C}}

The appearance of the goal G1 will activate Ontonuts engine that will match G1 against
available effects and apply planning, which will result in an execution plan: O1=>O2=>G1.

2.2.2 Ontonuts in a nutshell
The Ontonuts functionality is built on top of the platform and reuses available scripts and
RABs without any modifications to the platform. Architecturally, Ontonuts engine consist of
three main components: Triggering rule, Action Planner and Plan Executor (Figure 2.3).

Web
Service

CSV file

RDBMS

Agent Beliefs
(S-APL code)

SQLReader
TextTableReader

ExcelReader
…

MessageSender
MessageReceiver

Ontonuts Role Script

Business Logic Script

Reusable
Atomic

Behaviors
(Java code)

Excel
sheet

…

Ontonuts capabilities

GoalAnalyser
ActionPlanner

Action Planner

Ontonuts triggering rule

Plan Executor

Agent Services

External resources
Figure 2.3 - Ontonuts architecture.

The Ontonuts Triggering Rule is a starting point of the engine work. The Triggering Rule is a
MetaRule, i.e. it runs before other rules and commitments fire. On each iteration of Live
behavior (the basic default behavior of every agent), the rule checks whether there are any
Ontonut calls to be handled. Ontonut capabilities may include interaction with other agents or
external resources such as databases, files or web services. On the other hand, capabilities
can perform local actions and do some computations over the data, e.g. statistical analysis.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 39

2.2.2.1 Invoking Ontonuts
The Ontonuts engine supports three types of Ontonut calls:

 Explicit
 Goal based
 Pattern-based

The Explicit call to the Ontonut has following syntax:
{sapl:I sapl:do ont:Ontonutid}
 sapl:configuredAs
{x:precondition sapl:is {Input

statements}
}.

The result of the call is added to the G – a general context. Instead of creating a container
with input statements, it is possible to point to the existing one by container id. The content
of the container will be treated as an input.

The Goal-based call is initiated by adding the following goal definition to G:
sapl:I ont:haveGoal :id.
:id ont:goalDef{goal statements}
:id ont:initData {initial data}

The Ontonuts engine runs the planner, to check if the plan can be produced for the goal
taking into account the initial data provided. If not, then the goal is marked as non-achievable:

:id ont:isAchievable false.

If the planner comes up with the plan for the goal, it assigns a plan to the goal id:
:id ont:plan :planid.
:planid sapl:is {plan statements}.

The plan statements are ready to be executed within the agent’s beliefs. The Ontonuts engine
just puts them to the general context G, where they are run as any other commitments. Upon
completion of the plan execution, the following statements are added:

:planid ont:isPlanAchieved true.
:planid ont:execResult {result

triples}.

In case of non-completion or failure the false value is assigned to the ont:isPlanAchieved
property. However, if the plan has been executed successfully, but resulted in an empty set,
the ont:execResult property may point to false value.

The third type – a pattern-based call is triggered when the content of the active commitment
in its left part matches the effect pattern of at least one Ontonut.

{A A ?a} => {some action with ?a }.

This call can be considered as a syntactic sugar for goal definition, where left part of the
commitment is considered as a goal. The Ontonuts engine intercepts such commitment
before it fires, then removes it from G and uses left part to perform planning and execution.
However, this type of call does not specify the initial data set as the second type of call does.
Such goal definition is possible for those Ontotnuts, which precondition is always true within
the goal specified. For example, an Ontonut can perform queries over certain database and
use a (sub-) pattern of the goal to produce a query and execute it.

After the goal is achieved, and, hence, the variable values in the left part of the commitment
can be assigned, the Ontonuts engine produces the result (the right part) of the commitment

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 40

using the variable values. If the evaluation of the left part results in an empty set, the variable
values will not be assigned, so, it is recommended, that user defines sapl:else construct in the
right part of the commitment to ensure alternative action:

{A A ?a} => {some action with ?a };
 sapl:else {alternative}.

This type of Ontonuts targets mainly the tasks of distributed querying that are discussed in
the forthcoming subsections.

2.2.2.2 Planning the execution
The planning is organized as a goal-driven process. We apply backward chaining algorithm
to build an action plan, which may involve other Ontonuts. The planner does semantic
inference over the set of initial data before the actual plan generation starts. The semantic
annotations of Ontonuts, as well as corresponding domain ontology are, therefore, a key
success factor of the Ontonuts-based applications. The planner acts in a straightforward way
– it matches the goal against Ontonut annotations by subtracting (operation over sets) these
annotations from the goal. If a goal can be fulfilled by available initial data and Ontonuts, the
planner starts to check whether the preconditions of these Ontonuts can be fulfilled. If the
preconditions may need to use other Ontonuts, they are checked as well. In such iterative
manner, the planner builds a solution tree. The planner then may choose the preferable
solution using different criteria, e.g. utility-based selection.

The formal definition of the goal-driven planner is given below:

Let the goal be defined as }{TGoal = – a subgraph defined as a set of triplesT . The triple is
defined as a tuple),,(opsT = , where s, p and o are subject, predicate and object of the triple.
However, we extend the range of s, p and o with the variable value, i.e. in any place of s, p
and o there can be a variable namev ?= . Such extension introduces set-subset relationships
amongst triples, e.g.)?,,(?)?,,(),,(321 aAxTaAATAAAT ⊆⊆ , which become sub-graphs.
The Ontonut is a pair),(EPO = , where P is a precondition }{TP = , and E is an effect

}{TE = of the Ontonut O . We also introduce an initial data set as }{TI = , which defines the
facts. Before starting the planning process, a necessary condition should be met:

∅=∪)(\ OEIGoal (2.2)

where OE represents effects of available Ontonuts. If the goal can be resolved with the initial
data set, i.e. ∅=IGoal \ , then the planning is over and the result answer is given (a subset
of triples from the initial set that match the goal). If there are Ontonuts, needed to fulfill the
goal, we define a subset of the goal as:

IGoalG \0 = (2.3)

and then introduce a set of solutions for the OG goal:

miSS G
i

G ,1},{ 00 == (2.4)

each solution iS is a combination of Ontonuts such that:

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 41

kimkiSS

EG

njOS

G
k

G
i

O

j
G
i

j

≠=≠

∅=

==

,,1,,

,}{\

,,1},{

00

0

0 (2.5)

where
jOE - an effect of the Ontonut jO . The equation (5) defines an obligatory condition for

a solution to solve the goal and ensures uniqueness of each solution. Each solution has
preconditions of its Ontonuts

jOP . Union of the preconditions defines the subgoal of the
solution (i.e. what data we need to make the solution work):

U
n

j
O

G
i

G
i j

PSG
1

)(00

=

= (2.6)

where 0G
iG - a subgoal of the i-th solution 0G

iS of the goal 0G . The goal-solution graph G
can be defined as a set of pairs:

))(\(

),\(

},,{

∅=∀

∅=∃

=

j

jj

jj

G
ijj

G
i

G
i

G
i

G
i

SEGG

IGG

SGG

 (2.7)

where)(jG
iSE is a union of effects of the Ontonuts involved in the solution jG

iS , i.e.

nkOSESE k
G
i

n

k
O

G
i

j

k

j ,1},{,)(
1

===
=
U (2.8)

The goal-solution graph contains a set of subgoal nodes linked to each other with subGoalOf
relationship. Each subgoal may have a number of solutions. Each solution determines the
way the subgoal can be achieved. If at least one subgoal jG

iG can be achieved purely

within I , so that ∅=IG jG
i \ , then the subgoal 0G can be resolved.

The goal solution graph will result in a set of Ontonut calls, linked to each other. We
distinguish five main types of call combinations (see Figure 2.4).

The first and second types are parallel and sequential ones. The third type is the combination
of first and second, where output from a set of Ontonuts executed in parallel is used as an
input for one subsequent Ontonut. The fourth type uses output of one Ontonut as an input for
a set of subsequent parallel ones. And the fifth type displays the case when an output is used
as an input for subsequent and non-subsequent, parallel and non-parallel Ontonuts.

The execution plan produced by the planner uses handlers to determine the status of the
execution and trigger sequential steps upon completion of preceding ones.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 42

(1)

(2)

(3)

(4)

(5)

Figure 2.4 - Ontonut combinations.

2.2.2.3 Handling the execution
The Ontonuts engine does not execute the plan as a whole; it rather generates a plan that is
run by the agent’s Live behavior engine. However, the plan is not straightforward; it includes
additional handlers that allow the Ontonuts engine to observe the state of the execution and
react if the execution can not be successfully completed. The plan is sequential and therefore
it has steps or control points. At each control point the plan produces the statements that
represent the status of the execution. These statements are collected in a container that is
attached to the plan:

:planid ont:execStatus {
 :01 ont:status ont:Success.
 …
 :nn ont:status ont:NoResponse.
}.

The engine then can use the status information for re-planning if the current plan did no
succeed.

There are two classes of Ontonuts that differ by the execution:
- Self-running
- Engine-running

The latter type has a built in script, that runs in agent’s Live behavior as an independent code
and returns the result to the G container (to the agent’s active beliefs). The former is rather a
description that is recognized and executed by the Ontonuts engine. The engine-running
Ontonut calls are presented in the plan as explicit ones (see 2.2.2.1). In the current version,
the engine supports only one type of engine-running Ontonuts, that provide access to the

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 43

databases (we call them Donuts). More information on Donuts and engine-running Ontonuts
will be provided in the sub-section 2.2.3.2.

2.2.2.4 Persistent rules in execution and planning
Every agent may have persistent rules in its beliefs that are always available, thus
applications may use them in their logic (the analog of built-in functions in programming
languages). The Ontonuts allows integration of such rules into the planning and execution, by
providing stub annotations for them:

:id :type :Ontonut
:id :precondition {B B B}
:id :effect {C C C}
:id :script {empty}

The Ontonut stub leaves the :script property empty. The absence of implementation script
means, that there is functionality in agent’s general context that will react on appearance of
statements matching the precondition and will produce statements according to the pattern of
effect.

2.2.3 Distributed querying with Ontonuts
There are two main viewpoints towards distributed querying in the UBIWARE: adapter-
based and service-based. The former tackles the adaptation of data sources that are external
to the platform (databases, files, web services, etc.), when the latter deals with the agent-to-
agent querying. Nevertheless, both target the same goal: to make distributed querying
transparent to an agent (see Figure 2.5).

Agent BeliefsAgent Beliefs
OntonutOntonut
BindingsBindings

FilesFiles

Data Service

DB/KBDB/KB

agent-to-agent servicing
adaptation of external sources

OntonutsOntonuts
Role ScriptRole Script

Figure 2.5 - Distributed querying in UBIWARE.

The agent-to-agent querying follows servicing paradigm and particularly data servicing
discussed in (Quilitz and Leser, 2008). The adaptation of external sources (RDF-based
adaptation is discussed in e.g. Langegger et al, 2007) resolves the problem of connectivity
and interaction with those resources that are external to the platform, i.e. communicating with
them in their native language. However, from the business logic developer’s point of view,
any remote resource should be transparent, in order to keep business logic script as modular
and clear as possible. Ontonuts become wrapper, adapter and connector in one place.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 44

For example, there can be a database that contains data in a native format about events of a
paper machine. Let us consider the situation, when an agent needs to instantly analyze event
series and, hence, perform queries regularly. An agent can have a flat solution, where all the
calls to the database, as well as transformations are written within the same S-APL code that
performs the analysis. Or, it may declare an Ontonut and specify a pattern that defines the
query types allowed. Then the code that performs the analysis will be purely separated. And
even more, if the analysis results in a certain number, it can be wrapped into the Ontonut as
well, and so the end user will call the whole complex construct by putting one commitment
to its beliefs, e.g.

{:Factory1 :hasAnalysisResult ?res}
=> {some action with ?res here}.

The distributed and remote querying is one of the most demanding application areas for
Ontonuts, because it tackles the Enterprise Application Integration (EAI) problem as a whole.
Ontonuts try to solve three main challenges: connectivity, adaptation (transformation) and
integration. An illustrative example is presented on Figure 2.6.

RABs
(Java code)

Events DBEvents DB

Agent Beliefs
(S-APL code)

ConnectivitySQLReader

Transformation

Integration

Ontonuts
transformation

Application-
specific logic

Figure 2.6 – EAI in UBIWARE.

The connectivity problem is resolved by adding new RABs, e.g. if there is a new protocol or
a database provider on the market. The transformation code is a mediator between the
connector’s format and the internal UBIWARE semantic model (Ontology). An Ontonut here
is a semantic interface to the external database. The application-specific logic uses the
Ontonut in planning to implement a transparent integration with other data and applications.

2.2.3.1 Querying use cases
Based on the scenario described in section 2.1, we have defined three typical querying cases
that we use for testing and development of the Ontonuts engine:

- Event flow integration (time-based distributed query to different sources (extract
events from different systems by filtering them with the same time frame)

{?diaryEvent :hasCommentText ?ctext.
 ?diaryEvent :hasTime ?ctime.
 ?ctime > ?timestart.
 ?ctime < ?timeend.
 ?alarmHistorian :hasAlarm ?alarm.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 45

 ?alarm :hasTime ?atime.
 ?atime > ?timestart.
 ?atime < ?timeend.
 ?timestart = 2008.09.08T12:00.00.
 ?timeend = 2008.09.08T23:59.00. }

- Additional information (Get supplementary device configuration data for a particular
event-based view)

{?diaryEvent :hasCommentText ?ctext.
 ?diaryEvent :hasTime ?ctime.
 ?ctime > 2008.09.08T12:00.00.
 ?ctime < 2008.09.08T23:59.00.
 ?diaryEvent :hasTag ?eventtag.
 ?eventtag :hasMappingTo ?node
 ?dpm :hasNode ?node.
?node :hasAlarmLimit ?alimit}

- Complex mining (Collect information from a set of sources, where additional
computations over sub-query results are performed)

{?dpm :hasNode ?node.
 ?node :hasPerfIndex ?pindex.
 ?pindex < 0.5.
 ?nfiltered :filter ?node.
 ?nfiltered :hasMappingTo ?eventTag.
 ?diaryEvent :hasTag ?eventTag.
 ?diaryEvent :hasComment ?comment}

The first use case allows parallel execution of two independent sub-queries. The second case
uses time-based filtering and sequential querying of two sources, where parameters from the
first sub-query are passed as input to the second one. In the third case the sequential querying
is extended with the custom filtering that may involve statistical or any other computations.
Querying is a specific task for Ontonuts engine. It introduces capabilities that have a
precondition for a query subgraph to meet the effect pattern of the Ontonut. Therefore we
extend the engine to allow these capabilities to be used in planning and execution.

2.2.3.2 Extending Ontonuts for Distributed Querying
In a distributed querying task every Ontonut is an interface to the data source which has an
associated data query pattern (effect) it replies to. The Ontonuts engine introduces an
extension for data source-based Ontonuts. The extension allows the Ontonut developer not to
implement all the RAB calls and S-APL transformations from the scratch, but rather define a
description of the data source and transformation mappings. We call this subclass of Engine-
running Ontonuts as Donuts (Database Ontonuts). The engine distinguishes the Donuts and
treats them in a different way.

Naturally, the user-defined query can match several Donuts; therefore, the triggering rule
invokes Action Planner. The Action Planner distinguishes sub-queries from the initial query
and produces a distributed query plan. The plan is then passed to the Plan Executor. The
executor handles the intermediate results of sub-queries and modifies subsequent sub-queries
accordingly.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 46

The structure of the Donuts is defined by Donuts Ontology (see Figure 2.7).

precondition
Ontonut

effect

mapping

Donut

SQLQueryBase

s
hasURL

DataSource

hasDriver
RDBDataSource

hasUsername
hasPassword

s

script

dataSource

Figure 2.7 - A fragment of Donuts Ontology.

The fragment of the ontology above describes the root classes Ontonut and DataSource as
well as their extensions for connectivity with relational databases (Donut, RDBDataSource).
Similarly, other types of extensions will include type-specific facets in their descriptions. The
Plan Executor uses data source descriptions for fetching the sub-queries and applies mapping
definitions to transform sub-query results into the semantic form.

2.2.3.3 Mapping and adaptation in Donuts
Donuts define the interface from the agent’s internal semantically structured beliefs to the
external information source with different data structure. The problem of mapping the
database structure to the RDF-graph is thoroughly researched in (Seaborne et al) and
(Seaborne, Bizer). The authors propose an approach that maps the relational model to the
RDF-model taking into account not only the structure of the database but the content as well,
which is of big importance in transformation and mapping tasks. In the UBIWARE, however,
we meet a slightly different task due to specifics of S-APL containerization
(contextualization). We therefore try to define pattern-based interfaces that allow random
structures of different complexity to be mapped, not necessarily instances of classes. In the
pattern-based approach the Ontonut must fill the variable places in the pattern, and, therefore,
the query to the resource (database) may have an arbitrary complexity. It is a task of a
programmer to collect all the needed information and map it to the pattern values.

2.2.4 An Illustrative Example
The example presented here is based on the usage scenario described in Section 2.1 of this
paper. Suppose that agent wants to extract the comment strings from the Expert’s Diary
database and align them with the performance indices from the Performance Monitoring
database. Then, both values are printed to the command line. The commitment (query) in
agent’s beliefs would look like:

{?cres :commentID ?cid.
 ?cres :entryId ?eid.
 ?cres :commentTitle ?ctitle.
 ?cres :nodeid ?pmnode.
 ?pmnode :performanceIndex ?pindex.
}
=>
{

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 47

 {gb:I gb:do :Print} gb:configuredAs
 {x:print gb:is "The ?ctitle has

 the performance index ?pindex"}.
}.

The commitment does not explicitly refer to the type of the Ontonut by the rdf:type property,
which would simplify the implementation of the triggering procedure, but we apply pattern-
based matching, i.e. use subtract operation over available Ontonut effect patterns and the
query.

The description of the Ontonut is shown below:

:DiaryCommentNut rdf:type ont:Donut.
:DiaryCommentNut ont:dataSource

 :datasourceid.

:DiaryCommentNut ont:SQLQueryBase
"SELECT CommentID, EntryID, Title

 FROM dbo.Comment".

:DiaryCommentNut ont:mapping {
 ?commentID ont:mapsTo "CommentID".
 ?entryId ont:mapsTo "EntryID".
 ?title ont:mapsTo "Title"}.

:DiaryCommentNut :effect {
 ?rowid :commentID ?commentid.
 ?rowid :entryId ?entryid.
 ?rowid :commentTitle ?title}.

In the particular query, the triple that matches the identifiers:
?cres :nodeid ?pmnode.

is a bridging property between two Ontonuts, that have physical datasources behind.
Therefore, it may belong to any of the Ontonuts it bridges or be an independent Ontonut at all.
The way, how it is modeled is domain-specific. The property can be considered as a mapping
that uses correspondence table or any other mapping algorithm. In case if the property is tied
to the Ontonut, the ont:mapsTo property used in the mapping description can point to a
container with the correspondence table that consists of two columns with the values to be
matched.

The effect of the second Ontonut used in this example is defined as follows:
:PerfMonitoringResultNut :effect {
 ?pmnode :performanceIndex ?pindex.
}.

As soon as matching has succeeded, the matchmaking rule passes the control to the Query
Planner. In this particular case, the work of Query Planner is straightforward – to decide
which Ontonut to be queried first and apply query parameters for the SQL query generation.
The order of execution may depend e.g. on the average expected number of records of each
independent sub-query. The methods of execution planning and optimization go beyond the
scope of this paper. For further reading the reader can look for e.g. (Oberheimer, Nixon,
2008).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 48

2.2.5 Ontonuts in Agent Servicing
The notion of Ontonut introduces a capability-based presentation of the agent’s action plans.
Ontonuts can hide a complex action plan behind very simple precondition and effect patterns.
Such capabilities can be wrapped as services, thus agent can make parts of its functionality
available to the outer world by extending the Ontonut description with the service-specific
attributes (i.e. QoS, contracting, etc.).

The difference between Ontonut and an agent service is their purpose of usage. Whereas
Ontonut is by nature intended for internal use (simplifies agent‘s business logic), the service
is targeted for external use (see Figure 2.8).

Agent BeliefsAgent BeliefsAgent BeliefsAgent Beliefs

- service provider

- Ontonut
- service consumer

- client-service scenario

Figure 2.8 - Ontonuts vs. servicing.

As shown above, the Service Provider can wrap or use Ontonut in its service implementation.
The Service Consumer can use Ontonut to ease access to a service (wrap service client, to
simplify other agent’s scripts).

2.5 Conclusions
The approach presented in this work targets quite specific target – to structure the S-APL
code of the UBIWARE agent in order to simplify programming of the agent and allow
automated goal-driven planning. Although, the work applies to quite narrow domain, it
involves generic problems of agent planning and semantic programming. The strike of this
paper is put on the automated planning of distributed queries and inevitably interferes with
distributed RDF queries and so-called virtual graphs, when the graph being queried does not
have content beneath; instead, the RDF queries are used to generate SQL queries to the
corresponding database.

