
 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 1

UBIWARE Deliverable D2.3:

UBIWARE Platform Prototype v.2.0

May, 2009

Date May 15, 2009
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Oleksiy Khriyenko, Sergiy Nikitin, Michal Nagy
Work component WP1, WP2, WP5
Deliverable Code D2.3
Deliverable Owner IOG, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 2

Table of Contents

Introduction..3
1 UbiCore – Core Distributed AI platform design..4

1.1 Platform Changes...4
1.2 S-APL language changes ...6

2 UbiBlog – Managing Distributed Resource Histories ...7
2.1 Ontonuts engine ...8
2.2 Summary ..16

3 Smart Interfaces: Context-aware GUI for Integrated Data (4i technology)17
3.1 Background and previous development...17
3.2 Visual configuration of resource similarity/closeness visualization context19
3.3 Achieved results...23

Bibliography ..23
Appendix A: UBIWARE Publications List (up to the April of year 2009).......................24

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 3

Introduction

The UBIWARE project aims at a new generation middleware platform which will allow
creation of self-managed complex industrial systems consisting of distributed,
heterogeneous, shared and reusable components of different nature, e.g. smart machines
and devices, sensors, actuators, RFIDs, web-services, software components and
applications, humans, etc. The technologies, on which the project relies, are the Software
Agents for management of complex systems, and the Semantic Web, for interoperability,
including dynamic discovery, data integration, and inter-agent behavioral coordination.

Work in this project is divided into seven work packages which are running in parallel:
1. Core agent-based platform design
2. Managing Distributed Resource Histories
3. Security in UBIWARE
4. Self-Management and Configurability
5. Context-aware Smart Interfaces for Integrated Data
6. Middleware for Peer-to-Peer Discovery
7. Industrial cases and prototypes.

Work-packages 1 through 6 are research work packages; however, the research efforts are
combined with agile software development processes. Prototypes of the UBIWARE
platform, integrating the work in these 6 work packages at different levels of their
readiness, are developed during each project year, as UBIWARE 1.0, UBIWARE 2.0 and
UBIWARE 3.0.

UBIWARE deliverable D2.1 reported on the research results from work packages 1
through 6 (it was decided not to perform the work at the WP3 during the second project
year due to limitation in resources). This deliverable, D2.3, presents the integrated
development results from those work packages, i.e. the current state of the UBIWARE
platform prototype. Naturally, during the development stage, solutions described
previously in D2.1 have undergone some changes and improvements.

The deliverable D2.3 presents UBIWARE 2.0. This deliverable consists of software itself
and an accompanying report. It was decided not to perform the work at the WP3 during
the second project year due to limitation in resources and develop the most important
research findings of the year. Therefore, D2.3 integrates results from WP1, WP2 and
WP5.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 4

UBIWARE Deliverable D2.3:
Workpackage WP1:

Task T2.2_w1:

1 UbiCore – Core Distributed AI
platform design

1.1 Platform Changes

During the 2nd project year the core UBIWARE platform has become more mature. The
platform performance has been significantly improved by introducing indices within the
internal belief storage model. Also a number of bugs were fixed; some of them were
critical, i.e. caused malfunctioning of scripts and behaviors. From the functional point of
view the changes were minor, yet some of them bring additional important features.

1.1.1 UBIWARE platform as a service
Typically, a Ubiware-based application consists of several agents running within one or
more JADE containers. The usual way of starting an application is to execute several
scripts, one script per agent. This approach has two main disadvantages. Firstly, several
scripts have to be run (each in separate window) which is not always possible if a number
of agents grows. Secondly, if an agent crashes for some reason, it will not be restarted
which will most likely make the application maintenance unreasonably complicated.

In order to overcome these limitations we decided to integrate Java Service Wrapper
Community edition (http://wrapper.tanukisoftware.org/) to the Ubiware platform. It
allows us to run a Ubiware-based application as a service. This has the following
advantages:

• The application is considered a service. It is not needed to run several scripts.
Also, if the application behaves as a Windows/Linux service, it may be started
automatically every time the system is started.

• The application is restarted every time it crashes. There are several ways to define
when and how the application should be restarted in case one of the agents dies.

• The configuration file of the wrapper is platform independent. This allows us to
use one configuration file for several platforms. This basically means that if the
application is run as a service on one platform (e.g. Windows) it can be run as a

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 5

service also on another platform (e.g. GNU/Linux) without the need to change the
configuration file.