The approach proposed here, does not try to map models, but uses patterns to define desired
result and applies queries or any other code to fill the patterns requested by the agent.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 49

UBIWARE Deliverable D2.1:
Workpackage WP3:

3 SURPAS – Smart Ubiquitous Resource
Privacy and Security

The security is often seen as an add-on feature of a system. However, in many systems (and
UBIWARE is one of them), the system remains nothing more but a research prototype,
without a real potential of practical use, until an adequate security infrastructure is embedded
into it. The main objective of this work package is the design of the SURPAS infrastructure
for policy-based optimal collecting, composing, configuring and provisioning of security
measures in multi-agent systems like UBIWARE. SURPAS follows the general UBIWARE
vision – configuring and adding new functionality to the underlying industrial environment
on-the-fly by changing high level declarative descriptions. Regarding security, this means
that SURPAS will be able of smoothly including new, and reconfiguring existing, security
mechanisms, for the optimal and secure state of the UBIWARE-based system, in response to
the dynamically changing environment. The optimal state is always a tradeoff between
security and other qualities like performance, functionality, usability, applicability and other.

According to the original project plan, the WP3’s Year 2 (the Communication phase) had the
following tasks:

Task T2.1_w3 (research): Conceptual and functional semantics, algorithms and
abstract architecture: Secure Communication.

Task T2.2_w3 (development): Reference implementation of the abstract architecture
in the UBIWARE prototype focusing on Secure
Communication.

In other words, the plan was to work on the questions related to secure communication
between agents, e.g. enabling organizational policies that do not only prohibit or allow
something (like access control) but also may prescribe a certain additional actions to be taken,
like encrypting every outgoing message. These questions are however already partially
answered during first year, and will also be treated on the more general level of
organizational policies of any kind in WP1. Because of that and because of reduced funding,
it is considered to be reasonable not to perform work in this WP during Year 2.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 50

UBIWARE Deliverable D2.1:
Workpackage WP4:

Task T2.1_w4:
Workpackage leader: Michal Nagy

4 Self-Management, Configurability and
Integration

UBIWARE aims to be a platform that can be applied in different application areas. This
implies that the elements of the platform have to be adjustable, could be tuned or configured
allowing the platform to run different business scenarios in different business environments.
Such flexibility calls for existence of a sophisticated configuration layer of the platform. All
building blocks of the UBIWARE platform, i.e. software agents, agent behaviors, resource
adapters, etc, become subject to configuration. On the other hand, a flexible system should
have a long lifespan. Hence, the platform should allow extensions, component replacements,
and component adjustments during the operation time. This work package aims at
introducing configurability as a pervasive characteristic of UBIWARE and developing the
technology which will systemize and formalize this feature of the platform.

During WP4’s Year 2 (the System phase), we work on issues related to configuration of the
system as a whole, through distributed decision making by agents representing the system
components. WP will answer the following research questions:

• How a component of a system may realize the need for re-configuration of itself
of the integral system, i.e. when the previous configuration of one or more
components does not seem to work anymore?

• What mechanism are needed for (re-)configuration of the integral system through
local decision making of and supported by communication between agents
representing components of the system (i.e. with no central decision maker)?

4.1 Self-configuration and its benefits
In the scope of the UBIWARE project the self-configuration capability is understood as a
property of the system to change the nature of its elements without any external intervention
of the programmer. Such system should be capable of changing its components (or
component parameters) according to a common goal rather than to the explicit specification.
In other words, the optimal (or nearly optimal) configuration of each agent can be discovered
by the system itself.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 51

There could be several configurations with whom a group of agents is able to perform the
goal, but the question is: Which of these configurations is the best one? The best
configuration could be understood as a configuration that gives us the best result for the least
cost. Cost could be anything – energy, computation time, money, etc.

Sometimes finding the optimal solution can be very time consuming, especially for large
domains. In these cases the goal is to find a solution that is as close as possible to the optimal
one – so-called locally optimal solution. Sometimes we may be lucky and by finding the
local optimum we will find also the global optimum.

In the UBIWARE platform we can identify two kinds of configuration:

• Self-configuration of the external environment
• Self-configuration of UBIWARE components

4.1.1 Self-configuration of the external environment
In this scenario a group of agents is used to configure some part of the external environment
(e.g. a machine). Components of the UBIWARE platform are not being configured. They are
just used to configure something that they control. This approach can be used when we want
the external environment to have the property of self-configuration. Also self-manageability
can be achieved, because if the system senses that there is a change in the environment, it can
easily re-configure so that it will perform the task optimal (with the least cost).

4.1.2 Self-configuration of UBIWARE components
Under the term UBIWARE components we understand agents themselves. Usually agents are
cooperating to accomplish one global task that is performed by all of them. In this case, the
agents are trying to configure themselves in order to complete this common task.

Configuration of the platform itself could be divided into several layers. Under the term
configuration we understand following:

1. Choosing the best Reusable atomic behavior (RAB) from a set of possible RABs
2. Choosing the best parameters for a RAB
3. Choosing the task or role that the software agent should play

This means that instead of hard coding we can just define a global goal together with some
restrictions and the system itself will find the best configuration. This approach makes the
system more scalable for future extensions. When a new element is added or removed, it may
also affect the configuration of other elements of the system. However, we don’t have to
change the configuration of the system explicitly. Instead of that, we will just provide the
new element and its neighbors with the configuration information and the system will be able
to re-configure itself.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 52

4.2 DCOP as a mathematical model

4.2.1 The model
In previous years, many researchers were dealing with the problem of multiple agents’
cooperation. The mathematical model they used is called Distributed Constraint Optimization
Problem (DCOP). We believe that this model can also be used for configuration purposes.
DCOP assumes that we have a group of agents that cooperate in order to achieve some
common goal. Each agent controls one or more variables. Each variable has exactly one
domain. This domain defines all possible values that this variable could have. No other
values can be chosen. A variable could be for example a role of an agent or a RAB. Under
the term domain we can understand a set of possible roles or RABs. Domains don’t have to
be necessarily same among all agents. It means that each agent can choose values from a
different domain. However these domains have to be specified. Along the variables and
domains, this model defines also a set of constraints. In general they can be n-ary (between n
agents). A constraint defines a possible combination of values between the agents who share
the constraint. For example, some constraint may say that if agent A has chosen value X,
then agent B can choose only values Y or Z, otherwise the constraint will be violated.

In the previous text we described the general DCOP model. However, this model can be
simplified without the loss of its power. We can do following simplifications:

1. Each agent controls exactly one variable
• It is well know that an agent who controls several variables can be modified to

control only one variable. This can be done either by combining several
variables into one or by modeling this agent as a group of smaller agents who
control only one variable each.

2. Constraints are only binary
• Each n-ary constraint can be decomposed into several binary constraints

without loosing its meaning.
The model can be formally written as following (Maheswaran et al., 2004). Let’s have a set
of n agents A1,…, An. As stated before, each agent controls exactly one variable – in general
agent Ai controls variable iv for ni ,...,1= . Therefore we can use the term agent and variable
interchangeably. Each variable iv can pick a value ix from its domain iD , formally:

niDxv iii ,...,1: =∈= (4.1)

Constraints can be represented using so-called constraint graph. In this graph, every node
represents exactly one agent (or variable) and every edge represents exactly one constraint
between the neighboring nodes (agents). To express the constraint graph more formally, we
can use a symmetric matrix E. This matrix characterizes a set of edges between agents
(variables) such that:

⇔== 1jiij EE there is a constraint between i and j

⇔== 0jiij EE there is no constraint between i and j (4.2)

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 53

For each pair),(ji such that 1== jiij EE let),(jiij xxU represent a utility when vi has

assigned value ix and jv has assigned value jx . The global utility)(xU is the sum of
rewards obtained from assignment x. An assignment x is a set of values given to the
corresponding variables nDDDx ×××∈ ...21 . The goal is to find an assignment x* such that

*)(xU will be maximal among all possible)(xU . This problem can be therefore given as a
group of 3 sets),,(UEX .

4.2.2 An example of a DCOP problem
The DCOP model can be easily used to describe a graph coloring problem. Let’s assume that
we have a graph as shown in Figure 4.1.

Figure 4.1 - Graph coloring problem on 4 vertex graph.

Each vertex represents one variable that stores the value of the color. Let’s assume that we
have only 2 possible colors (0 and 1). Thus }1,0{4321 ==== XXXX . In the graph there
are constraints (edges) between some neighbors. The constraint says that the color on the
both ends of the edge should be different. But not all constraints (edges) are equally
important. Let’s assume that the constraint between V1 and V2 is less important than others.
We can model this fact by changing the utility function U12 as described in the Figure 2. All
different combinations of colors (values) will raise the utility by 7. Only in case of U12 the
utility is raised only by 4. If an agent should decide if it has to break the constraint V1 – V2 or
other constraint, it would break constraint V1 – V2 because by breaking it, it will loose only 4
points, instead of 7 points lost by breaking any other constraint.

Figure 4.2 - Utility functions.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 54

Now we defined all 3 required sets:

(4.3)

The knowledge and roles are distributed as following:
1. Each agent Ai can change only its variable vi
2. Each agent Ai knows the list of his neighbors from matrix E
3. Each agent Ai knows X
4. Each agent Ai knows all Uij where vj is his neighbor

The goal is to find a color for each variable (vertex) so that the number of broken constrains
is minimal in the sense of the global utility. We can see that this problem doesn’t have a
solution that would satisfy all the constraints. But we can find a solution that gives us a result
with the highest possible utility.

There can also be slight modifications in the presented DCOP model. So far all the
constraints were only soft. However, some of the constraints could be considered hard. When
finding the solution, the algorithm must satisfy all hard constraints and should try to satisfy
all soft constraints. By not satisfying a soft constraint, the solution can be still feasible.
However by not satisfying a hard constraint, the solution is not acceptable. Hard constraints
are important in so-called high-stakes scenarios where even a single broken constraint can
result in a catastrophe (e.g. in a nuclear power plant).

There are several complete algorithms for solving DCOP problem (Bowring et al.,
2008)(Chechetka and Sycara, 2006)(Mailler and Lesser, 2004)(Modi et al., 2005)(Petcu and
Faltings, 2005)(Varakantham et al., 2006)(Yeoh et al., 2008)(Yokoo and Durfee, 1991).
Some of them are globally optimal and some are only locally optimal. The next part will
explain the difference between them.

4.3 Local optimization vs. global optimization
During last 20 years, several complete algorithms for solving DCOP problem were
introduced. However, the DCOP problem was recognized as an NP-Hard problem (Modi et
al., 2005). It means that complete algorithms provide a very high computation and
communication costs when the environment is big (complex constraint graphs). Complete
algorithms seeking global optimum can handle environments with about 100 agents.

Also several algorithms were introduced that were trying to find a locally optimal solution,
instead of the global solution. One class of these incomplete algorithms is so called k-optimal
algorithms (Maheswaran et al., 2004)(Zhang et al., 2005). In these algorithms agents
dynamically form local groups to coordinate value choices. A k-optimum occurs when no
group of k or fewer agents can improve the solution. In case k = n, the algorithm is complete.

4.4 Reconfiguration
In order to make the system self-manageable there has to be some way how to reconfigure it.
As we mentioned before, a DCOP model contains a set of constraints. These constraints can
depend on several attributes of the agent or the environment. Agents can sense the

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 55

environment. It means that they can sense also the change of some property of the
environment.

In general there are two situations when a group of agents needs to reconfigure:

1. The nature of the environment changed

2. The nature of the agent group changed

As mentioned before, an agent can sense its environment or a relevant part of it. This
information about the change is stored in the belief structure of the agent. The important
question is: Does this change influence the ability of the group to work efficient? If it does,
then it may be necessary to reconfigure the system. If it doesn’t, then there is no need to
reconfigure. Therefore the next question is: How can a group of agents know that the change
will affect them? The change will affect them if there is a variable that will change and the
same variable is present in at least one constraint that the DCOP model contains. Since every
agent can sense this variable, they know when they need to reconfigure.

The nature of the group can change if there is a new agent added to the group or an old one
removed from the group. The control over these actions can be achieved by a very simple
protocol that will be based on keep-alive messages together with register/unregister messages.
Every time an agent is added to the group, it will register and his neighbors will start to
maintain a keep-alive relationship with him. If they don’t sense it any more, they will trigger
the reconfiguration phase of the system. The reconfiguration phase can be triggered also
when an agents unregisters. There are many working examples of similar protocols.

4.5 Comparison of existing algorithms
As stated in the previous part, there are two types of DCOP algorithms – complete and
incomplete. Complete algorithms are seeking the global optimum and incomplete algorithms
are seeking a local optimum as a tradeoff for a better performance. In order to measure
efficiency of an algorithm, there has to be a common platform. DCOP problem, as the name
states, is distributed in its nature. Therefore the evaluation of DCOP algorithms is more
difficult. In (Meisels et al., 2002) a model for CCC (Concurrent Constraint Check) was
presented. Using this model it is possible to evaluate the effectiveness of DCOP algorithms.
It was accepted by the DCOP community and it is used to compare algorithms between each
other.

4.5.1 Complete algorithms
Several requirements for a scalable complete DCOP algorithm were summarized in (Modi et
al., 2005). These requirements state that the communication between agents should be local
without any broadcast messages. Broadcast messages are slowing down the calculation
process, because every node (agent) has to accept the message and evaluate it. Secondly, they
required the algorithm to operate asynchronously. In synchronous algorithms agents have to
wait for a particular message in order to continue the operation. In asynchronous algorithms
this idle time is used for computation. Third requirement was to give the quality guarantee on
the system performance. It means that quality/time tradeoffs are available. However not all
algorithms satisfy all of these requirements.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 56

4.5.1.1 Adopt
Adopt was presented in 2003 (Modi et al., 2003) and it is the first asynchronous algorithm for
solving DCOP problem. Adopt has following attributes:

• Allows bounded-error approximation
• Asynchronous
• Each agent can change variable assignment any time it thinks it’s necessary (there

doesn’t have to be any synchronization of actions between the agents)
• Globally optimal
• Distributed (there is no agent that acts as the central coordinator)

Before starting the Adopt algorithm, the constraints graph should be ordered into Depth-First
Search (DFS) tree. There are several efficient algorithms that are used for this purpose. The
memory complexity of Adopt is polynomial and the communication complexity is
exponential with respect to the growing number of agents.

4.5.1.2 OptAPO
This algorithm was presented in (Mailler and Lesser, 2004). It uses the mediation technique
and is asynchronous, same as Adopt. However in graph coloring domain it performs faster
than Adopt. The memory complexity is polynomial and the communication complexity is
exponential. However the completeness of this algorithm was challenged in (Grinshpoun et
al., 2007).

4.5.1.3 DPOP
The main feature of DPOP (Distributed Pseudotree Optimization Procedure) is that it has
only polynomial communication complexity. It was presented in (Petcu and Faltings, 2005).
DPOP uses the idea of sum-product algorithm, but this algorithm is used only for tree
structures. In this case the width of the tree is important. This parameter influences the
computational speed of the algorithm. Finding a min-width tree in a graph is a NP-Hard
problem. However according to the authors of the algorithm DFS traversal shows good
results (Petcu and Faltings, 2005). As mentioned in the beginning, the communication
complexity is polynomial. On the other hand the memory complexity is exponential. In
algorithms mentioned before, the message size was the same all the time or it didn’t change
significantly. In the case of DPOP, the maximal message size depends on the width of the
generated tree and not all messages have to have the same size. For example a problem
consisting of 200 agents with 341 constraints described in (Petcu and Faltings, 2005) would
result in the maximal message size of 256k values.

4.5.1.4 NCBB
NCBB (No-Commitment Branch and Bound) algorithm was presented in 2006 (Chechetka
and Sycara, 2006). Similar to some of the previous algorithms, it uses a tree structure to order
agents in the constraint graph. Before starting the algorithm, the graph should be ordered into
DFS tree. The memory complexity is polynomial and the messages complexity is exponential.
However the message size is constant (in contrast to variable size of the messages in DPOP).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 57

The experiments show that it has better time performance than Adopt in most scenarios and
similar performance to DPOP if the communication cost is close to 0.

4.5.1.5 AFB
AFB (Asynchronous Forward Bounding) algorithm was introduced in 2006 (Gershman et al.,
2006). This algorithm is based on the branch and bound scheme. Agents are controlling
assignments concurrently and they use a time stamp mechanism to determine the most recent
assignment. The authors expect a better performance in tight problems than SyncBB
algorithm. However they didn’t compare it with other modern algorithms.

4.5.2 Incomplete algorithms
Incomplete algorithms are trying to find a local solution of a DCOP problem. Some of them
provide a guarantee on the solution quality and some don’t. In this report, we mention one
group of algorithms that can provide a guarantee on solution quality. This group is called k-
optimal algorithms. As the name states, k-optimal algorithms are trying to find a k-optimum.
K-optimum appears when there is no group of agents smaller or equal to k that can improve
the solution. In order to write it more formally, we have to define a concept of a deviating
group of assignments.

A group of 2 assignments)~,(aa is considered deviating if at least one agent has chosen a
different value for its variable. Deviating group)~,(aaD is a set of indices of agents that have
chosen a different assignment for their variables, formally:

 (4.4)

The distance)~,(aad is defined as the cardinality of the)~,(aaD set, formally:

 (4.5)

The relative reward of an assignment a with respect to another assignment a~ is given as the
difference between their rewards:

 (4.6)

An assignment a can be classified as k-optimal if

 (4.7)

In other words, if we have an assignment a and we compare it with any other possible
assignment that has k or less variables changed, we will find out that this assignment a is the
best one (it gives us the biggest reward).

4.5.2.1 MGM-1
MGM-1 (Maximum Gain Message) is a very simple synchronous 1-optimal algorithm based
on DBA (Distributed Breakout Algorithm) published in. MGM-1 is trying to improve the
local utility in each round until there is no single agent that is capable of raising its local
utility. When this state is achieved, the algorithm terminates. The result is 1-optimum.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 58

4.5.2.2 DSA
DSA (Distributed Stochastic Algorithm) is very similar to MGM-1. It’s also synchronous and
it results in a 1-optimum. However, there is one small difference. In MGM-1 every round
only the agent (the one with the biggest utility gain) has the right to change the value. In
DSA several agents are allowed to change its variable each round. They are randomly elected,
which brings some uncertainties. In some cases it may lead to unpredictable results.

4.5.2.3 MC-MGM-1
This is a modification of MGM-1. MC in this case means multiple constraints. It can also
contain hard constraints. Hard constraints can’t be broken. They have to be satisfied for any
cost.

4.5.2.4 MGM-2 and SCA-2
Since these algorithms are 2-optimal, agents are trying to improve the overall solution in
pairs. There is a mechanism based on uniform probability function that is used to create these
pairs. After each pair discovers the best change to raise the utility, all agents will try to do a
unilateral change as in 1-optimal algorithms. Until this step, both algorithms behave the same.
However, the unilateral change in MGM-2 is done by sending gain messages between
neighbors. In SCA-2 it is done by randomly choosing a number between 0 and 1. If the
number is under the threshold p, the agent will change its value, otherwise not. Parameter p is
known by all agents in the beginning. By choosing different values for threshold p you can
influence the behavior of SCA-2 algorithm. In MGM-2 this number is not used.

4.5.2.5 MGM-3
With the implementation of 3-optimal algorithms new problems arise. In 2-optimal
algorithms, there was one offerer and several receivers to form pairs. Offerer was sending
messages to the receiver. In 3-optimal algorithms this is not possible and 2 additional cycles
are need per each round to create triples. This makes MGM-3 already complicated. SCA-3
can be easily implemented just by adding uniform probabilistic function to the MGM-3
approach as in SCA-2 together with the threshold p.

4.6 Test cases
We provide several test cases to prove the concept of DCOP and associated algorithms. The
process of transformation of a real-life problem into DCOP consists of following steps
(Figure 4.3):

1. Identification of variables and domains
2. Selection of utility functions and rewards
3. Construction of the DCOP model

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 59

Figure 4.3 - The transition from a real-life problem to DCOP model.

4.6.1 Self-configuration of a WiFi network
Let’s consider that we have a network consisting of several WiFi access points (antennas).
These access points provide internet connectivity for one floor of a building. They were
installed in a specific location and their position cannot be changed. Our goal is to adjust the
power level of each WiFi access point so that the whole area is covered, but there is only a
minimum of interference between the antennas. Each antenna can have 5 different power
levels – 0, 10, 20, 30, 40 mW. We know how far antennas are from each other and which
antennas are neighbors. The distance between the access points can be seen in Figure 4.4.
Let’s say that this figure also takes into consideration the wall types since they may affect the
signal strength. The ijd (distance i - j) values indicate the sum of power outputs of neighbors
that is needed for the optimal configuration. For example, between the access point 1AP and

2AP the distance is 512 =d . It means that the optimal configuration of these 2 access points
would be any configuration where 521 =+ xx , for example 21 =x , 32 =x or 41 =x , 12 =x .

The first step is the identification of variables and domains. In this example this is quite
straightforward. There is only one variable, the power output, and it has 5 values, from 0 to
40 mW. In order to make it simpler, we can write 0, 1, 2, 3, 4 instead of 0, 10, 20, 30, 40. It
doesn’t change the meaning of the problem. In our case, all APs have the same power output
levels. This is not a condition in the DCOP model. We could also have a heterogeneous
environment, where some APs have 5 power output levels and some have only 3 or any other
combination. However, to keep this example simple, we assume that all 4 of them have
exactly 5 power output levels (0-4).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 60

Figure 4.4 - The distance between the WiFi antennas.