• Java Service Wrapper uses GNU GPLv2 license.
In order to run Ubiware application as a wrapper a configuration file wrapper.conf needs
to be edited. The configuration file resides in the main directory of the Ubiware platform.
The configuration file contains a set of properties. The most important property is
wrapper.app.parameter. This parameter contains the information about the application
being wrapped. In case of the Ubiware application, it should look like this:
wrapper.app.parameter.1=jade.Boot
wrapper.app.parameter.2=-detect-main
wrapper.app.parameter.3=false
wrapper.app.parameter.4=
Agent1:ubiware.core.UbiwareAgent(sourceCode1.sapl);
Agent2:ubiware.core.UbiwareAgent(sourceCode2.sapl);

where:

Agent1 is the name of the first agent
sourceCode1.sapl is the path to the source code of the first agent
; is used for the separation of agent declarations

If you want to deploy the application as a Windows service, you can customize it with
these parameters:
Name of the service
wrapper.ntservice.name=UbiwareApp
Display name of the service
wrapper.ntservice.displayname=UBIWARE Application XYZ
Description of the service
wrapper.ntservice.description=UBIWARE Application
Description
Mode in which the service is installed. AUTO_START or
DEMAND_START
wrapper.ntservice.starttype=AUTO_START
Allow the service to interact with the desktop.
wrapper.ntservice.interactive=false

After the configuration file is written, we may install the application as a service. This can
be done by executing wrapper.exe (Windows) or wrapper (Linux) from the platform
folder with a parameter –i:
wrapper.exe –i

or
wrapper –i

To uninstall the service, you have to execute wrapper.exe (Windows) or wrapper (Linux)
with the parameter –r:
wrapper.exe –r
or
wrapper –r

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 6

1.2 S-APL language changes

The S-APL language as such has not undergone significant changes. The main construct
that was added is a new operator for use in a new type of rules - an Inference Rule:

{{...} ==> {...}} sapl:is sapl:Rule

==> is the shorthand for sapl:infers. If a behavior rule is used for semantic
inference (generating new facts from existing ones), one needs to:

1. add to the head of the rule the negation of the tail the rule (see “exclusive
condition” below) – to avoid continuous non-stop execution of the rule;

2. use a set of sapl:All wrappings - for all relevant variables – to enforce that the rule
infers all possible facts in one iteration.

When using ==>, these two things are done automatically – negation of the tail is
checked and the rule is executed for every solution found – the rest being exactly the
same as for =>.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 7

UBIWARE Deliverable D2.3:
Workpackage WP2:

Task T2.2_w2:

2 UbiBlog – Managing Distributed
Resource Histories

In UBIWARE, every resource is represented by a software agent. Among major
responsibilities of such an agent is monitoring the condition of the resource and the
resource’s interactions with other components of the system and humans. The beliefs
storage of the agent will, therefore, naturally include the history of the resource, in a sense
“blogged” by the agent. Obviously, the value of such a resource history is not limited to
that particular resource. A resource may benefit from the information collected with
respect to other resources of the same (or similar) type, e.g. in a situation which it faces
for the first time while other may have faced that situation before. Also, mining the data
collected and integrated from many resources may result in discovery of some knowledge
important at the level of the whole ubiquitous computing system. A scalable solution
requires mechanisms for inter-agent information sharing and data mining on integrated
information which would allow keeping the resource histories distributed without need to
copy those histories to a central repository.

During WP2’s Year 1 (the Sharing phase), needed mechanisms were designed for
effective and efficient sharing of information between different agents, e.g. representing
different resources. S-APL was used as the communication content language, which has
enabled:

• One agent to query another agent for some information, using the query constructs
similar to that of SPARQL but with even wider range of possible filtering
conditions

• One agent to inform another agent, i.e. to proactively push some information of
any complexity.

• One agent to request another agent to perform some actions, either an atomic
behavior or a complex plan involving a set of rules and atomic of complex
behaviors.

During WP2’s Year 2 (the Integration phase), we have been working on the following
question:

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 8

How to realize the possibility of querying a set of distributed, autonomous, and, hence,
inevitably semantically heterogeneous resource histories as they were one virtual database,
i.e. how to collect and integrate needed pieces of information from distributed sources?

The research we have conducted during the second year has resulted in the theoretical
basis for the distributed querying of heterogeneous resources. We have introduced
Ontonuts technology – an approach that allows us to represent physically distributed data
in one place and perform queries over this data as if it was integrated into one storage.
The theoretical foundations of the technology can be found from the deliverable D2.1. In
this report we will present an Ontonuts engine – a complex component that implements
the above mentioned functionality.

2.1 Ontonuts engine

2.1.1 How it works (a reminder)
The Ontonut capabilities are S-APL descriptions with explicitly defined preconditions
and effects.

},,{: effectprecondscriptOntonut (2.1)

The semantic annotation of Ontonut (by precondition and effect) allows us to
automatically plan (compose) agent’s activities to achieve a specified goal. The script part
has an S-APL code that produces the effect based on the precondition.

The engine matches user-defined calls (three types of calls) against Ontonut descriptions
and produces an execution plan in terms of normal S-APL commitments. The plan is then
performed by the Agent’s engine and the result is produced. There is also a special type
of Ontonuts – called Donuts – specifically tailored to solve the database connectivity. The
engine supports Donut descriptions and Donut calls are specifically handled by the engine,
i.e. the database is queried not explicitly from the agent’s beliefs, but rather from the
Ontonuts engine.

2.1.2 Software implementation of the engine
The engine as a complex component consists of a set of S-APL scripts and Java-classes
(see Figure 2.1).

Figure 2.1 – Component view of the Ontonuts engine

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 9

The whole component initialization is done by the OntonutsLoader script. The script
ensures the order of subcomponent loading and therefore guarantees proper Ontonuts
engine initialization within the agent script. The sequence of actions is defined as follows:

1. Load Reasoner (OntonutsRDFSReasoner.sapl)
2. Load Ontonuts script (Ontonuts.sapl)
3. Load user defined Ontonut definitions
4. Load user defined main business logic

The engine provides two main access points (Figure 2.2):

Figure 2.2 – External interfaces of the Ontonuts engine

2.1.3 Handling ontonut definitions
All the Ontonut definitions within the agent’s beliefs (in G-container) are processed by
the engine script. The definitions can be either active or passive. Passive definitions are
not used for planning and execution, however they stay in the memory. Enabling and
disabling of definitions is regulated via flag di:isActive. For example:

od:OntonutDef_1 di:isActive true.

The Ontonut definitions are separated from the business logic script because these are the
reusable user-defined components that do not depend on the particular case-specific
application.

When Ontonut definitions are loaded, the OntonutsReasoner immediately performs
semantic reasoning over the preconditions and effects of all Ontonuts. The reasoner uses
user-defined ontology that should be placed to agent’s general context G.

2.1.4 Handling Ontonut calls
The main processing logic of the engine is performed in the OntonutBehavior. Ontonuts
S-APL script is rather a wrapping interface between the Java-based RAB implementation
of the OntonutBehavior and S-APL declarations and calls. The Ontonuts script is
triggering the OntonutBehavior when an Ontonut call appears, thus helping to avoid
useless RAB initializations on every agent cycle.

The script of the agent interacts with the Ontonuts engine not directly, but by posting a
predefined statement structure. The Ontonuts engine supports three types of Ontonut calls:

 Explicit
 Goal based
 Pattern-based

The Explicit call to the Ontonut has following syntax:
{sapl:I sapl:do ont:Ontonutid}

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 10

 sapl:configuredAs {
x:precondition sapl:is {Input statements}

 }.

The result of the call is added to the G – a general context.

The Goal-based call is initiated by adding the following goal definition to G:
sapl:I ont:haveGoal :id.
:id ont:goalDef{goal statements}
:id ont:initData {initial data}

The third type – a pattern-based call is triggered when the content of the active
commitment in its left part matches the effect pattern of at least one Ontonut.
{A A ?a} => {some action with ?a }.

Let us consider goal-based call processing as a fundamental element of the goal-driven
agent operation (pattern-based call can be considered as a subset of a goal-driven one).
The sequence diagram of the goal-based call is shown on Figure 2.3.

Figure 2.3 – Sequence diagram of the goal-based call

The OntonutBehavior receives a goal state (definition of a desired state) specified by the
agent and performs complex multistage operation over the goal received and the data and
capabilities (Ontonuts) available within agent’s beliefs. As soon as the OntonutBehavior
is initialized by the Ontonuts script, it takes all the active Ontonut descriptions and forms
a request to the backward chaining reasoner to provide a plan of possible actions that lead
to the goal. The reasoner is developed as an independent component and provides an
interface for OntonutBehavior, therefore the request needs to be formulated properly. The
reasoner sequentially (algorithm is presented in the research deliverable D2.1) builds a
plan and returns it in an internal format. The plan is not yet ready to be put to the
execution. In fact, the reasoner only gives the answer whether the goal is achievable or

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 11

not within the conditions specified and divides sets of required capabilities into several
ordered layers. However, the execution order within those layers is not specified. The
OntonutBehavior performs rule call order analysis for each layer and defines precise
execution scheme. It is important to note here, that the engine takes into account
intermediary results of the execution when it generates the plan. So, the plan being
executed will keep the results of the previous steps and use them if required in subsequent
steps. As soon as the execution order is set, OntonutBehavior serializes the plan into the
N3 format which is put to the agent’s beliefs for execution.

Similarly, the explicit Ontonut call to the engine goes via Ontonuts script to the
OntonutBehavior. The engine detects the type of the Ontonut (in the example diagram on
Figure 2.4 it is a Donut call) and handles the call accordingly.