The next step is to choose the utility functions iju with rewards/penalties for every pair of
neighbors. Our goal is to cover the whole area, so the power output has to be high enough.
But it shouldn’t be too high, since then the interference could appear. Therefore we should
give the biggest reward when the neighboring APs have the optimal power output (that
means the sum of the neighboring power outputs is equal to ijd). When the power output is
lower than that value, the devices will suffer a penalty – same if the power output is too big
and interference occurs. However, the penalty for not covering the area (ijji dxx <+) should
be higher than the penalty for interference (ijji dxx >+). Therefore we will give penalty of -
1 for every “power point” above the optimum and -3 for every “power point” under the
optimum. By knowing this, the utility function iju can be defined easily as:

(4.8)

It can be seen easily that the only possible sums range from 0 (both neighbors have the
lowest power output) to 8 (both neighbors have the highest power output). It means that we
can use a table to express this information in a more human-readable form. We will use a
table where we have the sum of neighbors’ power output levels and corresponding
reward/penalty (Figure 4.5).

To make the problem clearer, we construct also 4 graphs, each for one neighboring pair,
where it can be easily seen how the power output influences the final reward/penalty (Figure
4.6).

The next step is to represent this problem in terms of DCOP. To accomplish this, we have to
define domains set, constraint graph (matrix) and constraint functions. So far, we know the
domains set and the constraint matrix, but we don’t know the constraint functions. To
construct them we can use tables from Figure 4.5. However we have to change them so that
we cover each possible),(ji xx pair. The result can be seen in Figure 4.7.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 61

x1+x2 u12 x1+x4 u14 x2+x3 u23 x3+x4 u34
0 -15 0 -6 0 -9 0 -12
1 -12 1 -3 1 -6 1 -9
2 -9 2 0 2 -3 2 -6
3 -6 3 -1 3 0 3 -3
4 -3 4 -2 4 -1 4 0
5 0 5 -3 5 -2 5 -1
6 -1 6 -4 6 -3 6 -2
7 -2 7 -5 7 -4 7 -3
8 -3 8 -6 8 -5 8 -4

Figure 4.5 - Utility functions.

Figure 4.6 - The dependency between the power output sum and the reward/penalty.

Figure 4.7 - Utility functions.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 62

Now, we know all 3 elements, so we can construct the DCOP model as following:

},,,{
}4,3,2,1,0{}4,3,2,1,0{}4,3,2,1,0{}4,3,2,1,0{

0101
1010
0101
1010

34231412 UUUUU
X

E

=
×××=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

(4.9)

After we created the DCOP model, we can distribute the information among the agents. Then
we need to initialize the variables. In this case we can initialize them all to 0 (no power
output). The initial configuration of the system will be)0,0,0,0(0 =x . We can easily see that
this configuration gives us the following reward:

42
)12()9()6()15(

)0,0()0,0()0,0()0,0(
),(),(),(),()(

34231412

43343223411421120

−=
−+−+−+−=

+++=
=+++=

uuuu
xxuxxuxxuxxuxR

 (4.10)

As we can see this is the worst reward possible, so there is a lot of space for improvement.
Now we can start one of algorithms mentioned in the previous section. If it’s a complete
algorithm sooner or later it will come to the global optimum and if it’s a k-optimal algorithm,
it will come to a k-optimum. For example in this case 1-optimum could be configuration

)4,0,3,2(with the global utility 4)4,0,3,2(−=R .

4.6.2 Best role configuration
The second example is devoted to the problem of the best role configuration. There is a
group of 4 agents that can communicate together. The task is to choose a pair of agents – the
fist one will play collecting role and the second one will play storing role. The rest of the
agents won’t play any role.

There are several requirements put on the multi-agent system:
1. There can be exactly one agent playing collecting role
2. There can be exactly one agent playing storing role
3. Agent playing storing role must have database access
4. Agent playing collecting role must have HTTP access
5. Agent playing storing role must not have HTTP access

There are also different communication links between agents. Some are fast, some are slow.
The speed ijs of each link),(ji APAP is shown in Figure 4.8. Higher number means higher
speed. Speed 0 means that this pair cannot communicate at all.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 63

Figure 4.8 - Constraints graph.

The capabilities of each agent are shown in Table 4.1.

Table 4.1 - Agents' capabilities.

Agent HTTP
access

Database
access

A1 Y N
A2 Y N
A3 N Y
A4 Y Y

The first step is the identification of variables and domains. In this case we have only 1
variable per agent – the role. Each variable can have 3 possible values indicating the role that
the agent will play. The roles and corresponding numbers can be seen in Table 4.2.

Table 4.2 - Number-role mapping.

Number Role name
0 no role
1 Collecting
2 Storing

The next step is to choose utility functions. We have to “decode” all the conditions using
utility functions. Therefore we will have 2 different types of utility functions – unary and
binary. Using unary utility functions we can express the need to have HTTP access in the
case of collecting role and the need to have database access in the case of storing role. We
can express it as in Figure 4.9. The Y column indicates the reward/penalty if the agent has the
discussed feature. Column N gives the reward/penalty in case the agent doesn’t have this
feature.

Figure 4.9 - Unary utility functions.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 64

For every broken condition there is a reward -10. In this case it is de facto penalty of 10,
because the reward is a negative number. There is also a reward of -1 when the agent isn’t
playing any role. The reason for it is that we should motivate the agent to change its initial
state and pick a role. However, the requirements must be met. If the agent picks a role for
which it doesn’t meet the requirements, it will receive a reward -10. In this case, the agent
will pick no role, because that would give him a reward -1, which is better than -10.
Now we need to create a second group of utility functions – binary utility functions. They
will be created from the constraints graph. The result can be seen in Figure 4.10. If two
neighboring nodes picked different roles, they would receive a reward equal to the speed of
the link between them (red color in the figure). If they picked the same role, they would get a
reward of -10 (blue color in the figure). By doing this we assure that there will be only one
collecting role and one storing role. Having two same roles is just very expensive (too big
penalty). If one of the agents doesn’t play any role (the variable that it controls is equal to
zero), there will be no reward/penalty (black color in the figure).

Figure 4.10 - General binary utility function.

Now, we have all necessary information to complete the whole DCOP model. The constraint
matrix can be easily constructed from the constraints graph in Figure 4.8. The rest was
discussed earlier. Formally the model is:

},,,,,,,,,,,,,{
}2,1,0{}2,1,0{}2,1,0{}2,1,0{

1111
1111
1111
1111

)2(
4

)1(
4

)2(
3

)1(
3

)2(
2

)1(
2

)2(
1

)1(
1241314342312 UUUUUUUUUUUUUUU

X

E

=

×××=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

(4.11)

When we have the description of the problem in the form of a DCOP model, we can run an
algorithm to solve it. If we ran a complete algorithm, the result would be the
configuration)0,2,0,1(* =x . This is the best possible configuration that gives us the global
reward of 4. The result can be interpreted as following:

1. Agent A1 will play collecting role
2. Agent A3 will play storing role

4.7 Conclusion and future work
In this part of the report we presented a solution to the self-configuration and self-
manageability problem. We understand the term self-configuration as the ability of the multi-

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 65

agent system to change the nature of its elements without any external intervention of the
programmer. Instead the direct intervention, the system is able to configure itself based on a
set of rules.

As a mathematical model we have chosen the DCOP model. The DCOP model contains
reward/penalty functions that govern the process of the self-configuration. The goal is to find
a configuration that has the biggest global utility (reward) based on the utility functions.
We also explained the difference between algorithms seeking the global optimum and
algorithms seeking a local optimum. From the group of algorithm seeking a local optimum,
we described so-called k-optimal algorithms and explained what a k-optimum means. The
report also contains a comparison of several complete and incomplete algorithms.

The last part of the report was devoted to 2 examples where we showed step-by-step how a
real-life problem can be converted into a DCOP problem and later solved using the
UBIWARE platform. The first example showed how the DCOP model can be used to
configure a group of WiFi access points in order to work efficiently. This example contained
relatively simple binary constraints. The second example was dealing with the problem of
best role selection. This problem was more complicated and it contained both unary and
binary constraints.

In the future we will concentrate on the implementation of the DCOP model into the
UBIWARE platform together with several complete and incomplete algorithms. Then we
will run several benchmark tests on various problem domains to find the best algorithm for
solving the particular problem. We assume that not all algorithms will be suitable for all
classes of problems. Therefore we think that it is important to implement several algorithms
and let the developer choose the one that fits the best.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 66

UBIWARE Deliverable D2.1:
Workpackage WP5:

Task T2.1_w5:
Workpackage leader: Oleksiy Khriyenko

5 Smart Interfaces: Context-aware GUI
for Integrated Data (4i technology)

This workpackage studies dynamic context-aware Agent-to-Human interaction in
UBIWARE, and elaborates on a technology which we refer to as 4i (FOR EYE technology).
From the UBIWARE point of view, a human interface is just a special case of a resource
adapter. We believe, however, that it is unreasonable to embed all the data acquisition,
filtering and visualization logic into such an adapter. Instead, external services and
application should be effectively utilized. Therefore, the intelligence of a smart interface will
be a result of collaboration of multiple agents: the human’s agent, the agents representing
resources of interest (those to be monitored or/and controlled), and the agents of various
visualization services. This approach makes human interfaces different from other resource
adapters and indicates a need for devoted research. 4i technology will enable creation of such
smart human interfaces through flexible collaboration of an Intelligent GUI Shell, various
visualization modules, which we refer to as MetaProvider-services, and the resources of
interest.
WP5’s Year 2 elaborates on probably the most important part of 4i vision, which can be
called “context provision”. Especially when considering a human, presenting information on
a resource of interest alone is not sufficient - information on some “neighboring” objects
should be included as well, which form the context of the resource. For example, a resource
can be presented on a map thus shown in the context of objects which are spatial (geographic)
neighbors of it. What is important is that in different decision-making situations, different
contexts are relevant: depending on the situation the relevant neighborhood function may be
e.g. physical spatial, data-flow connectivity, what-affects-what, similar-type, etc. The ability
to determine what type of context in right one for the situation and collecting the information
that forms the context of that type for a specific resource is central in 4i vision.

During WP5’s Year 2 (the Context-awareness phase), therefore, the following research
questions are to be answered:

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 67

• What should be the architecture of MetaProvider-services so that they will be able to
effectively retrieve, integrate and deliver the context information both to for
presenting to humans (in a visual form) and for agents’ processing (semantic data)?

• What should be the architecture of the Intelligent GUI Shell, so that it will allow
situation-dependent selection of MetaProviders (i.e. different types of context) and
cross-MetaProvider browsing and integration?

5.1 SmartInterface: GUI-Shell enhancements
With a purpose to make interaction with a SmartInterface more user-friendly and do not
demand a lot of manipulation from user, we defined default visualization contexts for
resource classes and MetaProviders for certain visualization context. To complete this
enhancement, we add personalization to the prototype and user will be able to choose
favorite visualization module (MetaProvider) for certain resource in certain visualization
context.

Another enhancement concerns a smart and intelligent technique for automatic dynamic
selection of a visualization context. The logic is based on a history of visualization contexts
and resources that users have browsed/visualized previously. This context ranking technique
allows us to sort a list of visualization contexts in more appropriate order for user and give
him/her a hint for next logical step in though resource browsing process. Thus, it can become
a smart search system that leads the user in proper direction/way.

There are a lot of contexts in which resources may be visualized. But, very often user faces a
need to find similar/close resources to the initial one. Thus, we decided to include a
visualization of the resources in a context of their similarity/closeness to the 4i(FOR EYE)
Browser as its an inherent functionality.

5.1.1 Context ranking function
Current implementation of 4i(FOREYE) Browser provides just simple selection of
visualization contexts from the list of existing (see Figure 5.1). To make the browsing
process more user-friendly and reduce amount of useless manipulations from the user side,
browser automatically visualized currently selected resource in a context that is considered as
a default context for the class of selected resource. Such feature makes browser more
dynamic and handy for the user, but can be useless sometimes and imposes unnecessary
default visualization on user. Keeping going to the direction of context selection
enhancement, we decided to enhance the browser with context ranking functionality. This
add-on will rank (sort by relevance to the current situation) the list of visualization contexts
for user depending on the user browsing history (current browsing route - a sequence of
visualized resources and correspondent visualization contexts) and the experience of other
users (history of browsing routes).

The idea is to keep all the user browsing routes in database and compare browsing route of
the current user with them. So, the more similar the current route to some routes from the
history database, the higher probability that a visualization context (chosen by predecessors)
for current resource fits the needs of current user. The result of such add-on is a list of sorted
visualization contexts in a context of browsing history and experience of predecessors (see

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 68

Figure 5.2). The most relevant context should be applied for visualization of recently chosen
resource. If there is no matching with the previous browsing routes in the history database,
then the default context will be chosen (as has been implemented in the previous version of
the browser).

Figure 5.1 - Current version of 4i(FOR EYE) browser.

History database (HistoryDB) has a table that contains the browsing routes and
correspondent contexts that has been chosen for visualization of the last resources in the
routes. Browsing routes is presented as a sequence of pairs “Resource_ID:Context_ID” that
show in which context certain resource has been visualized. The structure of the table is:
o id unique identifier of the record;
o resID unique resource identifier (last resource in the sequence of browsing route);
o route tail of the browsing route;
o routeN amount of the same browsing routes;
o usedContextID unique identifier of a context that has been used for visualization of

subject resource (resID);

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 69

Figure 5.2 – Context-based resource visualization.

5.1.2 Similarity/Closeness visualization context
Sometimes user faces a need to find similar/close resources to the existing (selected) one.
Thus, visualization of the resources in a context of their similarity/closeness becomes
inherent functionality of the 4i(FOR EYE) Browser (see Figure 5.3). We single out two types:
o closeness closeness to resources of another different class;
o similarity closeness to resources of a same class (can be considered as a particular

case of closeness type);

Calculation of a distance measure is based on a set of preselected relevant/common
properties and a measure of significance those properties on a distance measure. Each pair of
resource classes has own set of relevant properties. But still, this attributes are configurable.
User may reduce amount of properties (select just subset of them) to be considered in
matchmaking algorithm and adjust/customize significance of the properties. If user does not
provide detailed specification of the context, then matchmaking bases on all common
contextual properties. As a result of a matchmaking algorithm, we have a matrix of distances
between subject resource and other resources that helps us clearly show closeness via visual
representation in GUI.

5.1.3 Closeness-based resource browsing

Approach of finding similar/close resources can be applied for closeness-based resource
browsing (see Figure 5.4). The idea is to visualize the resource in a context of its closeness to
other resources based on just only one property selected by user. Then user can change the
focus and select another resource to visualize it in a context of its closeness to other resources
based on any its property. Such closeness can be searched among all relevant resources or
among specific class of resources specified by user.

All Closeness to… Closeness-based
browsing

Context 4
Context 7
Context 1

…
Context n

Context specification area Visualization area

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 70

Figure 5.3 – Resource visualization in a context of its closeness to other resources.

Figure 5.4 – Closeness-based resource browsing.

All Closeness to… Closeness-based
browsing

Property 1
Property 2
Property 3

Property n
…

.
Resource class: all

Resource

property 1 property 2
property 3

property 4

property 5 property 6

…

property n

Resourceproperty 1

Resource

Resource

Resource

…

Resource

Resource

Visualization area Context specification area

V
isualization area

Resource

Resour
Resource

Resource
Resource

ResourResource

Resour
Resource

Resource
Resource

Resour

All Closeness to…
Closeness-based

browsing

Property 1
Property 4
Property 6

…
Property n

Resource class: class k
Significance (1..10)

8
4
2

6

All Closeness to…
Closeness-based

browsing
Resource class: - select a class -

Significance (1..10)

Resource

Resour
Resource

Resource
Resource

Resour

Visualization area

C
ontext specification area

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 71

5.2 Distance measurement function
As the most used property value types we considering: numerical (numbers, dates) and
nominal (textual strings (either defined on a finite or infinite set of possible values))
attributes. Different calculation procedures will be applied for different value types. Distance
for numerical attributes can be calculated based on more or less well-known metrics;
however, distance for nominal attributes (unstructured textual strings) is a challenge. For the
automated distance measuring, row text fields should be additionally supported by list of
strings (keywords/key-sentences). Distance measuring algorithm for the lists of strings can be
invented and designed based on utilization of Google, WordNet, Wikipedia or other available
online Web-services.

o Number: Distance measuring bases on normalization all of the values from whole sample

of them. The formula of a distance between two values iv and kv is:

,),(
minmax vv

vvvvd ki
ki −

−
= (5.1)

where maxv and minv are the maximum and minimum values from the sample.

o Interval: The problem of ordering intervals (crisp and fuzzy) is of perennial interest
because of its direct relevance to the practical modelling and the optimization of
real world processes. Theoretically, intervals can only be partially ordered and
hence cannot be compared in the usual sense. However, when intervals are used
in practical applications or when a decision has to be made among alternatives,
the comparison of intervals becomes necessary. Comparison of dates is quite
challenging task. If we consider just single points on a time line, we can apply
distance measurement techniques used for numbers. But, if we have a deal with
time intervals, then it becomes more complex and not trivial. There are different
relations between intervals and we have to take them into account (see Figure
5.5).

Figure 5.5 – Relations between intervals.

a) b) c)

d) e) f)

g) h i)

j) k)

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 72

For the first step, we have decided to focus on main aspects of time periods
comparison: durations of the periods and distance between the intervals. And
the simplest formula that implicitly take into account these parameters (see
Figure 5.6) is:

Figure 5.6 – The intervals comparison (Type1).

[] [] ,),,,(
0D
rDbabad jjii

−
=

(5.2)

where

 ,
2

)()(
2

221121 ababrrr −+−
=

+
=

),,min(),max(jiji aabbD −=

 .)min()max(0
q

q
p

p abD
∀∀

−=

If we are going to explicitly control the influence of interval attributes and to
tune their significances, then we can use another more complex formula. For
such intervals distance measurement we are going to use formula that takes into
account the distance between the intervals’ centers and difference between the
lengths of the intervals (see Figure 5.7):

Figure 5.7 – The intervals comparison (Type2).

1l 2l

mΔ Time

1r 2r
D

0D

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 73

,),(
2

max

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⋅+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⋅=

l
ll

k
M

mm
kttD ji

l
ji

mki
(5.3)

,),(
2

max

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅+⎟

⎠
⎞

⎜
⎝
⎛ Δ⋅=

l
lk

M
mkttD lmki

(5.4)

where im and km are the values of the intervals’ centers on a time line, il and

kl are the durations/lengths of the intervals, M and maxl are maximum distance
between the centers of two intervals and maximum duration/length of interval
from a sample set. The coefficients mk and lk regulate significance of the
distance between the intervals and difference between the lengths of the
intervals. The condition for those coefficients is:

,1=+ lm kk (5.5)

But still, depending on sample, M
mΔ

 and
maxl

lΔ
can differently influence on a

result, even if the coefficients will be equal. We have to modify the function
with a correction part that balances centers of masses.

,
max

5.0
5.0

max

5.0
5.0),(

2

max

max

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

′−
Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′−

Δ
⋅

+⋅+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′−
Δ

⎟
⎠
⎞

⎜
⎝
⎛ ′−
Δ

⋅
+⋅=

l
l

l

l
l

l

k
m

M
m

m
M

m

kttD

r
r

l

jj

mki

(5.6)

where m′ and l ′are medians of corresponding samples.

Now we can compare the results of both approaches and chose an appropriate
one depending on a goal. Let us consider a sample of intervals (see Figure 5.8)
and find the closeness of the intervals (1i .. 10i) to the initial one (0i).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 74

Figure 5.8 – Sample of the intervals.

Table 5.1 – Comparison of interval distance measurement approaches (median).

Measurement
Type1

Measurement
Type2

Measurement
Type2

Measurement
Type2

In
te

rv
al

Distance to

0i ra
ng

e

Distance to

0i ,

5.0=mk
5.0=lk

ra
ng

e

Distance to

0i ,

7.0=mk

3.0=lk
ra

ng
e

Distance to

0i ,

3.0=mk
7.0=lk

ra
ng

e

1i 0,2353 3 0,6461 6 0,4067 6 0,4282 7
2i 0,5882 6 0,8498 8 0,8333 9 0,611 8

3i 0,3529 4 0,8839 9 0,6938 8 0,8688 9

4i 0,0588 1 0,3888 3 0,1673 2 0,1352 3

5i 0,1176 2 0,5408 4 0,2317 4 0,3532 5

6i 0,5294 5 0,7036 7 0,6485 7 0,3415 4

7i 0,1176 2 0,5892 5 0,3083 5 0,3860 6

8i 0,0588 1 0,1258 2 0,1317 1 0,12 2

9i 0,1176 2 0,125 1 0,175 3 0,075 1

10i 0,0588 1 0,1258 2 0,1317 1 0,12 2

Let us consider m′ and l ′ as arithmetic average values instead of medians of
corresponding samples in interval comparison formula (Type2). Table 2 shows
as corresponding results and interval ranges.

0i

1i

3i

4i

2i

5i

6i

8i

9i

7i

10i

0D

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 75

Table 5.2 – Comparison of interval distance measurement approaches (arithmetic
average).