Figure 2.4 – An explicit Donut call to the engine

The Donut call in the example above is detected on the 3rd step and the 4th step involves 5
sub-steps. First of all, the variable mappings are very essential part in the engine
operation. The engine allows the user to specify variables for Ontonut definitions as local
ones and use different variable names independently in the business logic. The matching
and mapping of variables is performed “on-the-fly” by the engine. Even more, the
variables used in different Ontonut definitions, when composed to one execution plan,
still have no naming limitations. The mapping and initialization of variables is handled by
the engine, therefore Ontonut descriptions can be developed independently from each
other.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 12

The analysis of the constraints (step 6 on the diagram) is a very important step in
sequential execution of queries, especially when results of preceding sub-query are used
in subsequent sub-query generation. This feature allows the engine to limit significantly
the amount of data being queried remotely and in some cases it is the only possible
approach for distributed query execution, because some logging systems may contain
huge amount of records even in one table, which as a whole, when extracted may not fit
the physical memory of the agent platform. Therefore certain queries must have
constraints. Here the engine not only decomposes query to sub-queries, but also
automatically specifies dependencies and order among them and therefore the sub-queries
are not executed independently, but use the results of the preceding sub-queries to
constrain the range of dependent variables in subsequent queries (step 7 on the diagram).
As soon as (sub-) query is executed (step 8), the results of the query are transformed from
the native data model to the ontology-based one (step 9). The results are then added to the
current execution container of the plan.

2.1.5 Organizing the plan execution
Each plan is supplied with the execution container – a temporary storage place for
intermediate results of execution. As soon as goal is achieved, the result is taken from the
execution container to the resulting container. The generated execution plan also contains
status markers for each sequential step. Each step is executed only upon appearance of
marker about successful execution of the previous step. The execution step can also be
marked as a failed one. In this case the current plan execution is stopped and the whole
plan is marked as failed.

The figure 2.5 below shows simplified agent belief structure when a goal-based call takes
place. The Ontonut (Donut) definitions are representing the databases, therefore their
preconditions are always true (you do not need any pre-requirements to query the
database, it is already accessible). The effects of the Ontonuts are representing the query
patterns that can be answered. To keep it simple, we have represented the database
content in an adapted triple format. In the reality, however, we need one more
transformation and mapping layer in between the agent beliefs and the external data.
Nevertheless, the absence of the layer does not affect the functional side of the example,
as we are explaining the plan execution steps here. Next, after the Ontonut definitions,
you may find the goal definition, which looks pretty much as a query. So the goal defines
the question: Is there any record set, such that satisfies the following condition:

C C ?a and B B ?a, where ?a is less than 10

The initial data specified with the goal has a default value – precondition is alwaystrue.
This definition is used in all standard Donut preconditions. When the plan is produced, a
temporary execution container is initialized: :plan1 di:execContainer {}. The container is
the place for temporary query and execution results. At the same time the first step of the
plan is started by the explicit Ontonut call to the O1. The call defines a query sub-graph –
a triple pattern to be answered. Next there is a filtering statement put in a separate
container. It will be used by the engine to produce native query to the database. The call
defines two control actions: the statements to be added in case of successful execution
and in case of failure. In the particular case, the statement :plan1 di:execStep2 di:start is
added upon successful execution of the O1 call. This statement is defined as a
precondition for the next step, where a call to the O2 ontonut is performed. After the
execution of the explicit call to the Ontonut O1, we have the result in the temporary

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 13

container (as shown on Figure 2.5, under the middle yellow line). When the second
Ontonut call is run, one may notice the change in input parameters – a statement
di:varValuesPattern sapl:is {B B ?a} is added, whereas the filtering statement is not
specified anymore. The reason for such a change is that filtering condition (?a < 10) has
already been satisfied and there is no need for it within the second call, because filtering
will be done using the output of the previous call. Therefore the engine uses the pattern to
query the temporary execution container and get values of the variable ?a. The values are
then used to build a query to the DB2. When the second query is performed, the final
result is put to the :plan1 di:result {Result container} (see Figure 2.5).

Figure 2.5 – Ontonut engine planning and execution example

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 14

2.1.6 Implementation of the OntonutBehavior
The OntonutBehavior is the “brain” of the Ontonuts engine. It is fully implemented in
Java. Below is the UML diagram of the package classes that were developed (Figure 2.6).

Figure 2.6 – UML diagram of Java classes

The main logic of the engine spreads over OntonutBehavior, SubGoal and
BackwardChaining classes. The features of the database connectivity are encapsulated in
the Donut class. The OntonutBehavior class serves as a dispatcher component, i.e. it
identifies the types of Ontonut calls and takes respective actions.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 15

2.1.7 Donuts support in the engine
As we have described in the research deliverable D2.1, the Ontonuts engine provides
simple functionality for the user to query database sources. The same functionality is
utilized by the engine itself, when it generates plans involving database querying. This
functionality in fact is an explicit Ontonut call, same as others, from the user’s point of
view. However, for the engine, the type of the Ontonut being invoked differs. The special
support for a subclass of Ontonuts called Donuts was implemented taking into account
the theory of General Adaptation Framework (Kaykova et al.). The Donut class is the
sub-component of the engine that implements functions of query preparation,
transformation, execution, etc. The entry point of the Donut is the class constructor,
where all the database parameters are initialized, such as URL of the database, username,
password and the SQL query base. The SQL Query base should be understood as:

SQL query base – is a generic SQL construct that extracts all the data needed for
provision of all Donut instances from the resource it connects to.

At the next step, the Donut provides a function prepareSQLQuery() for generation of the
full SQL query taking into account filtering constructs and results of previous queries.
This step also includes the transformation of the query from the internal agent ontology
(in S-APL) to the native database model. The transformation function uses the mapping
definitions of the Donut. In the example above (Figure 2.7) one can see the dependency
between the SQL query base, the effect definition and the mapping definition of the
Donut:

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 16

Figure 2.7 – Example of mapping definition of the Donut

The mapping definition establishes the correspondence between variable names of the
effect pattern and names of the SQL query base variables. The definition allows for more
complex specifications, where an effect variable is mapped to a concatenation of strings,
resource URIs and other effect variables. Fro example, given that ?entryid variable value
equals 100, then ?rowid variable is produced as:

 “<” + ”od:DNADiaryEntry” + ”#” + ”100” + ”>”

and gives: <od:DNADiaryEntry#100>

2.2 Summary
The development of the Ontonuts engine presented here was heavily inspired by the
industrial domain problems, in particular by the heterogeneity of information systems
within the same organization. We have prioritized the development of parts of the engine
to serve concrete needs of distributed querying within real infrastructure. The further
growth of the engine will be directed towards the improvement of three main directions:

1. Connectivity (extend engine to support more data source types)

2. Componentization (design generic mechanisms for component execution
management)

3. Planning (extend planning capabilities of the engine by introducing utility and
multi-choice plans for the engine)

The extensions described above allow us to merge the problems of WP1 and WP2 for the
next year R&D activities because the approach and the mechanisms to solve the tasks
specified in WP1 and WP2 have common ground and thus can be naturally integrated.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 17

UBIWARE Deliverable D2.3:
Workpackage WP5:

Task T2.2_w5:

3 Smart Interfaces: Context-aware GUI
for Integrated Data (4i technology)

This workpackage studies dynamic context-aware Agent-to-Human interaction in
UBIWARE, and elaborates on a technology which we refer to as 4i (FOR EYE
technology). From the UBIWARE point of view, a human interface is just a special case
of a resource adapter. We believe, however, that it is unreasonable to embed all the data
acquisition, filtering and visualization logic into such an adapter. Instead, external
services and application should be effectively utilized. Therefore, the intelligence of a
smart interface will be a result of collaboration of multiple agents: the human’s agent, the
agents representing resources of interest (those to be monitored or/and controlled), and
the agents of various visualization services. This approach makes human interfaces
different from other resource adapters and indicates a need for devoted research. 4i
technology will enable creation of such smart human interfaces through flexible
collaboration of an Intelligent GUI Shell, various visualization modules, which we refer
to as MetaProvider-services, and the resources of interest.

WP5’s Year 2 elaborates on probably the most important part of 4i vision, which can be
called “context provision”. Especially when considering a human, presenting information
on a resource of interest alone is not sufficient - information on some “neighboring”
objects should be included as well, which form the context of the resource. The ability to
determine what type of context in right one for the situation and collecting the
information that forms the context of that type for a specific resource is central in 4i
vision.

3.1 Background and previous development
One of the 4I Browser enhancements concerns a smart and intelligent technique for
automatic dynamic selection of a visualization context. The logic is based on a history of
visualization contexts and resources that users have browsed/visualized previously. This
context ranking technique allows us to sort a list of visualization contexts in more
appropriate order for user and give him/her a hint for next logical step in though resource

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 18

browsing process. Thus, it can become a smart search system that leads the user in proper
direction/way.

To make the browsing process more user-friendly and reduce amount of useless
manipulations from the user side, browser automatically visualized currently selected
resource in a context that is considered as a default context for the class of selected
resource. Such feature makes browser more dynamic and handy for the user, but can be
useless sometimes and imposes unnecessary default visualization on user. Keeping going
to the direction of context selection enhancement, we decided to enhance the browser
with context ranking functionality. This add-on rank (sort by relevance to the current
situation) the list of visualization contexts for user depending on the user browsing
history (current browsing route - a sequence of visualized resources and correspondent
visualization contexts) and the experience of other users (history of browsing routes).

The idea is to keep all the user browsing routes in database and compare browsing route
of the current user with them. So, the more similar the current route to some routes from
the history database, the higher probability that a visualization context (chosen by
predecessors) for current resource fits the needs of current user. The result of such add-on
is a list of sorted visualization contexts in a context of browsing history and experience of
predecessors (see Figure 3.1). The most relevant context should be applied for
visualization of recently chosen resource. If there is no matching with the previous
browsing routes in the history database, then the default context will be chosen (as has
been implemented in the previous version of the browser).

History database (HistoryDB) has a table that contains the browsing routes and
correspondent contexts that has been chosen for visualization of the last resources in the
routes. Browsing routes is presented as a sequence of pairs “Resource_ID:Context_ID” that
show in which context certain resource has been visualized. The structure of the table is:
o id unique identifier of the record;
o resID unique resource identifier (last resource in the sequence of browsing

route);
o route tail of the browsing route;
o routeN amount of the same browsing routes;
o usedContextID unique identifier of a context that has been used for visualization of

subject resource (resID);

Figure 3.1 – Context-based resource visualization.