Measurement
Type1

Measurement
Type2

Measurement
Type2

Measurement
Type2

In
te

rv
al

Distance to

0i ra
ng

e

Distance to

0i ,

5.0=mk
5.0=lk

ra
ng

e

Distance to

0i ,

7.0=mk

3.0=lk

ra
ng

e

Distance to

0i ,

3.0=mk
7.0=lk

ra
ng

e

1i 0,2353 3 0,6091 6 0,5845 6 0,6327 7

2i 0,5882 6 0,9218 9 0,9129 9 0,7817 8

3i 0,3529 4 0,8619 8 0,8 8 0,9196 9

4i 0,0588 1 0,3257 3 0,3228 2 0,3289 3

5i 0,1176 2 0,5016 4 0,4176 4 0,5732 4

6i 0,5294 5 0,6947 7 0,7945 7 0,5779 5

7i 0,1176 2 0,5475 5 0,4918 5 0,5979 6

8i 0,0588 1 0,2914 2 0,2728 1 0,3089 2

9i 0,1176 2 0,2786 1 0,3295 3 0,2156 1

10i 0,0588 1 0,2914 2 0,2728 1 0,3089 2

o Strings The progress of information technology has made it possible to store and access

large amounts of data. However, since people think in different ways and use
different terminologies to store information, it becomes hard to search each
other’s data stores. With the advent of the Internet, which has enabled the
integrated access of an ever-increasing number of such data stores, the problem
becomes even more serious.

Well-known PEBLS distance evaluation for nominal values can be applied for
nominal attributes that have values defined on a finite set of possible values.

Text field type 1: Let’s consider a text field that extended/enriched by set of
sub-fields/attributes with values defined on a finite set of possible values. The
distance l

jd between two values 1v and 2v for j attribute in a context of
attribute l is:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

k

i

iil
j C

C
C
Cvvd

1

2

2

2

1

1
21

2 ,),(

(5.7)

where 1C and 2C are the numbers of instances in the training set with selected
values 1v and 2v , iC1 and iC2 are the numbers of instances from the i -th class,

where the values 1v and 2v were selected, and k is the number of the classes of
instances (from values of attribute l).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 76

Thus, general distance jd between two values 1v and 2v for j attribute is:

,
1

),(
),(,1

21

21 −
=
∑

≠=

n

vvd
vvd

n

jll

l
j

j

(5.8)

where n is a number of attributes (sub-fields).

Finally, distance between two objects based on such complex field can be
calculated based on following formula:

,),(),(
2211 ,,

2
2121 ∑

∈∈∀

⋅=
VvVvi

ii
ii

ii

vvdVVD ω

(5.9)

where),(21
ii

i vvd is a distance by certain attribute (sub-field) and iω is weight
for attributes. The requirement for the weights is:

,1
1

=∑
=

n

i
iω

(5.10)

where n is a number of attributes.

If there is no differences in significance of the attributes, then ni 1=ω and

.
),(

),(2211 ,,

2
21

21 n

vvd
VVD VvVvi

ii
i

ii
∑

∈∈∀=

(5.11)

If some attributes (sub-fields) are not specified, it means that there is no
information in the current text field that concerns those attributes. The distances
between values of such attributes are - “0”.

Text field type 2: Let’s consider a text field that extended/enriched by list of
values defined on a finite set of possible values (let’s say a list of key-strings).
Such lists can contain different number of instances. The distance between two
objects based on such a field can be calculated based on following formula:

,),(
N
NYXD
′

=

(5.12)

where N ′ is a number of matched/equal instances and N is a general number of
all instances in the lists of two comparable objects.

The Semantic Web aims to use semantics in the retrieval process, where the
semantics is captured in ontologies or at the very least in concept hierarchies.
The task then is to find pairs of concepts from different meta-data schemas that
have an equivalent meaning, a problem known as ontology matching. This
problem has been extensively studied in the Semantic Web and elsewhere, see
(Shvaiko and Euzenat, 2005)(Giunchiglia and Shvaiko, 2004)(Shvaiko,

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 77

2004)(de Bruijn, 2004)(Rahm, 2001) for recent survey papers. However, in
many realistic domains, it is impossible to give precise concept definitions, and
consequently no crisp notion of concept equivalence exists. Ontology matching
must then be redefined to finding a concept with the closest meaning in the
other schema when an equivalent one does not exist. We then require
mechanisms that are able to find approximate correspondences rather than exact
ones.

To find the distance between two terms, we can utilize a dissimilarity measure,
called Normalized Google Distance (NGD), introduced in (Cilibrasi, 2007).
NGD takes advantage of the number of hits returned by Google to compute the
semantic distance between concepts. The concepts are represented with their
labels which are fed to the Google search engine as search terms. Given two
search terms x and y , the normalized Google distance between x
and y ,),(yxNGD , can be obtained as follows

{ }
}{)(log),(logminlog

),(log)(log),(logmax),(
yfxfM

yxfyfxfyxNGD
−

−
= , (5.13)

where)(xf is the number of Google hits for the search term x ,)(yf is the
number of Google hits for the search term y ,),(yxf is the number of Google
hits for the topple of search terms x y and M is the number of web pages
indexed by Google1.

Intuitively, NGD(x, y) is a measure for the symmetric conditional probability of
co-occurrence of the terms x and y : given a web-page containing one of the
terms x or y ,),(yxNGD measures the probability of that web-page also
containing the other term.
If we are dealing with nominal attributes that have values defined on an infinite
set of values, it is also reasonable to utilize existing remote services that
measure Semantic Relatedness of the strings. One of those services is Measures
of Semantic Relatedness 2 (MSRs). MSRs are computational means for
calculating the association strength between terms. More specifically, MSRs
take the form of computer programs that can extract relatedness between any
two terms based on large text corpora. MSRs have been used to produce models
of human web-browsing behavior (Pirolli, 2005), augmented search engine
technology (Dumais, 2003), semantic relevancy maps (Veksler and Gray, 2007),
essay-grading algorithms for ETS (Landauer et al., 1998), and could be useful
for any cognitive models or AI agents that have to deal with text.

Lack of Standardization in MSR Services: Although there are multiple MSR
services that are readily available to the research community, these services are
(1) scattered and (2) inconsistently formatted. All of the available MSR web
servers use different input/output standards, making it less than ideal for

1 Currently, the Google search engine indexes approximately ten billion pages (M~1010).
2 Measures of Semantic Relatedness (MSRs) - http://cwl-projects.cogsci.rpi.edu/msr/msr-about.html

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 78

researchers that may want to compare, contrast, alter, and average these
measures. Some MSRs are available to download, but these technologies are
even more diverse in protocol, and are much harder to use. To make matters
worse, many MSRs are not publicly accessible, and of the available MSRs, very
few parameter sets (e.g. different corpora, different sensitivity parameters) are
offered. For example, ICAN (Lemaire and Denhiére, 2004) is a well-founded
MSR that one may implement, but no public ICAN service exists. PMI is a
popular and easy-to- implement measure, but you would be hard-pressed to find
a PMI service based on a news corpus, or an email corpus, etc. The MSR Web
Server is an ongoing effort to gather various MSRs and corpora, to make these
publicly available, and to give researchers easy standardized access to semantic
relatedness scores from all MSR-corpus pairs.

General distance between to objects based on a list of attributes can be calculated based on
following formula:

,),(),(
,,

2∑
∈∈∀

⋅=
YyXxi

iii
ii

yxdYXD ω (5.14)

where),(ii yxd is a distance by certain attribute and iω is weight for attributes. The
requirement for the weights is:

,1
1

=∑
=

n

i
iω (5.15)

where n is a number of attributes.

Now we have the same problem as in case of time interval distance measurement. We have
distances between the resources based on certain attributes separately. The centers of masses
those sets are not balanced and differently influence on result. Again, we have to modify the
function with a correction part that balances centers of masses.

,
),(max

),(5.0
5.0),(

,,

2

∑
∈∈∀ ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

′−

⎟
⎠
⎞⎜

⎝
⎛ ′−⋅

+⋅=
YyXxi

ijiij

iii

i
ii dyxd

dyxd
YXD ω

(5.16)

where id ′ is median of corresponding samples of distances by i -th attribute.

Then closeness of two resources (objects) equals:

Dcloseness −= 1 . (5.17)

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 79

5.3 SmartInterface: MetaProvider architectures
GUI Shell allows user dynamic switching between MetaProviders for more suitable
information representation depending on a context or resource nature. From other side,
MetaProvider plays fore main roles:

- Context-aware resource visualization module that presents information regarding to
specified context in more suitable and personalized for user form (see Figure 5.9);
- Interface for integrated information visualization with intelligent context-aware filtering
mechanism to present only relevant information, avoiding a glut of unnecessary
information;
- Visual Resource Platform that allows resource registration, search, access and
modification of needed information/data in a space of registered resources;
- Mediator that facilitates resource to resource (R2R) communication.

Figure 5.9 – MetaProvider - visualizator.

As a portal for registered resources, MetaProvider should support a simple resource
registration process (depending on a specific of presentation view), store resource semantic
profiles for further resource discovery and inter-resource communication. Such
communication implies an observance of the same ontology by resources. Following the
common ontology, resources have a possibility to create a correct request to each other, and
get and present appropriate data. Integrated data representation means representation of the
data from different resources in certain context related to a subject resource. It is a
representation of filtered relevant to the certain case data. There is a sense to perform a
filtering process on the user side (i.e. on the side of GUI-Shell), but an input data for the
request creation and filtering process should come from the resources that are accessible via
MetaProvider API. Depending on a context for required resource visualization, decision
making module collects and send only relevant data to MetaProvider (see Figure 5.10).

In case, when selection of relevant resources and their properties depends on MetaProvider
realization and specifics of visualization context, it is also reasonable to leave a decision
making part on MetaProvider side (see Figure 5.11). Thus, MetaProvider collects necessary
data from the registered resources, from the resources that are registered on other
MetaProviders/portals, and from the external data storages with a help of GUI-Shell.

MetaProvider
• visualization module

External Data Storages

Intelligent GUI Shell

Search for the
resources/resources’ data

Data to be visualized

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 80

Figure 5.10 – Visualization and provisioning of data.

Figure 5.11 – Context relevant data collecting and visualization.

Regarding interoperability among the components of the environment, it should be provided
via metadata and common ontology. Additionally, if we consider the open environment,
members of which are agent-driven (i.e. proactive, autonomous, goal-driven, intelligent and
etc.) to enable communications, coordination and negotiations between each other, then
MetaProvider should support inter-agent communication via semantic API.

External Data Storages

Search for the
resources/resources’ data

Request on resource
visualization in certain

context

MetaProvider
• visualization module
• resource portal MetaProvider

MetaProvider
…

Decision making
module

Intelligent GUI Shell

Search for the
resources/resources’

data

External Data Storages

Intelligent GUI Shell

Search for the
resources/resources’ data

Data to be visualized

MetaProvider
• visualization module
• resource portal

Registered resources

MetaProvider

MetaProvider …

Search for the
resources/resources’ data

Decision
making
module

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 81

We consider MetaProvider as a universal visualizer that deliver the context information both
to humans (in a visual form) and to agents for further processing (semantic data).
MetaProvider should also provide context-based “visualization” for other resources (for
agents that present them). Thus, relevant resources for subject resource visualization in
certain context can be requested by some resource agent and decision making module of
MetaProvider should “visualize” this information to the agent by sending required data to it
(see Figure 5.12).

Figure 5.12 – “Visualization” for agent’s eyes.

Different MetaProviders are specialized and present the resources in certain domain. Such
domains can target restricted set of the resources as well as wide. For example, one of the
restricted domains can be anatomy and processes between the parts of the human body. In
this case, MetaProvider can present the information based on 3D human body visualization
and should be able to visualize the properties from anatomy domain. This task becomes more
challenged in case of wide target domain. For example, if MetaProvider represents
information vie spatial resource location view and covers all of the resources, then it should
somehow visualize all the properties. Thus, the main requirement in this part is to be able to
visualize the properties of the resources that are belonging to the covered domain ontology.

MetaProvider
• “visualization” for agent’s eyes
• resource portal MetaProvider

MetaProvider
…

Decision making
module Search for the

resources/resources’
data

Resources

 Request on relevant
resources for the resource

visualization in certain
context

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 82

UBIWARE Deliverable D2.1:
Workpackage WP6:

Task T2.1_w6:
Workpackage leader: Michal Szydlowski

6 Middleware for Peer-to-Peer Discovery

The objective of this workpackage is the design of mechanisms which will extend the scale
of semantic resource discovery in UBIWARE with peer-to-peer discovery. Such mechanisms
have to enable an agent:

• To discover agents playing a certain organizational role,
• To discover an agent (or agents) possessing certain needed information.
• To discover resources (through its agents) of certain type or possessing certain

properties (e.g. a device in state X, or a web-resource providing some information
searched for).

In all cases, existence of a central Directory Facilitator is not assumed, so the discovery is to
be performed in peer-to-peer manner. This has at least two goals:

• Improving the survivability of UBIWARE-based systems. P2P is a complementary
mechanism which can be utilized in an exception situation where the central
Directory Facilitator became for some reason unavailable.

• Discovery across UBIWARE-based systems. There could be several UBIWARE-
based agent platforms (applications) started up independently, each having own
Directory Facilitator. While JADE (underlying agent framework of UBIWARE)
supports communication among agents residing on different platforms, it does not
provide for the cross-platform discovery.

No work was performed in this WP during the Year 1.

The WP tasks for the Year 2 (The Discovery phase) are the following:
Task T2.1_w6 (research): Design of a P2P resource discovery infrastructure for

UBIWARE, including related inter-agent communication
protocols.

Task T2.2_w6 (development): Incorporating the research findings to the UBIWARE
prototype.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 83

6.1 Background
With the growing popularity of Multi Agent Systems, the number of deployed multi-agent
platforms will continue to increase. We see the necessity of existence of mechanisms which
allow creating connections between these platforms. We believe that UBIWARE should be
extended with functionality which would provide agents issuing search request not only with
local results, but also with global results from the entire network of interconnected platforms.
Our goal in workpackage 6 was to design a middleware that extends the UBIWARE
functionality so that it could handle inter-platform communication and discovery in peer-to-
peer manner. Such extension will allow us to create connection between separate UBIWARE
systems where agents residing on different platforms could exchange information and
cooperate.

6.2 Agent Platform architecture overview
This part describes the general architecture of an Agent Platform with its key components,
which take part in agent communication and agent discovery.

AP provides the physical infrastructure in which agents are deployed and consist of the
machines, operating systems as well as agent management components and agents
themselves. The figure below (Figure 6.1) presents the general idea of the agent platform
architecture.

Figure 6.1 - Agent Platform architecture overview.

Following description of presented AP components (FIPA, 2004)(Bellifemine et al., 2007):

Agent – the computational process that is created in and inhabits an AP, typically offering
services which after being published can be searched and used by other agents. An agent
must have at least one owner (AP) and must be identifiable within a platform by Agent
Identifier (AID) which allows an agent to be distinguished unambiguously trough a
collection of parameter-value pairs and consist of

• name – unique identifier constructed of the actual nickname of the agent and its home
agent platform address (HAP), separated by the @ character. For example
John@platformhost:1099/JADE

• addresses – list of transport addresses where the message can be delivered. Since an
agent may support many methods of communication, multiple values of physical

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 84

addresses can be contained within this parameter. An example of transport address
could be http://plaftormhost.UBIWARE.jyu.fi:7778/acc

• resolvers – list of name resolution service addresses which can be utilized the name
resolution service provided by AMS. This parameter is a sequence of AIDs
describing AMS instances on different platforms.

Agent Management System (AMS) – a mandatory component, which is automatically
created during the startup of AP and is responsible for its operation such as creation and
deletion of agents. Each agent present on AP must register with AMS, which holds the
directory of all agents residing on the platform, thus providing the white pages services
allowing peer-to-peer discovery of agents via its search function. The AMS has always the
same reserved name, which is ams@plaftorm_name (for example
ams@platformhost:1099/JADE)

Directory Facilitator (DF) – the optional component of an AP. By maintaining the accurate
and complete list of agents its task is to provide the yellow pages services to other agents.
Directory facilitator must provide following functionality:

• register – an agent publishes its service description
• deregister – removing the description from DF
• modify – update of the service description
• search – query DF and obtain the list of agents playing certain role specified in the

search criteria

The agents can register to the DF, publishing the description of the service it provides, thus
allowing themselves to be discovered by other agents who are interested in such service. One
AP may contain many DF allowing them to register with each other, thus creating federations.

Message Transport Service (MTS)3 – manages FIPA compliant ACL messages exchange
within one platform (intra-platform) and between platforms (inter-platform). Intra-platform
communication in JADE takes place over Internal Message Transport Protocol (IMTP)
within single container, and inter-container messaging uses Remote Method Invocation
(RMI). The inter-platform communication is conducted trough Agent Communication
Channel (ACC) which may employ different Message Transport Protocols (MTP) such as
HTTP4, WAP5, IIOP6, or JMS(Curry et al., 2003). The messaging architecture is illustrated
on Figure 6.2.

During the platform initialization HTTP-based MTP is started by default. This creates a
server socket on the host where main container resides which then listens to incoming
connections at the URL http://hostname.domain:port/acc (example
http://platfotmhost.UBIWARE .jyu.fi:7778/acc). JADE allows that any number of MTPs can
be activated on platform; moreover a MTP can be added at run-time which enhances
platform’s communication capabilities (for example to locate and send message to an agent
residing on mobile device).

3 "FIPA Agent Message Transport Service Specification", 2002.
4 "FIPA Agent Message Transport Protocol for HTTP Specification", 2002.
5 "FIPA Agent Message Transport Protocol for WAP Specification", 2002.
6 "FIPA Agent Message Transport Protocol for IIOP Specification" 2002.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 85

Figure 6.2 - JADE messaging architecture.

6.3 Inter-platform and agent discovery in multi-platform
environment
Let us analyze the situation, where several independent UBIWARE-based agent platforms
exist in the network, each having set of agents running and registered with DF.

Within each platform, inter-agent discovery and communication is not a problem, since the
platform’s components take care of these acts. The question arises, would be possible (and
how) to allow the agents from different platforms to search remote DFs and interact with
agents located on foreign platforms. Such solution deployed in UBIWARE platform would
enhance its functionality – if agent cannot locate a service or obtain needed information
within its home platform, it can query the DFs on known remote platforms in search of
needed data. Agents would benefit from this possibility in two situations:

• The service or information required by an agent cannot be located within native
platform,

• An agent possessing such service/information no longer exists within the platform or
cannot be contacted.

We see the similarities between peer-to-peer file sharing networks and multi agent systems.
In P2P networks the nodes exchange messages in order to locate their neighbors and
resources they share. In multi agent systems the agents attempt to discover other existing
agents and services they provide in order to utilize them, thus enhancing the overall
functionality of the platform. In this section we analyze the existing approaches used to build
file sharing P2P networks that could be utilized to address the problem – the centralized
approach of general Directory Facilitator and solutions known from pure peer-to-peer file
sharing networks with connection to JADE’s mechanism of DF federations.

6.3.1 Central Directory Facilitator
This section introduces the centralized approach for inter-platform agent discovery. It
borrows from the hybrid model known from file sharing peer-to peer networks implemented

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 86

in Napster platform7. In hybrid model the central server stores a list of available resources
each node is sharing. Moving this idea to multi-platform environment, one of the existing
platform is designated to be a central server. Every agent wishing to publish its services
contacts the central server and registers with the general Directory Facilitator. To discover an
agent playing certain role, agents query the central server, which will return the list of
addresses (AIDs) of agents providing required service. Figure 6.3 shows the idea of multi-
platform environment with central Directory facilitator.

Figure 6.3 - Multi-platform environment with centralized DF.

However having the advantage of quick response time to issued query, the centralized
approach suffers from two drawbacks. In the dynamic environment the central Directory
Facilitator will have to rely on agents updating their information to keep the repository up to
date. The server has to process these updates in addition to handle incoming service
discovery queries, which increases load on the server and requires high maintenance to host
it. Second drawback relates to reliability of centralized approach. If the central Directory
Facilitator becomes for some reason unavailable, the agents loose ability to publish and
discover services among the network. To improve the survivability of multi-platform
environment, we must provide the eventuality of platforms communicating with each other
without relying on central server. In the next section we examine such mechanism of creating
persistent connections between Directory Facilitators.

6.3.2 Federated Directory Facilitators
This section introduces a notion of Directory Facilitators federation. Following FIPA
specifications, JADE enables Directory Facilitators to register with each other, creating
federation within a single (also distributed) platform. When DF agent registers with another
one, it becomes its child, and will from this point receive all search queries from its parent
DF, also forwarding it to each of its child. The propagation of the query within federation is

7 Napster platform - http://opennap.sourceforge.net/napster.txt

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 87

controlled by a parameter MaxDepth in search constraints, which specifies how many times
the query should be forwarded. The parameter MaxResults limits the number of agents’
descriptions that will be returned to agent issuing a query. Figure 6.4 shows an example of
Agent Platform with multiple federated DFs each having set of agents registered with it.

Figure 6.4 - Federation of Directory Facilitators.