This functionality has been developed during the first part of the project year and
presented during the Deliverable 2.1 as a status report.

All Closeness to… Closeness-based
browsing

Context 4
Context 7
Context 1

…
Context n

Context specification area Visualization area

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 19

There are a lot of contexts in which resources may be visualized. But, very often user
faces a need to find similar/close resources to the initial one. Thus, we decided to include
a visualization of the resources in a context of their similarity/closeness to the 4i(FOR
EYE) Browser as its an inherent functionality.

One of the industrial cases that has been developed during the second project year and
delivered in Deliverable 2.2 was focused on Idea similarity visualization and browsing.
The main development in the direction of Deliverable 2.3 has been done during that
period (see Deliverable 2.2):

- Distance Measuring Methods for five main resource description types and General
Resource Distance Measuring Method;

- format and schema of similarity context related data;
- resource closeness/similarity Visualization component.

During the period after the previous checkpoint we add useful functionality to the system.
Current implementation of the 4I GUI Shell supports visual configuration of resource
similarity visualization context.

3.2 Visual configuration of resource similarity/closeness
visualization context

Additionally to the previous development we
added possibility to create new, delete and
modify the similarity contexts. Such
visualization context implies user
specification of the resource properties
significance and existence of additional
contextual information for the resources
properties (depending on their types).

Comparison between the resources is
performed based on common properties.
Current implementation supports five types of
such parameters (properties):

Text field types:

Type 1: Just a pure word/sentence. Additional contextual information for this field
is its significance.

 <fieldContext>

 <field_type>textField</field_type>
<field_property_id>…</field_property_id>

 <field_property_name>…</field_property_name>
 <field_significance>…</field_significance>

 <field_calculation_method>…</field_calculation_method>
 <field_calculation_methods>
 <value>…</value>
 …

</field_calculation_methods>
 </fieldContext>

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 20

Type 2: Text field is presented by list of key words/sentences. Additional

contextual information for this field is its significance.

 <fieldContext>
 <field_type>keyWordsField</field_type>

<field_property_id>…</field_property_id>
 <field_property_name>…</field_property_name>
 <field_significance>…</field_significance>

 <field_calculation_method>…</field_calculation_method>
 <field_calculation_methods>
 <value>…</value>
 …

</field_calculation_methods>
 </fieldContext>

Type 3: Text field is divided to the set of attributes and presented by correspondent

list of values (words/sentences) of the attributes. In this case, the number
of the attributes for certain text field should be defined and lists of possible
(defined) values of the attributes should be defined and presented. In
another words, it is defined amount of keywords, where each keyword is
selected from a correspondent defined set of values. Additional contextual
information for this field is the sets of values for each attribute (keyword)
and the significance of the attributes, and as for all fields, significance of
the field itself.

<fieldContext>

 <field_type>complexTextField</field_type>
<field_property_id>…</field_property_id>

 <field_property_name>…</field_property_name>
 <field_significance>…</field_significance>

 <subprop_names>
 <subprop_name>…</subprop_name>

 …
</subprop_names>
<corClasses>

 <corClass>
 <class_significance>…</class_significance>
 <value>…</value>
 …
 </corClass>
 <corClass>
 <class_significance>…</class_significance>
 <value>…</value>
 …
 </corClass>
 …
 </corClasses>

 <field_calculation_method>…</field_calculation_method>
 <field_calculation_methods>
 <value>…</value>
 …

</field_calculation_methods>
 </fieldContext>

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 21

Number field: Just number that further will be normalized and compared. Additional
contextual information for this field is its significance.
<fieldContext>

 <field_type>numberField</field_type>
 <field_property_id>…</field_property_id>

 <field_property_name>…</field_property_name>
 <field_significance>…</field_significance>

 <field_calculation_method>…</field_calculation_method>
 <field_calculation_methods>
 <value>…</value>
 …

 </field_calculation_methods>
 </fieldContext>

Interval field: Field presented by start and end point on a numerical axis. Distance

measuring function for such interval field is based on a distance between
the centers of the intervals and the lengths of them. Additional contextual
information for this field is the significance of these two main parameters,
and as for all fields, significance of the field itself.

<fieldContext>
 <field_type>intervalField</field_type>
 <field_property_id>…</field_property_id>

 <field_property_name>…</field_property_name>
 <field_significance>…</field_significance>
 <field_calculation_method>…</field_calculation_method>

 <subprop_names>
<subprop_name>Distance between centers of the intervals
 </subprop_name>

 <subprop_name>Differences between lengths of the intervals
 </subprop_name>

 </subprop_names>
 <subField_significances>
 <value>…</value>
 <value>…</value>
 </subField_significances>

 <field_calculation_method>…</field_calculation_method>
 <field_calculation_methods>
 <value>…</value>
 …

 </field_calculation_methods>
</fieldContext>

As we can see from these field type’s descriptions configuration of the resource similarity
context is specification of significances of resource properties/fields, subfields (in case of
complexTextField and intervalField) and distance calculation method if there are several
of them (for the moment we have three calculation methods for intervalField and three
methods for the general resource closeness/similarity measurement).