The direction of an arrow between DF indicates the parent-child relation in this case: DF1 is
parent of DF2, and is also a child of DF3 and so on. The links between the nodes in
federation are unidirectional – the parent propagates the query only to its children, never to
its parent(s). Let’s examine a situation, where Agent1 subscribed to DF1 is searching for
agents who can provide him with serviceX. We assume that serviceX has been published by
Agent3 registered with DF3. The query is submitted to DF1, which propagates it to its child –
DF2. DF2 then propagates it further to DF3, and the results are sent back since there is no
other node to propagate the query to (same when the value of parameter MaxDepth has been
matched). Agent1 issuing the query is given the results by means of AID of the Agent3, and
can now contact it directly and request to use its service.

The federations can be useful feature provided by JADE, to create a network of connected
agent platforms. However this mechanism has also some drawbacks, which have to be
mentioned. First, due to unidirectional link created between parent and a child, the query is
propagated always in one direction only. In example presented above if the agent publishing
serviceX was registered with DF4 instead of DF3, it would not be discovered by
Agent1@DF1. To address this problem, the possibility of bidirectional link between
Directory Facilitators must exist. This could be achieved by forcing each DF that is receiving
the request for registration to automatically register with requestor.

Another assumption made in the example was that the connections between the nodes
already exist. This requires the topology to be built based on the nodes’ addresses provided in
platform’s code or configuration files. Such solution is problematic, as it requires high-
maintenance when the topology is modified and the nodes require to be started in certain
order. Also if any of the connected nodes loses connection to the network, the topology has
no ability to automatically recover from this failure. An agent platform that uses discovery is
not restrained by these problems. In the next section we examine the Gnutella8 protocol
which represents the mechanism of creating pure peer-to-peer networks.

8 Gnutella - http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 88

6.3.3 Creating dynamic peer-to-peer topology
Gnutella is a decentralized peer-to-peer system, which means it operates without presence of
centralized server. Each participant acts as both server and a client; therefore the term
“servent” was introduced. All servents share resources allowing others to locate and
download them. By using messages passing system all servents execute two types of
operation. First, by exchanging messages servents increase or maintain their degree of
connectivity. Secondly, the search queries are exchanged in order to locate required resources
that may be shared by some servents connected to the network. The protocol requires that
within the network exists at least one always-on node, which provides a new participant with
addresses of the servents already operating. Each servent upon startup obtains a pool of
addresses and connects to them. In order to discover other participants it starts the PING /
PONG process, presented in Figure 6.5.

Figure 6.5 - Propagation of PING and PONG messages in Gnutella discovery process.

The originator sends PING message to every node it is connected with. The PING message
contains TTL (Time To Live) parameter which specifies the number of hops the message
should be forwarded, until it stops to propagate. The originator awaits then incoming PONG
messages that will contain address of node and overall information on resources shared.
Upon receiving the PING message, a servent performs two actions: first it sends back the
PONG message along the path the message came to ensure the respond reaches the originator.
Secondly it forwards the PING to known servents with reduced TTL. The PING message
stops to propagate as soon as TTL reduces to 0. Due to high connectivity between nodes on
Gnutella network, the PING message can reach an exponential quantity of servents. If we
consider an example, where each servent maintains 4 active connections, and the issued
PING message had TTL of 5, the message could reach as many as 1405 servents on the
network. During its lifetime, a servent will also receive PING messages from new
participants entering the network that were not online when it first performed its discovery
process. The new addresses obtained from incoming PING messages can be then stored and
used to create new connections in the future, for example when some of known servents are
not available anymore. The process of harvesting new nodes’ addresses brings also

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 89

significant benefit to the network – the routes between servents will have more of
resemblance to graphs than to trees, therefore even if some servents do not route the
messages, it is likely that the message will be transmitted over an alternate route. Gnutella’s
search mechanism uses the same process of message passing that is used to discover other
servents. The only difference is that the servent routes the search query first, before
performing more time-consuming local search.

6.3.4 Building peer-to-peer network of agent platforms
The operating process of Gnutella’s distributed network of servents is very similar to the
mechanism of federated directory facilitators described in section 6.3.2. The federated DFs
forward the query by one hop, as servents do. The query propagates within the federation for
certain amount of hops, specified by the MaxDepth parameter, while Gnutella uses TTL to
control the propagation of PING and Query messages. If we image the agent platforms being
the nodes in the network and the directory facilitators to be the servents, it is then safe to
assume that we can employ the ideas behind pure peer-to-peer approach to create middleware
for inter-platform discovery. To achieve this goal, we propose several modifications to the
existing DF structure to form a distributed network with other DFs in other agent platforms.
From now we will refer to a single agent platform with directory facilitator and agents as
node. We propose following modifications:

• Bidirectional links between the platforms while federating directory facilitators. This
will ensure building graph resembling topology in the network.

• Before routing the message to the neighbors, the node checks the originator of the
message and block forwarding it back. This enhances the performance by eliminating
the duplicate queries and limits the query flooding the network, lowering the
unnecessary traffic.

• Each node has set of n active bidirectional connections at a time. Additionally, a node
can maintain a set of m children connected trough unidirectional links.

• The node is capable of storing locally new addresses of other nodes. The addresses
are harvested from incoming search messages. New addresses can be used to create
future connections (federations) in situations where some of existing links became
broken. This enhances the connectivity within the network and improves its
survivability.

• Within the environment there exists at least one server node that is capable of storing
addresses of the nodes currently available on the network. The server accepts
registration requests from new participants and provides them with access to pools of
addresses of active nodes.

Based on these modifications, we can now sketch the scenario for inter-platform peer-to-peer
discovery in multi platform environment.

6.3.4.1 Startup
Upon startup, the node contacts one of the always-on servers and register with it. The
registration information consists of node’s address and value of validityTime parameter
specifying the amount of time after which the node has to re-register. This is done to ensure
that the server has always the most recent data of existing nodes within its repository. The

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 90

server stores the node’s address received during the registration process to provide it to other
new nodes.

6.3.4.2 Discovery
Next the new participant requests a pool of i (where i ≤ n) addresses from the server. The
server randomly selects i addresses from its register and sends it to requestor. Having
received the set of addresses, the node now sends registration request message to obtained
addresses. The recipient of the message can accept the request if the amount of its
connections is less than n. Otherwise if the recipient cannot create new connection, the
request is denied, however the request sender can be added to a set of recipient’s children.
Creating such “weak” (unidirectional) link will allow the node to receive query messages and
helps to avoid the situation, where the new node entering the network stays isolated being
unable to connect with neighboring nodes.
Upon successful registration between the requestor and the recipient, a bidirectional link
between the two nodes is created. After this process, if the node has still empty slots for
creating new connections, it can request a new set of addresses from the server. This can be
repeated until the node creates desired number of connections. Apart from providing the
requesting node with a set of addresses, the server does not play any role in service discovery.

6.3.4.3 Searching for resources
The process of registration and resources lookup between nodes is handled by exchanging
ACL messages. An agent who wishes to discover certain service issues a query to his own
directory facilitator. The query contains of a description of the service the agent is interested
to locate along with parameters MaxResults and MaxDepth. The MaxResults parameter
informs how many discovered agents’ information the query sender wishes to get in reply.
MaxDepth parameter specifies the number of hops the query should be propagated. Therefore
by adjusting this parameter the agent can decide the range in the network its query will reach.
The local search query has the MaxDepth parameter set to 1, and allows agent to quickly
discover agents from his home platform. For the systemic queries, the process proceeds
similarly to searching in Gnutella network; each node upon receiving the query decrements
the value of MaxDepth parameter by 1, forwards the query to neighboring node and then
performs the local search. The query is forwarded until the value of MaxDepth reaches value
of 0. Then results of each local search are combined as the respond travels back the path it
has been routed until they reach the originator.

6.3.4.4 Recovering from lost connections
In a dynamic environment of multiple agent platforms the nodes must be able to react to
changes that may occur in the topology of the network. Each node should have the
mechanism of active maintenance of own existing connections along with discovering new
platforms to connect to. As the current participants may become unavailable, the node may
find itself being isolated. One of the instruments to tackle this problem is repeating the
discovery process described above, where node requests a new set of addresses from the
server. In addition to that we may utilize the process of locating services on remote platforms
to obtain new addresses to connect to. During the search process, the search response travels
back to the originator. Upon successful search, the platform will receive the AID of a remote

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 91

agent providing the desired service. The AID contains of the agent’s name and the address of
the remote platforms. This address can be then used to create new connection extending the
network graph. Figure 6.6 illustrates an example of this process.

Figure 6.6 - Discovering new nodes after successful service search.

In this example we see a set of remote platforms, already having connections between each
other. A request to locate service Y is issued by an agent residing on AP1, which ha only one
neighbor. Following the search process, the query floods the network and the results are
routed back along the path the query travelled. The query originator receives AIDs of two
agents, located on platforms AP3 and AP5, so he can request an access to the service directly
from the remote agent. As the query results are processed by agent’s home directory
facilitator, it can process them to extract the addresses of new platforms. These addresses are
stored in the Discovered Nodes repository and used to create new links.

One may notice in the example above, that query flooding the network to reach the distant
nodes and being routed back produces a significant amount of traffic. We can tackle this
problem by improving the querying and not have the query travelling back the same path it
has been routed. Instead, only the nodes that contain searched service are replying directly to
the query originator. This speeds up the search process and conserves the network’s
resources.

We have shown that based on federation mechanisms available in JADE platform and
employing methods of building peer-to-peer networks between directory facilitators, we can
create a topology where agents are able to discover services published on remote platforms.
Such solution will lead to building a network of interconnected platforms where the search
query will reach distant nodes not connected directly to node issuing the search. However,
due to randomness of links created between platforms, such network is unstructured. A
platform can be connected to its neighbors who don’t publish required services, thus their
only function is to route the search query. We see a field for further improvements in the

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 92

process of building peer-to-peer topology. Allowing a platform to decide which links are
useful and dropping the connections that do not provide satisfactory results we add the
mechanism of creating clusters within the network where nodes are connected with the
neighbors that are more likely to provide the successful search results. We describe the
algorithm of creating these clusters along with further modifications in the next section.

6.4 Actively Adapting Topologies
In this section we present further assumptions and modifications to the Directory Facilitator
implementation that lead to creating sets of connected nodes grouped by similarities between
them.

Platform Profiling
In addition to assumptions presented in section 6.3.3 we introduce further modifications to
presented approach. Each platform is described by its profile, which is set of information
such as geographic location, company that runs the platform and general functionality. Upon
startup, during the process of registration with central server, the platform provides also its
profile. The server stores platform’s address along with profile and instead of randomly
choosing the pool of addresses sent back, it tries to find within its repository nodes with
similar or required profiles. This modification may lead to creation clusters of connected
platforms, where nodes are more likely to find desired services and is slightly similar to pure
cluster approach presented by (Srinivasan and Finin, 2002).

Self-improving topology
Recent research in a field of file sharing peer-to-peer networks focused on creating
mechanisms that would allow nodes to actively participate in improving the network’s
structure. It resulted in creating several algorithms for topology management such as APT
algorithm presented by (Condie et al., 2004), Node Selection Algorithm, Node Removal
Algorithm or Overtaking Algorithm presented by (Kamvar et al., 2003). We consider the
APT algorithm to be the most suitable topology management algorithm for our case. We take
a closer look at the APT algorithm to show how the general idea behind it can be applied in
multi-platform environment.

In their work Condie et al base Adaptive P2P Topologies (APT) on two notions:
1. A peer should directly connect to those peers from which it is likely to obtain resources in

the future.
2. A peer may use its past history to estimate the likelihood of a future successful download.

In the APT protocol, a peer encodes its past history with a set of local trust values (Kamvar
et al., 2003). Peer i stores a local trust value for each peer it has interacted with. If sat(i, j) is
the number of satisfactory transactions peer i has had with peer j, and unsat(i, j) is the
number of unsatisfactory transactions peer i has had with peer j, then we define the local trust
value as

sij = sat(i, j) - unsat(i, j), (6.1)

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 93

Peer i may deem a transaction unsatisfactory if, for example, the communication with peer j
cannot be established. The local trust vector si associated with peer i contains all sij values
where j varies over all peers in the network. In their implementation, each peer maintains a
hash table containing the local trust values of all its acquaintances. An acquaintance is then
defined as an entry in the hash table. If peer i has never interacted with peer j then there will
be no entry in peer i’s table for peer j, and thus sij = 0.

The APT protocol is a peer-level greedy algorithm and it proceeds as follows. Peer i joins the
network by attempting γ random connections. The join process is repeated until at least 1
connection is made. After successful transaction with peer j ∈ N(i) where N(i) is a set of
peer's active connections, peer i with ni < τ (where τ is maximum amount of connections for
peer i) connections sends the connection request R(i, j) to peer j. If ni = τ then peer i sends a
connection request if one of the following holds:
1. Peer j ∉ N(i) achieves a higher local trust value than one of peer i’s neighbors (message

R(i, j) is sent).
2. Peer j ∈ N(i) is assigned a lower local trust value than some acquaintance k ∉ N (i) of

peer i (message R(i, k) is sent).

The first scenario describes an successful transaction with peer j, while the second occurs
after an unsuccessful transaction with peer j. In both cases, if peer i’s connection request is
granted then it will disconnect from its neighbor with the lowest local trust value. A special
case occurs if a neighbor of peer i is assigned a negative local trust score and peer i is not
able to connect to an acquaintance. In this situation peer i immediately disconnects from that
neighbor and attempts a connection to a random peer.

Peer j will only accept peer i’s connection request if peer j’s local trust value sji of peer i is
non-negative and one of the following conditions is true:
1. Peer j has fewer than τ connections.
2. Peer j’s local trust value sji of peer i is greater than the local trust value of at least one

neighbor.

In the second case peer j will replace its lowest trust valued neighbor with peer i.

We have shown the similarities between file sharing P2P network and environment of
multiple multi agent platforms in section 6.2. These similarities allowed us to adapt the
mechanism of building peer-to-peer networks of interconnected nodes to create mechanisms
for building infrastructure of interconnected multi agent platforms. We believe that this
applies also to algorithms designed to dynamically improve the topology of P2P networks,
thus we can use the APT algorithm. We then propose further modification in addition to
these presented in section 6.3.3. Except keeping the repositories of connected and discovered
platforms, the directory facilitator should also map the results of locating agents and services
on remote platforms to their addresses. Each time the directory facilitator receives the
successful (not empty) query result it increments the score of the corresponding connected or
discovered platform (value of sij) in adequate register. Then the APT algorithm is applied as
described above to determine whether the directory facilitator should modify its existing
connections.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 94

Figure 6.7 - Example of utilizing the APT algorithm to adjust the topology.

In previous sections we were approaching the problem of peer-to-peer resource discovery
from rather technical point of view. We observed the mechanisms of creating peer-to-peer
topologies in file sharing networks and based our proposals on adaptation our observation to
multi-agent environment. In next section however, we look at the multi-agent system as at
social network, and present our findings on resource discovery in social peer-to-peer
networks.

6.5 Social networks and resource discovery
Ramakrishnan and Tomkins estimate that publicly visible text creation of mankind is around
10 Gbytes per day, while private text creation is about two orders of magnitude higher at 3
Tbytes per day. Their upper bound on text creation is roughly another two orders of
magnitude higher at 700 Tbytes per day. By 2010, buying storage to hold all global textual
output would be financially equivalent to maintaining 10 people on payroll. (Ramakrishnan
and Tomkins, 2007)

Information discovery through search is and will remain the driving force behind rich
patterns of access to Web content. However, Ramakrishnan and Tomkins envision that
search will change significantly. Much content of interest to users, both at the level of
serendipitous consumption through a network or recommendation, and at the level of
targeted information discovery via a search engine, will be created by other users rather than
professionally produced. The objects to be retrieved will have a structure, an ownership,
nontrivial access-control restrictions, and a broad range of heterogeneous metadata gathered
from many sources. (Ramakrishnan and Tomkins, 2007)

Although global objects and portable contexts can realistically be hosted in a distributed
manner, even in today’s relatively simple search ecosystem there is no credible distributed
search platform at the scale supported by the major search engines. Further, the Web almost
completely fails to address the critical problem of access control. Major search engines index
the public web and leave the rest untouched, allowing individual sites to provide search over
private content as they see fit. Information will probably be meaningfully restricted to groups
that range in size from two to tens of thousands or even larger. It is not feasible to first load
all content matching a query and then restrict access, as today large portion of online content
is private. Search over all relevant private repositories, which could easily number in the tens
of thousands, is likewise impossible. (Ramakrishnan and Tomkins, 2007)

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 95

6.5.1 Social Networks
Wellman (Wellman, 1997) defines social networks as groups of people in a social setting or
an organization connected by relationships. Mitré and Navarro-Moldes (Mitré and Navarro-
Moldes, 2004) define a social network as a group of people, known as the actors, linked
together by some pattern of interaction. These networks are normally represented by graphs
called sociograms. A sociogram is a set of points (or vertices) denoting people, joined by
lines (or edges) denoting links.

The “Six Degrees of Separation” phenomenon, i.e. that everyone is an average of six social
links away from each person on Earth, was first investigated by Stanley Milgram in 1960
when he addressed letters to a particular stockbroker in New York and gave them to people
randomly picked at locations in the United States far away from that of the final receiver.
The condition for passing the letter, so that it reaches the final receiver, was that one could
post it only to people they knew personally by first name. Eventually most of the letters
reached the destination and the average number of hops was six. Since then there have been
various studies demonstrating how this effect may help people conduct their everyday lives.
(Anwar et al., 2004)

Power-law networks are networks where the probability that a node has k neighbors (called
degree) is proportional to k-y, for large k and y > 1. The parameter y is called the power-law
coefficient. (Mislove, 2007)

Scale-free networks are a class of power-law networks where the high-degree nodes tend to
be connected to other high-degree nodes. (Mislove, 2007)

There have been a series of studies of the structure and topology of Internet-based networks
best summarized in (Pastor-Satorras and Vespignani, 2004) including the WWW, Email,
instant messaging, virus/worm propagation, and P2P networks. Before this work identifying
and quantifying the scale-free nature of the Internet, every new algorithm proposed by
researchers for improving network performance was typically tested on random networks
generated by consensus tools (such as the Waxman Network Topology Generator) which in
retrospect resulted in incorrect solutions which should be reexamined. (Anwar et al., 2004)

The average path length among Microsoft Messenger instant messaging users is 6.6 among
240 million people. The network degree distribution is heavy tailed but does not follow a
power-law distribution. Using maximum likelihood estimation, the distribution fits a power-
law with exponential cutoff p(k) ~ k-ae-bk with fitted parameter values a = 0.8 and b = 0.03. A
strong cutoff parameter and low power-law exponent was found suggesting a distribution
with high variance. (Leskovec and Horvitz, 2008)

Homepage networks arise because it is popular for students to mention their friends on their
homepages, and link to those friends’ homepages if they exist. Adamic and Adar studied at
all users having a homepage under the domains www.stanford.edu and {web,www}.mit.edu.
These sites contain the homepages of students, faculty, and staff. (Adamic and Adar, 2003)

One may expect that friends should have the most in common, while friends of friends
should have less in common (and so on). We see that this is indeed the case in the homepage
network as shown in Figure 6.8. In this figure Adamic and Adar plot the average combined
likeness score versus distance, taking into account text, links, and mailing lists. In line with

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 96

their hypothesis, the result appears as a rapidly decaying function in which the likeness score
quickly falls off as the distance increases. (Adamic and Adar, 2003)

Since individuals tend to organize both formally and informally into groups based on their
common activities and interests, the way information spreads is affected by the topology of
the interaction network. (Adamic and Adar, 2004)

The information any individual is interested in depends strongly on his characteristics.
Furthermore, individuals with similar characteristics tend to associate with one another, a
phenomenon known as homophily. Conversely, individuals many steps away in a social
network on average tend not to have as much in common, as shown in Adamic and Adar
study of a network of Stanford student home-pages. (Adamic and Adar, 2004)

Figure 6.8 - The average likeness and the distance between individuals.

6.5.2. Social Networking Services
Social networking services (SNSs) provide an online private space for individuals and tools
for interacting with other people in the Internet. SNSs help people find others of a common
interest, establish a forum for discussion, exchange photos and personal news, and many
more. (Ahn, 2007)

Several social networking services (SNSs) have been launched on the web. Participants in
SNS can invite their acquaintances as new users to foster the social network. They can also
register their personal information such as real names, living places, and hobbies to show to
others. Besides, a friends list and communities are essential features of SNS. The list of one’s
acquaintances is managed and published by the friends list. A community is a group of
participants with common interest. (Okada et al., 2005)

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 97

Users publish content by posting it on a social networking site. Content is associated with the
user who introduced it, and with users who explicitly recommend the content. Explicit links
do not generally exist between content instances, and the content can be of any type. Often,
the content is temporal in nature (e.g. blog postings), non-textual (e.g. photos and video
clips), and may be of interest only to a small audience. (Mislove et al., 2006)

Independently from the content, users maintain links to other users. The links indicate trust or
shared interest. Links can be directed (indicating that the source trusts or is interested in the
content of the target) or undirected (indicating mutual trust or interest in each other’s
content). Some systems maintain groups of users associated with different topics or interests;
users can then join groups rather than specifying links to individual users. In some systems,
the full social network graph is public; in other, only immediate neighbors of a node can
view that node’s other neighbors. (Mislove et al., 2006)
The impact of SNS on Internet traffic is significant. HitWise (www.hitwise.com) announced
in 2006 that MySpace SNS is the number one website in the United States. MySpace had
been observed to receive 4.46% of all hits in U.S., more page hits than Google with 3.89%.

6.5.3 Social Peer-to-Peer Networks
Social P2P networks differ from file-sharing P2P networks, because the network topology is
mainly formed from connections in a living social network of users rather than freely
selected by topology management algorithms of a P2P network. These kinds of networks can
be found for example in address books of mobile devices or centralized social networking
sites. Research on resource discovery in social P2P networks is still in its infancy –
simulation results from a resource discovery algorithms applied in social networks simply do
not exist.

Resource discovery problem in P2P networks assumes an underlying topology between peer
nodes and resources. Then the task of a resource discovery algorithm is to locate a
predetermined number of resource instances from the topology using local information stored
in a peer, which is currently processing the resource discovery query.

In 1969, Thomas Shelling, an economist, proposed a model to explain the existence of
segregated neighborhoods in America. He observed that the appearance of such segregated
neighborhoods is caused neither by a central authority, nor by the desire of people to stay
away from dissimilar people; instead, it is the cumulative effect of simple actions (moves) by
individuals who want at least a certain proportion of their neighbors to be similar to
themselves. (Singh and Haahr, 2007) Based on Shelling’s findings it is also expected that
social networks are searchable, because users with similar interests tend to connect to each
other in social networks. Thus social networks naturally organize the data into different
topics.

Usually, in social P2P networks, the starting point of a query is critical, because the
information found from nearby peers is more relevant than from the peers further in the
social network. Consider for example the problem of finding information about a certain
company. Normally people use centralized web search engines like Google to find out
information about the company. This approach returns information which is popular or useful
for many people or otherwise it would not appear in the result list of a search engine. Now,

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 98

consider we have a social P2P network between mobile devices and possibility to execute
queries there. By executing a query starting from the mobile device of a person who searches
for the information, the searcher can locate for example information who is the closest person
in my social network who works in that company. Then by searching the contents of that
peer it is possible to get information, which is not available from centralized web search
engine.

Most of the architectural features common in file-sharing P2P networks are present in social
P2P networks also. These features include low cost, fault-tolerance, scalability, load balance
and real-time operation. Architecture has low cost, because investment for the servers is not
needed. Fault-tolerance stems from the distributed nature of the network and the absence of a
single point of failure. Scalability and load balance can be achieved with distributed
algorithms avoiding processing cost bottlenecks found from server-based architectures. Real-
time operation is achieved with local indexes in peer nodes and thus no delayed index
updates or site crawling are needed.

The main benefits of social P2P networks’ architecture compared to centralized search
engines, e.g. Google, are in addition to low costs, real-time searching capabilities and a
possibility to locate rare, but socially relevant data. An example of such data is information
on who of my acquaintances have watched a certain movie or who of my colleagues have
written about a certain topic. In addition to social relevance, other dimensions like contextual
relevance can be used as a measure. An example of this is data located in nearby mobile
devices.

The social networking services like Facebook (www.facebook.com), MySpace
(www.myspace.com) and LinkedIn (www.linkedin.com) have become popular means to
share personal information. People can for example live-broadcast themselves via justin.tv
(www.justin.tv) or share photos through Flickr (www.flickr.com). Architecture of these
services stores the data on centralized servers consuming network bandwidth and storage
space. For example YouTube (www.youtube.com) stores lots of videos on the centralized
servers but this architecture comes with high costs. According to Forbes (Forbes, 2006), in
2006 YouTube was estimated to transfer 200 terabytes of data each day with costs of one
million dollars per month. Some P2P technology developers estimate that savings of 95% in
hosting costs can be achieved with P2P architecture (Forbes, 2006).

6.5.4 Mobile Social Peer-to-Peer Networks
Another viewpoint is the on-going transition in the development of mobile devices. For a
long time mobile devices have been isolated from the Internet. Calendar data, notes, photos
etc. have been kept private in the mobile device and whenever needed transferred using
short-range connections like Bluetooth to desktop computers for storage or sent via short
messaging system (SMS) to other mobile users or centralized servers. However, during 2007
NOKIA has ported Personal Apache MySQL PHP/Python (PAMP) stack
(opensource.nokia.com/projects/PAMP) to Symbian phones thus opening up the mobile
device for external access from the Internet. Now it is possible to develop web services on a
mobile device or provide access to different kind of content using the de facto tools of
traditional web programming. This creates a huge and a rapid wave of mobile web

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 99

application development, because programmers can now use their existing development
tools.

It is expected that the current social network systems will evolve towards distributing the
content of the centralized servers to the mobile devices. In a distributed architecture, the
users of the mobile devices publish their content (files, folders, calendar etc.) locally in the
devices via mobile web server and define the access rules for the content using the motto “I
only display what I want to who I want”. This can be realized for example using an indexing
architecture similar to Google or Apache Lucene tools (lucene.apache.org), but now locally
in a mobile device with an access-controlled search engine.

The social P2P networks’ architecture allows for example developing a system similar to
Facebook on a mobile device. This kind of social network applications have shown to attain a
huge user base. Other uses for search functionality on a mobile device are applications for
content sharing to small groups, friends or people interested in same hobbies. In a best case,
the system can be used as a complement to Google search interface if content is new enough
to not have been indexed by centralized search engines.

In general, the Mobile Social P2P networks architecture shortens the information flow chain
significantly and complements centralized search engines. Now it takes a long time when
captured information (e.g., photo) can be found from centralized search engines. With
Mobile Social P2P networks’ architecture the users who search data reveal which content
becomes popular and this content can then be added to centralized search engines making it
better searchable.

6.5.5 Resource Discovery Problem
There are various names for peer-to-peer resource discovery problem in literature. Menascé
et al. (2002) use term deterministic location problem for the problem “given a resource name,
find the node or nodes that manage the resource” and probabilistic location approach to
address the problem of “given a resource name, find with a given probability the node or
nodes that manage the resource”. Kalogeraki et al. (Kalogeraki et al., 2002) define the
information retrieval problem in the P2P networks as the following: Assume that each peer
has a database (or collection) of documents, that is also made available to all peers connected
in the network; this represents the knowledge of the peer. A node searches for information by
sending query messages to its peers. We assume that the queries are collections of keywords.
The querying peer is interested to find all the documents that contain all the keywords. A
peer receiving a query message evaluates the constraint locally against its collections of
documents. If the evaluation is successful, the peer generates a reply message to the querying
peer which includes all the documents that correspond to the constraint. Once it receives
responses from all the peers, the querying peer can afterwards decide which documents to
download.

6.5.5.1 Resource Discovery in Peer-to-Peer Social Networks
NeuroSearch is a neural network-based resource discovery algorithm for P2P networks. The
aim of NeuroSearch is to combine a set of resource discovery information to decide which of
the neighboring peers are worth querying. The distinct feature of the NeuroSearch framework

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 100

is that it can combine many types of resource discovery information into one query
forwarding decision and thus may potentially encompass the good sides of different resource
discovery algorithms. Currently NeuroSearch is the only P2P resource discovery algorithm
combining multiple different local information types together. The drawbacks of the
NeuroSearch framework are the computationally costs involved in the training of the neural
network and possible inaccuracies of training data with the real-world P2P network
environment.

NeuroSearch could be adapted to a social P2P network also. In a social P2P network node
degrees can easily lead to thousand of neighbors and therefore e.g. BFS sending all first level
neighbors at once cannot be directly used, the granularity of the search is too coarse. Random
walk is also problematic because it is expected that in a social network nearby peers are
likely to provide information about similar topics and therefore algorithm should concentrate
on crawling clusters instead of travelling widely in the social network. For NeuroSearch
different input types could be used to differentiate the neighbors thus forwarding only to a
subset of neighbors. When a topic cluster is found by finding multiple matching results from
peers close to each other, the other peers close to the topic cluster might gain more weight on
the query decisions.

6.5.5.2 Resource discovery simulations
Current P2P research has concentrated on simulating resource discovery and topology
management algorithms mainly in file-sharing P2P networks. However, in a social network
the topology consists of friendship relations between the users and therefore the simulation
scenario has different requirements. For example social network topology cannot be modified
and therefore topology management is not needed. However, there is a need for topology
awareness algorithm, which informs a peer about the structure of the topology near the peer.
Also resource discovery algorithms have been designed to locate files anywhere in the
network, but in a social network it is assumed that similar users tend to group with similar
users (homophily) and therefore bring a structure of data to the network. This structure might
be utilized by search algorithms.

The first simulation experiment aims at classifying which of the presented state-of-the-art
P2P resource discovery algorithm information can be used in a social network. A
representative set of different local information has been collected from literature and will be
used for constructing a new social network search algorithm. This kind of information can be
used:

• Hops (1,2,...) is the distance between querier and the queried node in the social
network (nodes near the querier might be more socially relevant to the querier)

• ConnectivityRank (1,2,...) is the ranking of the queried node by the number of
neighboring nodes of the queried node (highly connected nodes can reveal new nodes
behind them better than low connected nodes)

• Reply% ([0,1]) is the amount of queries the node has replied divided by the total
number of queries queried from the node (nodes which replied earlier to queries
might be more likely to answer in the future)

• >RES (1,2,...) is the ranking of the queried node by the number of replies the node
has returned [Yang & Garcia-Molina Improving Search in Peer-to-Peer Networks

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 101

2002] (nodes which replied earlier to queries might be more likely to answer in the
future)

• BuddyListRank (1,2,...) is the rank of the queried node in the buddy list [Shao &
Wang BuddyNet: History-Based P2P Search] (nodes which replied earlier to queries
might be more likely to answer in the future)

• RepliesOnPath (0,1,2,...) is the number of nodes which have returned replies to this
query on the shortest path between querier and the queried node in the social network
(replying nodes on the shortest path can be an indication that this part of social
network has matching replies)

• RepliesOnNeighbors (0,1,2,...) is the number of neighboring nodes which have
returned replies to this query (nearby replying nodes can be an indication that this part
of social network has matching replies)

• #NodesQueried (0,1,2,...) is the number of nodes currently evaluated for this query
(gives an indication how far the querying has proceeded)

• #NodesFound (0,1,2,...) is the number of nodes which have replied to the current
query (gives an indication how far the querying has proceeded)

• QueryPopularity ([0,1]) is #NodesFound/#NodesQueried (estimates the popularity of
the current query in the social network)

• #QueriesFromReceiver (0,1,2,...) is the number of queries received earlier from the
queried node (if a node receives queries from a certain node, then it is supposed that
those nodes have common interests)

• QueriesFromReceiverRank (1,2,3,...) is the rank of #QueriesFromReceiver compared
to other nodes evaluated for this query (#QueriesFromReceiver is not upper-bounded
and grows when the number of queries grows, QueriesFromReceiverRank corrects
the problem by scaling to the number of nodes in evaluation)

• Random% ([0,1]) is a random value between 0 and 1 (enables random walker type of
algorithms)

• RandomRank (1,2,...) is a random rank value for each node (enables random walker
type of algorithms)

These inputs will be fed to a linear classifier and weighted such that the output defines the
rank of a peer compared to other candidate peers for the query.

The search scenario is also modified in such a way that each peer individually queries other
peers and no forwarding is done in the network. This helps in overcoming the problems of
trust related to forwarding of queries and motivation issues why mobile users would donate
their battery life and bandwidth to unknown users. The downside is that the topology
awareness algorithm needs to be designed light-weight enough to gather sufficient number of
candidate peers for the queries.

As an output of the simulations we get a classification of inputs that suit well for social
network search. We can restrict a minimal set of inputs or we can keep multiple inputs to
increase the performance of the search algorithm. The evaluation will be done with the
crawled social network data of Last.fm.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 102

6.5.5.3 Prototype implementation
Prototype implementation is planned to be done using PAMP stack for Nokia phones. The
idea is to provide a Google-type of search box to the user and display the matching query
results from the social network. If the user is not happy with the results he can select to
search more and thus explore larger area in the social network.

As an application scenario a distributed version of Last.fm functionalities can be used. The
idea is to find in a distributed manner what other people are listening and thus get
recommendations of new songs of similar taste. Listening could be enabled with a distributed
search of songs and streaming of music from other mobile device. Search functionality can
be used to find out blog entries containing discussions about a certain song/album/band etc.
This kind of architecture removes a centralized Last.fm server and thus has no high-cost
component in the system. Also the system is scalable, because now a huge amount of data
can be made online to other users by storing the data on mobile devices. Similarly mobile
device users can use their shared file folder to publish whatever kind of content and make it
searchable for others. Possible candidates for indexing the shared folder contents could be
Microsoft Search or Google Desktop indexing.

6.5.6 Summary
The advantages of distributed social P2P architecture in case of music community can be
seen from the following table:

 Last.fm music site Distributed music community
Hardware costs High Low
Bandwidth costs High Low
Total network traffic Low, but has hot spots High, but load-balanced
Index updates Generates traffic No traffic
Search complexity Low High
Search latency Low High
Search scope Exhaustive Limited query horizon
Storage space High on server Low
Fault-tolerance Single point of failure High availability in presence of failures

6.6 Conclusions and future work
We have presented three different approaches of building distributed peer-to-peer
infrastructure in multiplatform environments. We have also shown required modifications
and additions that have to be incorporated into platform’s components in order to employ
presented mechanism. In addition we described the instruments of active improvements in
topologies of created networks. By the means of inter-platform discovery we give agents the
opportunity to communicate, share services and resources beyond the boundaries of their
home platforms.

Future work in WP6 will include incorporating one of the methods described in this report
into the UBIWARE prototype. We also plan on conducting further research upon improving
the efficiency of created network of agent platforms.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 103

REFERENCES

Adamic, L.A. and Adar, E. (2003) Friends and neighbors on the Web, Social Networks, Vol.

25, No. 3, Elsevier, pp. 211-230.
Adamic, L.A. and Adar, E. (2004) Information flow in social groups, Physica A, Vol. 337,

pp. 327-335.
Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. and Jeong, H. (2007) Analysis of Topological

Characteristics of Huge Online Social Networking Services. In Proceedings of the 16th
International Conference on World Wide Web (WWW 2007), ACM, Banff, Alberta,
Canada, pp. 835-844.

Anwar, Z., Yurcik, W., Pandey, V., Shankar A., Gupta, I. and Campbell, R.H. (2005)
Leveraging Social-Network Infrastructure to Improve Peer-to-Peer Overlay Performance:
Results from Orkut. ACM Computing Research Repository.

Bellifemine, F., Caire, G. and Greenwood, D. (2007) “Developing Multi-Agent Systems with
JADE”, Wiley 2007.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) The semantic web (berners-lee et. al
2001). May 2001.

Bowring, E., Pearce, J.P., Portway, C., Jain, M. and Tambe, M. (2008) On k-optimal
distributed constraint optimization algorithms: new bounds and algorithms. In AAMAS
'08: Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems, pages 607-614, Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems.

Cai, M. and Frank, M. (2004) Rdfpeers: a scalable distributed rdf repository based on a
structured peer-to-peer network. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 650–657, New York, NY, USA, 2004. ACM.

Chechetka, A., and Sycara, K. (2006) No-commitment branch and bound search for
distributed constraint optimization. In AAMAS '06: Proceedings of the 5th international
joint conference on Autonomous agents and multiagent systems, pages 1427-1429, New
York, NY, USA, 2006. ACM.

Cilibrasi, R., Vitanyi, P.(2007) The google similarity distance. IEEE Transactions on
knowledge and data engineering 19(3), 370–383

Condie, T., Kamvar, S.D. and Garcia-Molina, H. (2004) Adaptive peer-to-peer topologies. In
Proceedings of the Fourth International Conference on Peer-to-Peer Computing
(P2P ’04), 2004

Curry, E., Chambers, D. and Lyons, G. (2003) “A JMS Message Transport Protocol for the
JADE Platform” IEEE/WIC International Conference on Intelligent Agent Technology,
2003.

de Bruijn, J., Martin-Recuerda, F., Manov, D., Ehrig, M.(2004) D4.2.1 state-of-the-art-
survey on ontology merging and aligning v1. SEKT Project deliverable D4.2.1

Dumais, S. (2003) Data-driven approaches to information access. Cognitive Science, 27(3),
491-524.

Ferber, J. (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-Wesley Professional, February 1999.

FIPA (2004) “FIPA Agent Management Specification”, 2004.
Forbes (2006) http://www.forbes.com/intelligentinfrastructure/ 2006/04/27/video- youtube-

myspace_cx_df_0428video.html (refereed: September 10, 2008).

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 104

Gershman, A., Meisels, A. and Zivan, R. (2006) Asynchronous forward-bounding for
distributed constraints optimization. In Proc. 1st Intern. Workshop on Distributed and
Speculative Constraint Processing, 2006.

Giunchiglia, F., Shvaiko, P.(2004) Semantic matching. The Knowledge Engineering Review
18:3 (Cambridge University Press) 265–280

Grinshpoun, T., Zazon, T., Binshtok, M. and Meisels, A. (2007) Termination problem of the
APO algorithm, 2007.

Holvoet, T. and Weyns, D. (2005) On the role of environments in multiagent systems. In
E4MAS, 2005.

Kalogeraki, V., Gunopulos, D. and Zeinalipour-Yazti, D. (2002) A Local Search Mechanism
for Peer-to-Peer Networks. In Proceedings of the 11th International Conference on
Information and Knowledge Management (CIKM’02), ACM, McLean, Virginia, USA,
pp. 300-307.

Kamvar, S., Schlosser, M. and Garcia-Molina, H. (2003) The Eigen- Trust Algorithm for
Reputation Management in P2P Net- works. In WWW 2003, 2003

Landauer, T. K., Foltz, P. W., & Laham, D. (1998) Introduction to latent semantic analysis.
Discourse Processes, 25, 259-284.

Langegger, A., Blochl, M., Woss, W. (2007) "Sharing Data on the Grid using Ontologies and
distributed SPARQL Queries", 18th International Conference on Database and Expert
Systems Applications, DEXA '07. Regensburg, Germany, 3-7 Sept., 2007, pp.450-454.

Lemaire, B., Denhiére, G. (2004) Incremental construction of an associative network from a
corpus. In K. D. Forbus, D. Gentner & T. Regier (Eds.), 26th Annual Meeting of the
Cognitive Science Society, CogSci2004. Hillsdale, NJ: Lawrence Erlbaum Publisher.

Leskovec, J. and Horvitz, E. (2008) Planetary-Scale Views on a Large Instant-Messaging
Network. In Proceeding of the 17th International Conference on World Wide Web
(WWW 2008), ACM, Beijing, China, pp. 915-924.

Maheswaran, R.T., Pearce, J.P., and Tambe, M. (2004) Distributed algorithms for DCOP: A
graphical-game-based approach. In PDCS, pages 432-439, 2004.

Mailler, R. and Lesser, V. (2004) Solving distributed constraint optimization problems using
cooperative mediation. Autonomous Agents and Multiagent Systems, 2004. AAMAS
2004. Proceedings of the Third International Joint Conference on, pages 438-445, 2004.

Meisels, A., Kaplansky, E., Razgon, I. and Zivan, R. (2002) Comparing performance of
distributed constraints processing algorithms. In AAMAS, 2002.

Menascé, D. A. and Kanchanapalli, L. (2002) Probabilistic scalable P2P resource location
services. ACM SIGMETRICS Performance Evaluation Review, Vol. 30, No. 2, pp. 48-
58.

Mislove, A., Gummadi, K. P. and Druschel, P. (2006) Exploiting Social Networks for
Internet Search. In Proceedings of the 5th Workshop on Hot Topics in Networks
(HotNets’06), Irvine, California, USA, pp. 79-84.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P. and Bhattacharjee, B. (2007)
Measurement and Analysis of Online Social Networks. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, San Diego, California, USA, pp. 29-
42.

Mitré, J. and Navarro-Moldes, L. (2004) P2P Architecture for Scientific Collaboration. In
Proceedings of the 13th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE’04), pp. 95-100.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 105

Modi, P.J., Shen, W., Tambe, M. and Yokoo, M. (2003) An asynchronous complete method
for distributed constraint optimization. In AAMAS '03: Proceedings of the second
international joint conference on Autonomous agents and multiagent systems, pages 161-
168, New York, NY, USA, 2003. ACM.

Modi, P.J., Tambe, M. and Yokoo, M. (2005) Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence, 161:149-180, 2005.

Obermeier, P., Nixon, L. (2008) A Cost Model for Querying Distributed RDF Repositories,
Advanced Reasoning on the Web workshop, European Semantic Web Conference
(ESWC) 2008, Tenerife, Spain.

Okada, Y., Masui, K. and Kadobayashi, Y. (2005) Proposal of Social Internetworking.
Human.Society@Internet 2005 (HSI 2005), pp. 114-124.

Omicini, A and Ossowski, S. (2003) Objective versus subjective coordination in the
engineering of agent systems. In AgentLink, pages 179–202, 2003.

Pastor-Satorras, R. and Vespignani, A. (2004) Evolution and Structure of the Internet: A
Statistical Physics Approach, Cambridge University Press.

Petcu, A. and Faltings, B. (2005) A Scalable Method for Multiagent Constraint Optimization.
Technical report, 2005.

Pirolli, P. (2005). Rational analyses of information foraging on the Web. Cognitive Science,
29(3), 343-373.