Figure (Figure 3.2) shows us an interface for such context configuration/personalization
that user may call by clicking the “Edit/Create” button located under the list of
visualization contexts on the main window of 4I Browser. Here user has the access to the
context parameters that can be changed and has a possibility either to edit currently
selected context or to create a new one (in this case the name of a new context should be
specified in the field next to the “Save” button) by pressing the “Save” button.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 22

The distance calculation methods utilize coefficients that have the values in diapason
[0..1]. To simplify the interface and make it more user friendly, we decided to consider
the “absolute significance” of the resource fields as percentages from the full influence
of the fields. In this case the sum of the fields’ significances should be equal 100%. The
same approach has been applied for the sub fields if there are any. For the “absolute
significance” system supports two modes:

- fully user controlled mode: In this mode user can set any level of significance
he/she wants. But at the same time, he/she takes a responsibility to check the
condition that sum of the correspondent fields equals 100. To enter this mode user
should uncheck the “recalculation” checkbox.

- mode with automatic recalculation of the significances: This mode will be useful
in case when user change just the value of one field and do not want to change the
values of other fields to fit the necessary conditions. In this mode system
automatically recalculate the values of other fields proportionally to the previous
values.

Figure 3.2 – Context configuration/personalization.

Sometimes it becomes difficult to define the significance for all the fields in percentages,
and user prefers to specify “relative significance” for the field/property. In this case user
estimates the significance of each field/property by value from 0 to 100 separately. With
the “relative significance” the absolute values do not make sense, only comparative

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 23

differences if the values are taken into account. Further system itself transforms these
values to the “absolute significance” and user can play with percentages later on if he/she
wishes.

As ever user saved the changes or created a new resource similarity context,
MetaProvider that provides visualization module creates and sends a new visualization to
the 4I Browser accordingly to the new configuration.

3.3 Achieved results
One of the 4I Browser enhancements concerns a smart and intelligent technique for
automatic dynamic selection of a visualization context. This context ranking technique
allows us to sort a list of visualization contexts in more appropriate order for user and
give him/her a hint for next logical step in though resource browsing process. Thus, it can
become a smart search system that leads the user in proper direction/way.

Also we decided to include a visualization of the resources in a context of their
similarity/closeness to the 4i(FOR EYE) Browser as its an inherent functionality. The
main development in this direction has been done during the industrial case development
period (see Deliverable 2.2):

- Distance Measuring Methods for five main resource description types and General
Resource Distance Measuring Method;

- format and schema of similarity context related data;
- resource closeness/similarity Visualization component.

During the period after the previous checkpoint we add useful functionality to the system.
Now current implementation of the 4I GUI Shell supports visual configuration of
resource similarity visualization context.

Bibliography
Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A., Terziyan, V., Zharko, A.,

(2005). General Adaption Framework: Enabling Interoperability for Industrial Web
Resources, In: International Journal on Semantic Web and Information Systems,
Idea Group, ISSN: 1552-6283, Vol. 1, No. 3, July-September 2005, pp.31-63.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 24

Appendix A: UBIWARE Publications List (up to the April
of year 2009)∗

[1] Katasonov A., Terziyan V., Using Semantic Technology to Enable Behavioural

Coordination of Heterogeneous Systems, In: V. Kordic (ed.), Semantic Web, IN-TECH
Publishing, 2009, ISBN: 978-953-7619-33-6, 22 pp. (Book Chapter, to appear).

[2] Nagy M., Katasonov A., Khriyenko O. Nikitin S., Szydlowski M., Terziyan V., Challenges
of Middleware for the Internet of Things, In: A. Lazinica (ed.), Robotics, Automation and
Control, IN-TECH Publishing, 2009, ISBN: 978-953-7619-39-8, 24 pp. (Book Chapter, to
appear).

[3] Kesäniemi J., Katasonov A., Terziyan V., An Observation Framework for Multi-Agent
Systems, In: Proceedings of the Fifth International Conference on Autonomic and
Autonomous Systems (ICAS 2009), April 21-25, 2009, Valencia, Spain, IEEE CS Press, 6
pp.

[4] Katasonov A., Terziyan V., Semantic Approach to Dynamic Coordination in Autonomous
Systems, In: Proceedings of the Fifth International Conference on Autonomic and
Autonomous Systems (ICAS 2009), April 21-25, 2009, Valencia, Spain, IEEE CS Press, 9
pp.

[5] Terziyan V., Zhovtobryukh D., Katasonov A., Proactive Future Internet: Smart Semantic
Middleware for Overlay Architecture, In: Proceedings of the Fifth International Conference
on Networking and Services (ICNS-2009), April 21-25, 2009, Valencia, Spain, IEEE CS
Press, 6 pp.