Platon, E., Mamei, M., Sabouret, N., Honiden, N.and Parunak, H.V. (2007) Mechanisms for
environments in multi-agent systems: Survey and opportunities. Autonomous Agents and
Multi-Agent Systems, 14(1):31–47, 2007.

Platon, E., Sabouret, N. and Honiden, N. (2005) Oversensing with a softbody in the
environment -another dimension of observation. In Proceedings of Modelling Others
from Observation’05, 2005.

Quilitz, B., Leser, U. (2008) “Querying Distributed RDF Data Sources with SPARQL”, The
Semantic Web: Research and Applications, 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, pp.524-538.

Rahm, E., Bernstein, P.A. (2001) A Survey of Approaches to Automatic Schema Matching.
VLDB Journal 10(4)

Ramakrishnan, R. and Tomkins, A. (2007) Toward a PeopleWeb, IEEE Computer, Vol. 40,
No. 8, pp. 63-72

Schelfthout, B and Leuven, D.K.U. (2005) Views: Customizable abstractions for context-
aware applications in manets. In In Workshop on Software Engineering for Large-Scale
Multi-Agent Systems. ACM Press, Digital Library, 2005.

Seaborne, A., Bizer, C. (2004) D2RQ – Treating Non-RDF Databases as Virtual RDF
Graphs. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, Springer, Heidelberg (2004).

Seaborne, A., Steer, D. and Williams, S. (2007) SQL-RDF. In W3C Workshop on RDF
Access to Relational Databases, Cambridge (MA, USA), October 2007.

Shvaiko, P.(2004) A classification of schema-based matching approaches. In: Proceedings of
the Meaning Coordination and Negotiation workshop at ISWC’04.

Shvaiko, P., Euzenat, J. (2005) A survey of schema-based matching approaches. Journal on
Data Semantics IV,146–171

Singh, A. and Haahr, M. (2007) Decentralized Clustering In Pure P2P Overlay Networks
Using Schelling’s Model, IEEE International Conference on Communications (ICC ’07),

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 106

pp. 1860-1866.
Srinivasan, N. and Finin, T. (2002) “Enabling Peer to Peer SDP in Agents”, Proc. 1st Int.

Workshop on "Challenges in Open Agent Systems, July 2002, University of Bologna,
held in conjunction with the 2002 Conf. on Autonomous Agents and Multiagent Systems

Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M., and Omicini, A. (2004) What i see is
what you say: Coordination in a shared environment with behavioral implicit
communication. In George A. Vouros, editor, International Workshop on Coordination in
Emergent Agent Societies, pages 19–25. ECAI 2004, Valencia, Spain, 23.24. August,
2004.

Tummolini, L. et al. (2005) ”exhibitionists” and ”voyeurs” do it better: A shared environment
for flexible coordination with tacit messages. In E4MAS, pages 215–231. Springer, 2005.

Varakantham, P., Nair, R., Tambe, M. and Yokoo, M. (2006) Winning back the CUP for
distributed POMPDs: Planning over continuous belief spaces. In AAMAS '06:
Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, pages 289-296, New York, NY, USA, 2006. ACM.

Veksler, V. D., Gray, W. D. (2007) Mapping semantic relevancy of information displays.
Paper presented at the CHI 2007, San Jose, CA.

Viroli, M. (2001) On observation as a coordination paradigm: An ontology and a formal
framework. In ACM Symposium on Applied Computing – Proceedings of 16th
International Conference (SAC01), pages 166–175, Las Vegas (NV, pages 166–175.
ACM, 2001.

Viroli, M. et al. (2007) Infrastructures for the environment of multiagent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):49–60, 2007.

Wellman, B. (1997) An Electronic Group is Virtually a Social Network. In Sara Kiesler
(Ed.), Culture of the Internet, pp. 179-205, Lawrence Erlbaum Associates, Hillsdale, New
Jersey.

Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T. and Ferber, J. (2004) Environments for
multiagent systems state-of-the-art and research challenges. In E4MAS, pages 1–47.
Springer, 2004.

Weyns, D., Steegmans, E. and Holvoet, T. (2003) Model for active perception in situated
multi-agent systems. Special Issue of Journal on Applied Artificial Intelligence, 18:200–
4, 2003.

Yeoh, W., Felner, A. and Koenig, S. (2008) BnB-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. In AAMAS '08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems, pages 591-598, Richland, SC,
2008. International Foundation for Autonomous Agents and Multiagent Systems.

Yokoo, M. and Durfee, E.H. (1991) Distributed constraint optimization as a formal model of
partially adversarial cooperation. Technical report, 1991.

Zhang, W., Wang, G., Xing, Z. and Wittenburg, L. (2005) Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint optimization
problems in sensor networks. Artif. Intell., 161(1-2):55-87, 2005.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 107

Appendix A: Section 1.1

Ontological Coordination in Multi-Agent Systems Built

with S-APL
ABSTRACT
In open systems where the agents and resources composing
them may be unknown at design time, or in dynamic systems
evolving with time, there is a need to enable the agents to
communicate their intentions with respect to future activities
and resource utilization to resolve coordination issues
dynamically. Ideally, we would like to allow ad-hoc
interaction, where two stand-alone independently-designed
systems are able to coordinate whenever a need arises. The
Semantic Web based approach presented in this paper aims at
enabling agents to coordinate without assuming any design-
time ontological alignment of them. An agent can express an
action intention using own vocabulary, and through the
process of dynamic ontology linking other agents will be able
to arrive at a practical interpretation of that intention. We also
show how our approach can be realized on top of the
Semantic Agent Programming Language.

1. INTRODUCTION

Coordination is one of the fundamental problems in
systems composed of multiple interacting processes [15].
Coordination aims at avoiding negative interactions, e.g.
when two processes conflict over the use of a non-shareable
resource, as well as exploiting positive interactions, e.g. when
an intermediate or final product of one process can be shared
with another process to avoid unnecessary repetition of
actions. A classic example of a negative interaction from the
field of agent-based systems is two robots trying to pass
thorough a door at the same time and blocking each other. A
corresponding example of a positive interaction is a robot
opening and closing the door when passing it while also
letting the other robot to pass, in so saving it the need of
opening/closing the door by itself.

The pre-dominant approach has been to hard-wire the
coordination mechanism into the system structure [15].
Synchronization tools such as semaphores have been
traditionally used to handle negative interactions, requiring
every process to be programmed to check the semaphore
before accessing the resource (like checking if there is
an ”occupied” light over a lavatory door). If a resource is
occupied by a process for a significant time, it would be
clearly better for the other process to work on another its task
rather than just wait. Under the traditional approach, realizing
that as well as attempting to exploit any positive interactions
is possible only through additional hard-wiring: the programs

of the processes must have incorporated some knowledge
about the behavior of each other.

This traditional approach becomes insufficient when
considering more open systems, where the processes and
resources composing the system may be unknown at design
time [4]. In such systems, we ideally want computational
processes to be able to reason about the coordination issues in
their system, and resolve these issues autonomously [4]. One
way to achieve this is to enable the relevant processes to
communicate their intentions with respect to future activities
and resource utilization [11]. Jennings [7] presents this as an
issue of enabling individual agents to represent and reason
about the actions, plans, and knowledge of other agents to
coordinate with them.

Tamma at al. [15, 11] developed an ontological framework
for dynamic coordination. They stated the need for an agreed
common vocabulary, with a precise semantics, that is
therefore suitable for representation as an ontology. [15]
provided such an ontology that defined coordination in terms
of agents carrying out activities involving some resources,
which can be non-shareable, consumable, etc. [11] described
then the rules for checking for conflicts among activities: e.g.
if two activities overlap in time and require the same non-
shareable resource, they are mutually-exclusive. [11] also
described some possible coordination rules to be followed
when a conflict of a certain type is detected.

The ontology of Tamma et al. is an upper ontology, i.e. an
ontology which attempts to describe the concepts that are the
same across all the domains of interest. Roughly speaking, the
idea is to make the agents to communicate their intentions and
actions using the upper-ontology concepts
(i.e. ”resource”, ”activity”) rather than the domain-ontology
concepts (e.g. ”printer”, ”printing document”) and in so to
resolve the problem of evolving domains or domains not fully
known at design time.

We build on this work of Tamma et al. We, however,
observe a few drawbacks of the current solution:

• The traditional approach to coordination in a sense
involves hard-wiring the domain ontology concepts
into both agents that want to coordinate with each
other. In the approach of Tamma et al., the upper
ontology concepts are hard-wired into both instead.
The latter is better than the former, yet still requires a
design-phase alignment of agents and does not support
for coordination with agents for which this was not
done.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 108

• Translating all coordination messages into the upper
ontology may make them significantly longer. Also,
when considering that in some cases the agents may
actually share the domain ontology and in some other
cases the receiver of the message may be familiar with
a superclass of the unknown concept used in the
message, bringing every conversation down to the
upper ontology sounds somewhat unnatural.

On the other hand, we observe that the Semantic Web research
explicitly addresses the possibility of multi-ontology systems. In
open or evolving systems, different components would, in general,
adopt different ontologies as either knowledge models of the
environment or as knowledge models of own configuration,
capabilities and behavior. Therefore, practical Semantic Web
applications have to operate with heterogeneous data, which may be
defined in terms of many different ontologies and may need to be
combined, e.g., to answer specific queries [10]. At present, the
standard technologies of the Semantic Web, such as RDF Schema
(RDF-S) and Web Ontology Language (OWL), on the level of
hierarchies of classes of entities, enable communications in which
(we will discuss an example in Section 2):

• The sender of a message can express it in its own
domain ontology and does not need to know any
integrating upper ontology.

• Only the receiver of the message has to know the
upper ontology and to have access to a formal
definition of the domain ontology of the sender that
links the concepts from that ontology to the upper
ontology.

Therefore, an intelligent agent can potentially communicate
with a ”stupid” agent (e.g. from a legacy system). It is even
possible to connect two ”stupid” agents by putting an
intelligent middleware in between.

Our approach to ontological coordination aims at enabling
exactly the same: so that an agent can express its action
intention according to its own domain ontology. Then,
assuming that this ontology has a formal definition in terms
of an upper ontology such as one by Tamma et al., the agent
receiving the message will be able to interpret it and
understand if there is any conflict or if there is a possibility to
re-use any of the shareable results. In this paper, we describe
this approach. In particular, we show how we realize it on top
of the Semantic Agent Programming Language (S-APL) [9].

The rest of the paper is structured as follows. Section 2
presents our general framework and, then, Section 3 describes
how the hierarchies of activity classes are modeled in S-APL.
Section 4 briefly discusses the utilization of the basic
definitions of activity classes in policies, e.g. for access
control, while Section 5 describes how such definitions are
further extended with coordination-related properties. Finally,
Section 6 concludes the paper.

2. ONTOLOGICAL COORDINATION
Let us consider the following communication scenario,

which is readily enabled by the standard technologies of the
Semantic Web, namely RDF-S and OWL. Assume there are
two agents; let us call one Enquirer and another Responder.
Assume the Responder knows the following facts: org:Mary
rdf:type person:Woman ; person:hasSon org:Jack, meaning
that Mary is a woman and has a son Jack. (The syntax for
RDF we use here is one of Turtle and of Notation3 [2]. We
assume that the namespace org: refers to all entities related to
an organization and person: denotes an ontology of people
and relationships that is used in that organization).

Now assume that the Enquirer issues a SPARQL [17]
query SELECT ?x WHERE {?x rdf:type family:Mother}
(definition of prefixes is omitted), i.e. ”give me all entities
that belong to the class family:Mother”. The result of
executing this query is an empty set – the Responder does
not have any facts that would directly match the pattern
given. The Responder can, however, analyze the query and
notice that the concept family:Mother is unknown to him.
This can be done, e.g., by simply checking if he has any
RDF triple involving this concept. So, the Responder
decides to look for the ontology that defines it. In the
simplest and common case, the definition of the prefix
family: in the query will give the URL of the online OWL
document defining the ontology in question. So, the
Responder downloads it and obtains the information that
family:Mother is a subclass of human:Human with the
restriction that it must have a property human:hasSex with
the value human:FemaleSex and must also have at least one
property human:hasChild. (We assume that the namespace
human: denotes some general upper ontology of humans).
This additional information does not yet change the result of
the query execution, because the Responder does not have a
definition of his own person: ontology in terms of human:
ontology. However, let us assume that he is able to locate
(from a registry) and download such a definition. In so, the
Responder obtains information that person:Woman is a
subclass of person:Person which is in turn a subclass of
human:Human, and that person:Woman has a restriction to
have a property human:hasSex with the value
human:FemaleSex. Also, he obtains the fact that
person:hasSon is a sub-property of human:hasChild.

Then, the application of the standard RDF-S and OWL
reasoning rules will infer that org:Mary human:hasSex
human:FemaleSex (because she is known to be a woman)
and also that org:Mary human:hasChild org:Jack (because
having a son is a special case of having a child).
Immediately, the OWL rules will conclude that org:Mary
rdf:type family:Mother and this information will be sent
back to the Enquirer. As can be seen, the concepts from the
domain ontology used by the Enquirer were, through an
upper ontology, dynamically linked to the concepts from the
domain ontology used by the Responder. In so, the Enquirer
was able to use his own concepts and, yet, the Responder
was able to answer the question correctly.

Figure 1 depicts the logical components involved in this

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 109

example. Our interpretation is that there are two upper
ontologies here. One is the ontology of RDF-S/OWL itself –
one operating with concepts such as class, subclass,
property, restriction on property, etc. The other one is a
basic agreed common vocabulary about human beings.
Then, there should be a definition for each domain ontology
involved – a definition that links the concepts from that
ontology to an upper ontology (human: in this case),
normally using concepts from another upper ontology
(RDF-S/OWL properties in this case). Finally, at least one
of the upper ontologies (RDF-S/OWL in this case) must
come with a set of rules defined. These rules, when applied
to the existing facts and domain ontologies’ definitions, are
supposed to infer new facts and in so to enable the
understanding between agents.

Figure 1: The example components

In the simple example above, the RDF graph we obtain
after merging all sub-graphs in question is a sufficiently
connected one, so that all the needed interpretations are
directly possible. In many practical cases, this will not be a
case, thus requiring ontology alignment (also known as
ontology matching or ontology mapping). For example, we
might not to have the fact that person:hasSon is a sub-
property of human:hasChild. Ontology alignment is an
important open challenge in the Semantic Web research (see
e.g. [16]) and is outside the scope of this paper.

Figure 2: Ontological coordination framework

As was stated in Section 1, our goal is to enable more
flexible and dynamic ontological coordination among agents,
at least at the level of how RDF-S and OWL enable dynamic
linking of entities’ class hierarchies. By the analogy with
Figure 1, Figure 2 depicts the logical components needed to
realize that.

Let us assume that an agent communicates to another
agent his intentions with respect to future actions, and let us
assume that he does this using the concepts (activity names)
from his own domain ontology unknown to the receiver.
There are two upper ontologies involved. One is the
coordination ontology, i.e. one that operates with the
concepts such as activity and resource. In this paper, we
assume the use of the ontology provided by Tamma et al.
[15, 11]. The other upper ontology is the ontology of mental
attitudes of agents. Since the Beliefs-Desires-Intentions
(BDI) architecture [14] is quite a standard approach, Figure
2 assumes the BDI ontology in place of this ontology of
mental attitudes. The definition of a domain ontology have
to therefore link it to these two upper ontologies, in a way
that will enable the upper ontology rules to do the following:

1. Interpret an expression of a mental attitude
conveying an action intention to obtain the identifier
of the intended activity.

2. Match the activity description in the domain
ontology definition with the intention to understand
what resources will be utilized (or results produced)
by the intended action.

For example, in FIPA SL communication content language
[6], the action intention is expressed using a construct like (I
(agent-identifier :name agent1) (done (action (agent-
identifier :name agent1) (print some.pdf AgPS4e)))). The
upper ontology rules have to extract the name of the
activity ”print” and then, from the definition of that activity,
understand that ”AgPS4e” is the identifier of the resource
(printer) that is going to be utilized by the intended action. As
can be seen, these rules have to be tailored to a particular
language used in communication. In our work, we utilize the
Semantic Agent Programming Language (S-APL) [9] instead
of SL or similar. An S-APL expression is an RDF graph itself,
which simplifies describing activities in an ontology to enable
the rules doing such interpretations (see Section 3). This also
minimizes the need for tailoring.

Figure 2 also includes the coordination rules as the part
of the framework. Those rules operate on the output of the
upper ontology rules in order to e.g. identify conflicts
between activities and propose resolution measures. In this
paper, we simply assume the use of the coordination rules
given in [11].

Assuming that an agent received a message and identified
it as conveying an action intention of another agent, the
flowchart of the ontology linking process is depicted in
Figure 3. The terminator ’Done’ implies only the end of this

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 110

particular process. The upper ontology rules and the
coordination rules can then trigger some follow-up actions.

Figure 3: Dynamic ontology linking process

3. DEFINING CLASSES OF ACTIVITIES
In this and the following sections, we show how the

general ontological coordination framework described in
Section 2 is realized with the Semantic Agent Programming
Language (S-APL) [9] plus a set of new concepts we refer
to as S-APL Schema (SAPL-S).

S-APL is an RDF-based language that integrates the
semantic description of domain resources with the semantic
prescription of the agents’ behaviors. S-APL is a hybrid of
semantic rule-based reasoning frameworks such as N3Logic
[3] and agent programming languages (APLs) such as e.g.
AgentSpeak(L) [13]. From the semantic reasoning point of
view, S-APL is an extension of it with common APL
features such as the BDI architecture, which implies an
ability to describe goals and commitments – data items
presence of which leads to some executable behavior, and
an ability to link to sensors and actuators implemented in a
procedural language, namely Java. From the APL point of
view, S-APL is a language that has all the features (and
more) of a common APL, while being RDF-based and thus
providing advantages of semantic data model and reasoning.
The syntax for RDF used in S-APL is one of Notation3 (N3)
[2], which is more compact than RDF/XML. The
implementation of the S-APL platform is built on the top of
the Java Agent Development Framework (JADE) [1]. For
an extensive presentation of S-APL see [9], and the
technical details of the language can be found in [8].

In the context of this paper, we are mostly interested in one
S-APL construct – intention (commitment) to perform an
action. Such an intention is encoded in S-APL as:

{sapl:I sapl:do <action name>} sapl:configuredAs
{ <parameter> sapl:is <value>. ... }

sapl:I is an indicative resource that is assumed to be defined
in the beliefs of an agent to be owl:sameAs the URI of that
agent. Obviously, substituting sapl:I with an URI of another
agent in the construct above would result in a description of
somebody’s else intention. A simple example of an intention
to send a message to another agent follows. The ”java:”
namespace indicates that the action is a directly executable
atomic behavior implemented in Java. Otherwise, the action
would correspond to an S-APL plan (kind of subprogram)
specified elsewhere. ”p:” is the namespace for the parameters
of standard (being a part of the S-APL platform) atomic
behaviors.

{ sapl:I sapl:do
java:UBIWARE.MessageSenderBehavior}

 sapl:configuredAs {
 p:receiver sapl:is org:John.
 p:content sapl:is {org:Room1 org:temperature 25}
}

Note that one can easily put a construct specifying some
other action intention as the contents of the message – in
order to communicate that intention to the other agent.

An intention to perform an action, as any other S-APL
construct, is just a logically connected set of RDF triples
(Notation3 allows to have a compact representation but does
not change the data model). If one wants to check if a larger
S-APL dataset, e.g. the contents of a message, includes an
intention to perform a particular action, one can simply run a
query against the dataset. That query is given as a pattern, i.e.
another set of RDF triples with some of the resources being
variables. For instance, the pattern matching any own action
intention is {sapl:I sapl:do ?x} sapl:configuredAs ?y. This is
the same principle as followed in SPARQL for querying
general RDF datasets.

Moreover, we can make the following observations:

• A pattern that is universally quantified by using
variables, can be seen as the definition of a class of
S-APL constructs, i.e. a class of agents’ mental
attitudes.

• When considering inheritance (class-subclass)
hierarchies of mental attitudes, the definition of a
subclass, in most cases, only introduces some
additional restrictions on the variables used in the
definition of the superclass. If, e.g. {sapl:I sapl:do
?x}

sapl:configuredAs ?y is the definition of a

general action, adding a statement ?x rdf:type
org:PrintAction may be used to create the definition
of a class of printing actions.

In S-APL, it is easy to record such patterns as data, merge

patterns when needed, and use patterns as queries against any
given dataset – thus giving us all the needed means for
modeling classes of agents’ activities and utilizing them in

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 111

rules.
S-APL Schema (namespace ”sapls:” below) defines a set of

concepts needed for such modeling. First, SAPL-S introduces
a set of general classes of BDI mental attitudes, such as a goal
or an action intention. SAPL-S ontology defines these classes
using the statements of the type <class> sapl:is <pattern>.
Second, SAPL-S provides a property sapls:restriction that
enables one to describe some additional restrictions on the
pattern of a class to define some subclasses of it.

An action intention is defined in SAPL-S as:

The wrapping with the property sapl:ID (see [9]) is included
in order, when an action class definition is used as a query
pattern, to receive the identifier of the matching action
statement – to enable removing or modifying it if wished.

One can then define a subclass of sapls:Action, for example:

This definition specifies that org:Scan is an action intention

to perform an atomic behavior or a plan that is known to
belong to the class org:ScanAction, and that has a parameter
org:device referring to a device that either belongs to the class
org:ScanDevice (a stand-alone scanner) or has a part that
belongs to that class (a multi-function printer). This definition
is made taking into account that we need to be able to specify
which resource gets occupied by the activity in question. In
this case, it is one whose URI will be bound to the
variable ?scanner (note that sapl:expression as used above
works as simple assignment). In Section 5, we will present the
syntax for describing activities, including the resources they
require.

Let us assume that we also define org:Print in exactly the
same way as org:Scan, only with org:PrintAction and
org:PrintDevice in places of org:ScanAction and
org:ScanDevice, correspondingly. Then, we can also define
org:Copy as intersection of both without additional
restrictions:

org:Copy rdfs:subClassOf sapls:Scan, sapl:Print

Logically, the pattern defining a mental attitude class is
obtained by merging its own sapls:restriction with all
sapls:restriction of its super-classes and with sapl:is of the
top of the hierarchy. Therefore, an activity is classified as
org:Copy if it is implemented with a plan that is assigned

to both org:ScanAction and org:PrintAction classes and
that is performed on a device that has both an
org:ScanDevice part and an org:PrintDevice part. Of
course, the pattern will also match with a case where the
whole device is tagged as both org:ScanDevice and
org:PrintDevice. However, the latter would not be a good
domain model since the scanning component and the
printing component of a multi-function printer are
normally independent resources, i.e., e.g., scanning a
document does not block simultaneous printing of another
document by another process.

The reason for separating the base part of a pattern given
as sapl:is from the restrictions given as sapls:restriction is
that the base part can be evaluated against any given
dataset, e.g. the contents of a received message, while the
restrictions are always evaluated against the general beliefs
base of the agent.

4. ACTIVITY CLASSES IN POLICIES

Before continuing discussion of the main topic of this
paper, namely dynamic coordination over shared resources
and shareable results, let us briefly discuss the utilization
of the basic definitions of activity classes in definitions of
access control policies.

Semantic Web based approaches to access control
policies have been developed in recent years [5, 12]. In
both [5] and [12], the access control policies are defined in
terms of prohibitions or permissions for certain actors to
perform certain operations. Such policies may have a
number of reasons behind them, with one of the reasons
being coordination over shared resources. Such
coordination is not dynamic, i.e. the conflicts are not
resolved on per-instance basis. Rather, an agent with
authority imposes some restriction on other agents’
behaviors to avoid the conflicts as such. An example of
such a policy could be ”no employee other than the
management is allowed to use company printers for
copying”. According to the syntax given in [5], such a
policy could easily be defined by two statements (”rbac:”
stands for role-based access control):

org:Employee rbac:prohibited org:Copy.
org:Management rbac:permitted org:Copy.

This definition assumes that org:Management is a subclass
of org:Employee and that permissions have priority over
prohibitions (this is not discussed in [5]), i.e. that the
permission given to the management staff overrules the
restriction put on a more general class of employees.

Combining policy definitions with definitions of the
activity classes (Section 3) enables enforcement of the
policies. An agent itself of an external supervisor can match
the plans or intentions of the agent with the activity classes
and then check if those are in the scopes of some defined
policies. As a simplest reaction, an action that contradicts a

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 112

policy can be blocked.
Dynamic ontology linking is also enabled. This means that

a policy can be formulated using concepts originally
unknown to the agent in question. For example, one may be
informed about a prohibition to org:Copy while one may not
know what org:Copy means. Yet, following the process
sketched in Figure 3, one will be able to link this concept to
org:Print and org:Scan and, if those are also unknown, link
them to the upper S-APL BDI concepts.

In contrast to [5], [12] uses the concepts of prohibition and
permission as the statement classes rather than predicates.
The activity class is used as the predicate, and the policy
statement is extended by specifying the class of the activity
object. We utilize this approach in our work and represent an
access control policy as in the example above in the form
(”sbac:” stands for semantics-based access control):

By substituting org:Printer with e.g. org:PrinterAg4, the
policy can be modified into ”no employee other than the
management is allowed to use for copying printers located
on the 4th floor of the Agora building ”. Such policy is
probably more realistic than the former because it may have
a rationale that the managers use those printers for their
higher-priority tasks and want to avoid possible delays.

In order to enable policy statements with objects, the
definitions of org:Scan and of org:Print in Section 3 have to
be extended with the statement ”?object
sapl:expression ?device”, so that, after the matching an
intention with the pattern, the variable ?object would be
bound to the activity object. Note that the variable ?subject,
which is need for both ways of defining policies, was already
included in the definition of sapls:Action.

5. ANNOTATING ACTIVITIES FOR
COORDINATION

In terms of Figure 2, the approach to defining activity
classes described in Section 3 enables linking domain
ontologies of activities to the upper BDI ontology and,
therefore, the interpretation of expressed mental attitudes.
The interpretation may give information about what activity
is intended, by who (i.e. who is the subject), and on what
object. As we discussed in Section 4, the ability of making
such basic interpretations can already be utilized in policy
mechanisms, such as those of access control. In order to
enable more complex and dynamic coordination schemes,
however, the definition of activities have to be also linked to
the upper coordination ontology. As we already stated in
Section 2, we use the coordination ontology given by Tamma
at al. [15, 11]. In this section, we provide the syntax for the

main concepts of that ontology and show how coordination-
related properties are linked with basic definition of the
activity classes. We use the namespace ”’coord:” to denote
concepts belonging to the coordination ontology.

The set of properties used to describe activities follows:

• <activity> coord:requires <variable>. A resource utilized
by the activity.

• <activity> coord:shareableResult <variable>. A result
produced by the activity that is in principle shareable with
another agent.

• <activity> coord:earliestStartDate <variable or
expression>. The earliest time at which the activity may
begin; null indicates that this information is not known.
There are also similar predicates coord:latestStartDate,
coord:latestEndDate, coord:expectedDuration as well as
coord:actualStartDate and coord:actualEndDate.

It is uncommon (although in some cases possible) for a

class of activities to have a defined resource URI, defined
start time, etc. Therefore, we assume the objects of all the
properties above to be variables which will be initialized
when matching the class definition with an expressed action
intention. For example, the org:Scan activity from Section 3
can be described with a statement:

org:Scan coord:requires ?scanner.

During the matching, the variable ?scanner will be given the
URI of a stand-alone scanner or the scanning part of a multi-
function printer. The statement above simply puts that this
URI corresponds to a resource that is utilized by the activity.

We could also define a subclass of org:Scan,
org:ScanToFile, which allows saving the result of scanning
into a file whose name is given as the parameter org:saveTo,
and then add a description that this file is shareable with other
agents:

Similarly, if the parameters of the action intention include the
timestamp when the action is planned to be executed, one
could use a variable receiving this timestamp when annotating
the activity class with time-related properties. Here,
arithmetic expressions are allowed, e.g. ”?time+1000”
(milliseconds). Our present solution does not provide for
including a query that would connect the properties of an
activity input with time-related estimates. For example, the
expected duration of the printing activity is related to the
number of pages to print. Of course, realizing this is possible
by including needed statements (like ?file org:hasPages
?number. ?duration sapl:expression ”?number*1000”) into
the activity class definition. This is not, however, a proper
modeling because absence of information about the number

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 113

of pages of the printed document would lead to not counting
the action as printing, while it should only lead to inability to
provide the duration estimate. At present, we are working on
a general approach that will enable linking the object of a
statement to a query; that approach will resolve also the
specific issue above while keeping the syntax compact.

 Given such annotations of activity classes, the
interpretation rules are to have the basic form as follows:

Here, for the sake of brevity, we assume that there exist
additional rules that do the pre-processing of the activity class
hierarchies. These rules extend sapls:restriction of an activity
class with sapls:restriction of its superclasses and also extend
the activity class annotation with coord:requires,
coord:sharedResult, etc. of the superclasses. (It is also
possible, of course, to write a longer interpretation rule that
does not require such pre-processing). The variable ?dataset is
assumed to refer to the dataset which is being searched for an
action intention, e.g. the contents of a message. sapl:Optional
wraps a non-mandatory part of the query, similarly to a
corresponding construct in SPARQL. If the variable ?resource
will not get bound, the statement in the right hand of the rule
that uses this variable will not be created. In this example, the
activity URI is generated as the blank node prefix ” :” plus the
identifier of the intention statement.

When two agents attempt to utilize the same resource, the
type and the effect of the conflict depends on the resource.
The set of important subclasses of the class coord:Resource
follow:

• coord:ShareableResource. The resource that can be
simultaneously used by two activities, e.g. a
computing unit. Simultaneous use normally results
in activities impeding, but not blocking, each other.

• coord:NonShareableResource. The resource that can
only be used by one activity at a time.

• coord:ConsumableResource. A special type of a
non-shareable resource that is also consumed when
used, i.e. not available for any other activity
afterwards.

• coord:CloneableResource. The resource that can be
duplicated for use in several activities, e.g. an

electronic document.
An example of a coordination rule follows:

This example assumes the use of the concept of the operational
relationship from the coordination ontology in [11]. An operation
relationship is a relationship between agents that implies the priority
of one over the other. In [11], ContractualAuthority is a subclass of
OperationalRelationship that implies that the ”source” agent has the
priority over the ”target” agent. The operational relationship concept
is important for coordination, we believe, however, that it should be
a part of a larger organizational ontology rather than embedded into
the coordination ontology.

6. CONCLUSIONS
When considering systems where the agents and resources

composing them may be unknown at design time, or systems
evolving with time, there is a need to enable the agents to
communicate their intentions with respect to future activities
and resource utilization and to resolve coordination issues at
run-time. In an ideal case, we would like also to allow ad-hoc
interaction of systems, where two stand-alone independently-
designed systems are able to communicate and coordinate
whenever a need arises. Consider, for example, two robots
with totally unrelated goals who need to coordinate their
activities when they happen to work in the same physical
space.

The Semantic Web based approach presented in this paper
aims at enabling agents to coordinate without assuming any
design-time ontological alignment of them. An agent can
express an action intention using own vocabulary, and
through the process of dynamic ontology linking other agents
will be able to arrive at a practical interpretation of that
intention. The definition of the domain ontology in terms of
an upper ontology must be provided. However, such a
definition is external to the agents and may be added later,
when an agent is already in the operation.

In result, an intelligent agent can potentially communicate
with a ”stupid” agent, e.g. from a legacy system. It is also
possible to connect two ”stupid” agents by putting an
intelligent middleware in between. This work has been
performed in a research project where the latter case is a
major motivation. The interests of the project industrial
partners are in Enterprise Application Integration and data
integration, with an accent on enabling new intelligent
business processes in systems created by interconnecting
independently-designed applications and data sources that
often do not share a common data model or even ontology.

Some important challenges to be addressed in the future

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 114

work follow. One challenge is that the current coordination
ontology of Tamma et al. does not provide for explicit
modeling of the effect of activities on the resources they
utilize. The ontology allows resources to be consumed by
activities, but this is modeled by a resource property (see
Section 5) rather than by an activity property. Therefore, there
is no way of distinguishing between activities that consume
the resource, e.g. printing on paper, and activities that reserve
the resource (make unavailable to other activities) without the
consumption, e.g. transporting a package of paper from one
place to another. Similarly, in many cases, it is needed to
distinguish between an activity that destroys a resource (e.g.
erases a file) and an activity that uses it (e.g. reads the file).
Additionally, one may want to be able to distinguish between
consuming/destroying a resource and changing it. For
example, printing on a sheet of paper does not destroy it. It
consumes it in the sense that it makes the sheet unavailable
for future printing activities; however the sheet remains
usable for other activities that do not depend on the sheet
being clean. In short, the coordination ontology and the
corresponding modeling syntax has to be extended with
constructs that will enable describing the effect of an activity
on a resource or an attribute of that resource.

Another challenge is related to increasing the flexibility of
the approach by allowing some of an activity’s parameters to
come from the background knowledge of the listener agent
rather than from the message. For example, an agent X can
inform an agent Y about the intention to print a document
without specifying the printer. Yet, Y could know what
printer X normally uses and make the interpretation based on
that. An even more interesting scenario is where X informs Y
about an intention to ask some third agent, Z (e.g. a secretary),
to print a document for him.

The final challenge we list is related to the need for more
complex coordination rules. The rules discussed in [11] treat
conflicts that are identifiable from the activities’ descriptions
alone. However, if an activity changes an attribute of a
resource, the resource may undergo some follow-up changes
due to environmental causes, thus leading to a conflict. For
example, the activity of opening a food container would not
be seen as conflicting with a later activity of consuming the
food in the container, unless considering that the food in an
open container will spoil faster than in a closed one. This
implies that for many practical cases the identification of
conflicts has to be performed as reasoning or planning
process rather than based on straightforward rules.

7. REFERENCES

[1] F. L. Bellifemine, G. Caire, and D. Greenwood.
Developing Multi-Agent Systems with JADE. Wiley,
2007.

[2] T. Berners-Lee. Notation 3: A readable language for
data on the Web. Online:
http://www.w3.org/DesignIssues/Notation3.html.

[3] T. Berners-Lee, D. Connoly, L. Kagal, Y. Scharf, and

J. Hendler. N3Logic: A logical framework for the World
Wide Web. Theory and Practice of Logic Programming,
8(3):249–269, 2008.

[4] K. Decker and V. Lesser. Designing a family of coordination
algorithms. In Proc. 1st Intl. Conf. on Multi-Agent Systems,
pages 73–80. AAAI Press, 1995.

[5] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu,
W. Winsborough, and B. Thuraisingham. ROWLBAC:
Role based access control in OWL. In
Proc. ACM Symposium on Access Control Models and
Technologies, pages 73–82, 2008.

[6] Foundation for Intelligent Physical Agents. FIPA SL Content
Language Specification. Online:
http://www.fipa.org/specs/fipa00008/SC00008I.pdf.

[7] N. Jennings, K. P. Sycara, and M. Wooldridge. A
roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems,
1(1):7–38, 1998.

[8] A. Katasonov. UBIWARE Platform and Semantic
Agent Programming Language (S-APL). Developer’s
guide, 2008. Online:
http://users.jyu.fi/~akataso/SAPLguide.pdf.

[9] A. Katasonov and V. Terziyan. Semantic agent
programming language (S-APL): A middleware
platform for the Semantic web. In Proc. 2nd IEEE
International Conference on Semantic Computing,
pages 504–511, 2008.

[10] E. Motta and M. Sabou. Next generation semantic web
applications. In Proc. ACM Asian Semantic Web Conference,
LNCS vol.4185, pages 24–29, 2006.

[11] T. Moyaux, B. Lithgow-Smith, S. Paurobally,
V. Tamma, and M. Wooldridge. Towards service-oriented
ontology-based coordination. In Proc. IEEE Intl. Conference
on Web Services, pages 265–274, 2006.

[12] A. Naumenko. Semantics-based access control – Ontologies
and feasibility study of policy enforcement function. In Proc.
ACM 3rd International Conference on Web Information
Systems and Technologies, Volume Internet Technologies,
pages 150–155, 2007.

[13] A. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proc. 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World,
LNCS vol.1038, pages 42–55. Springer, 1996.

[14] A. Rao and M. Georgeff. Modeling rational agents within a BDI
architecture. In Proc. 2nd International Conference on
Principles of Knowledge Representation and Reasoning
(KR’91), pages 473–484, 1991.

[15] V. Tamma, C. Aart, T. Moyaux, S. Paurobally,
B. Lithgow-Smith, and M. Wooldridge. An ontological
framework for dynamic coordination. In Proc. 4th Semantic
Web Conference, LNCS vol. 3729, pages 638–652. Springer,
2005.

[16] V. Tamma and T. Payne. Is a Semantic web agent a
knowledge-savvy agent? IEEE Intelligent Systems, 23(4):82–
85, 2008.

[17] W3C. SPARQL Query Language for RDF. W3C
Recommendation 15 January 2008. Online:
http://www.w3.org/TR/rdf-sparql-query/.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 115

Appendix B: UBIWARE Publications List

Katasonov A. and Terziyan V. (2009) Ontological Coordination in Multi-Agent Systems
Built with S-APL, submitted 14.10.2008 to the Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’2009)

Terziyan V. and Katasonov A. (2008) Global Understanding Environment: Applying
Semantic and Agent Technologies to Industrial Automation, In: Lytras, M. and Ordonez De
Pablos, P. (eds) Emerging Topics and Technologies in Information Systems, IGI Global (in
press)

Katasonov A. and Terziyan V. (2008) Semantic Agent Programming Language (S-APL): A
Middleware Platform for the Semantic Web, In: Proc. 2nd IEEE Conference on Semantic
Computing, August 4-7, 2008, Santa Clara, CA, USA, pp.504-511

Khriyenko O., Context-sensitive Visual Resource Browser, In: Proceedings of the IADIS
International Conference on Computer Graphics and Visualization (CGV-2008), Amsterdam,
The Netherlands, 24-26 July 2008.

Katasonov A., Kaykova O., Khriyenko O., Nikitin S., Terziyan V., Smart Semantic
Middleware for the Internet of Things, In: Proceedings of the 5-th International Conference
on Informatics in Control, Automation and Robotics, 11-15 May, 2008, Funchal, Madeira,
Portugal, pp. 169-178

Terziyan V., SmartResource – Proactive Self-Maintained Resources in Semantic Web:
Lessons learned, In: International Journal of Smart Home, Special Issue on Future
Generation Smart Space, 2008, SERSC publisher, ISSN: 1975-4094, 18 pp.

Katasonov, A., Terziyan, V., SmartResource Platform and Semantic Agent Programming
Language (S-APL), In: P. Petta et al. (Eds.), Proceedings of the 5-th German Conference on
Multi-Agent System Technologies (MATES’07), 24-26 September, 2007, Leipzig, Germany,
Springer, LNAI 4687 pp. 25-36.

Terziyan V., Predictive and Contextual Feature Separation for Bayesian Metanetworks, In: B.
Apolloni et al. (Eds.), Proceedings of KES-2007 / WIRN-2007, Vietri sul Mare, Italy,
September 12-14, Vol. III, Springer, LNAI 4694, 2007, pp. 634–644.

Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper Industry - A Semantic
Storing, Browsing and Annotation Mechanism for Online Fault Data, In: Proceedings of the
4th International Conference on Informatics in Control, Automation and Robotics (ICINCO),
May 9-12, 2007, Angers, France, INSTICC Press, ISBN: 978-972-8865-87-0, pp. 191-194.

 D2.1: Individual resources and inter-resource communication in UBIWARE

© 2008 UBIWARE Deliverable D2.1 116

Salmenjoki K., Tsaruk Y., Terziyan V., Viitala M., Agent-Based Approach for Electricity
Distribution Systems, In: Proceedings of the 9-th International Conference on Enterprise
Information Systems, 12-16, June 2007, Funchal, Madeira, Portugal, ISBN: 978-972-8865-
89-4, pp. 382-389.

Khriyenko O., Context-sensitive Multidimensional Resource Visualization, In: Proceedings
of the 7th IASTED International Conference on Visualization, Imaging, and Image
Processing (VIIP 2007), Palma de Mallorca, Spain, 29-31 August 2007.

Khriyenko O., 4I (FOR EYE) Multimedia: Intelligent semantically enhanced and context-
aware multimedia browsing, In: Proceedings of the International Conference on Signal
Processing and Multimedia Applications (SIGMAP-2007), Barcelona, Spain, 28-31 July
2007.

Khriyenko O., 4I (FOR EYE) Technology: Intelligent Interface for Integrated Information,
In: Proceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS-2007), Funchal, Madeira - Portugal, 12-16 June 2007.

Naumenko A., Semantics-Based Access Control in Business Networks, Jyvaskyla Studies in
Computing, PhD Thesis, Volume 78, Jyvaskyla University Printing House, 215 pages, 2007.

Srirama, S., and Naumenko, A., (2007). Secure Communication and Access Control for
Mobile Web Service Provisioning, In: Proceedings of International Conference on Security
of Information and Networks (SIN2007), 8-10th May, 2007.

Naumenko, A., SEMANTICS-BASED ACCESS CONTROL - Ontologies and Feasibility
Study of Policy Enforcement Function , In: Proceedings of the 3rd International Conference
on Web Information Systems and Technologies (WEBIST-07), Barcelona, Spain - March 3-6,
2007, Volume Internet Technologies, INSTICC Press, pp. 150-155.

Naumenko A., Katasonov A., Terziyan V., A Security Framework for Smart Ubiquitous
Industrial Resources, In: R. Gonzalves, J.P. Müller, K. Mertins and M. Zelm (Eds.), In:
Enterprise Interoperability II: New challenges and Approaches, Proceedings of the 3rd
International Conference on Interoperability for Enterprise Software and Applications
(IESA-07), March 28-30, 2007, Madeira Island, Portugal, Springer, pp. 183-194.

Katasonov A., Kaykova O., Khriyenko O., Loboda O., Naumenko A., Nikitin S., Terziyan
V., The Central Principles and Tools of UBIWARE, Technical Report (Deliverable D 1.1),
UBIWARE Tekes Project, Agora Center, University of Jyvaskyla, May-October 2007, 118
pp.