[6] Nikitin S., Katasonov A., Terziyan V., Ontonuts: Reusable Semantic Components for
Multi-Agent Systems, In: Proceedings of the Fifth International Conference on Autonomic
and Autonomous Systems (ICAS 2009), April 21-25, 2009, Valencia, Spain, IEEE CS
Press, 8 pp.

[7] Khriyenko O., Adaptive Semantic Web based Environment for Web Resources, In:
Jyvaskyla Studies in Computing, PhD Thesis, Volume 97, Jyvaskyla University Printing
House, 192 pp., December 13, 2008.

[8] Bleier A., A Framework for Market-Based Coordination in Multi-Agent Systems, MSc
Thesis, University of Osnabrück, September 30, 2008.

[9] Terziyan V., Semantic Web Services for Smart Devices Based on Mobile Agents, In: D.
Taniar (Ed.), Mobile Computing: Concepts, Methodologies, Tools, and Applications (6
volumes), IGI Global, November 2008, ISBN: 978-1-60566-054-7, Vol. II, Chapter 2.22,
pp. 630-641.

[10] Terziyan V. and Katasonov A. (2008) Global Understanding Environment: Applying
Semantic and Agent Technologies to Industrial Automation, In: Lytras, M. and Ordonez De
Pablos, P. (eds) Emerging Topics and Technologies in Information Systems, IGI Global ,
2009, ISBN: 978-1-60566-222-0, pp. 55-87 (Chapter III).

[11] Katasonov A. and Terziyan V. (2008) Semantic Agent Programming Language (S-APL): A
Middleware Platform for the Semantic Web, In: Proc. 2nd IEEE Conference on Semantic
Computing, August 4-7, 2008, Santa Clara, CA, USA, pp.504-511.

∗ Papers are downloadable from http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm

http://www.cs.jyu.fi/ai/OntoGroup/UBIWARE_details.htm

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 25

[12] Khriyenko O., Context-sensitive Visual Resource Browser, In: Proceedings of the IADIS
International Conference on Computer Graphics and Visualization (CGV-2008),
Amsterdam, The Netherlands, 24-26 July 2008.

[13] Katasonov A., Kaykova O., Khriyenko O., Nikitin S., Terziyan V., Smart Semantic
Middleware for the Internet of Things, In: Proceedings of the 5-th International Conference
on Informatics in Control, Automation and Robotics, 11-15 May, 2008, Funchal, Madeira,
Portugal, ISBN: 978-989-8111-30-2, Volume ICSO, pp. 169-178.

[14] Terziyan V., SmartResource - Proactive Self-Maintained Resources in Semantic Web:
Lessons learned, In: International Journal of Smart Home, Special Issue on Future
Generation Smart Space, Vol.2, No. 2, April 2008, SERSC Publisher, ISSN: 1975-4094, pp.
33-57.

[15] Katasonov A. and Terziyan V. (2007) SmartResource Platform and Semantic Agent
Programming Language (S-APL), In: Proceedings of the 5th Conference on Multi-Agent
Technologies (MATES’07), September 24-26, 2007, Leipzig, Germany, LNAI 4687, pp.25-
36.

[16] Terziyan V., Predictive and Contextual Feature Separation for Bayesian Metanetworks, In:
B. Apolloni et al. (Eds.), Proceedings of KES-2007 / WIRN-2007, Vietri sul Mare, Italy,
September 12-14, Vol. III, Springer, LNAI 4694, 2007, pp. 634–644.

[17] Khriyenko O., Context-sensitive Multidimensional Resource Visualization, In: Proceedings
of the 7th IASTED International Conference on Visualization, Imaging, and Image
Processing (VIIP 2007), Palma de Mallorca, Spain, 29-31 August 2007.

[18] Khriyenko O., 4I (FOR EYE) Multimedia: Intelligent semantically enhanced and context-
aware multimedia browsing, In: Proceedings of the International Conference on Signal
Processing and Multimedia Applications (SIGMAP-2007), Barcelona, Spain, 28-31 July
2007.

[19] Khriyenko O., 4I (FOR EYE) Technology: Intelligent Interface for Integrated Information,
In: Proceedings of the 9th International Conference on Enterprise Information Systems
(ICEIS-2007), Funchal, Madeira – Portugal, 12-16 June 2007.

[20] Salmenjoki K., Tsaruk Y., Terziyan V., Viitala M., Agent-Based Approach for Electricity
Distribution Systems, In: Proceedings of the 9-th International Conference on Enterprise
Information Systems, 12-16, June 2007, Funchal, Madeira, Portugal, ISBN: 978-972-8865-
89-4, pp. 382-389.

[21] Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper Industry - A
Semantic Storing, Browsing and Annotation Mechanism for Online Fault Data, In:
Proceedings of the 4th International Conference on Informatics in Control, Automation and
Robotics (ICINCO), May 9-12, 2007, Angers, France, INSTICC Press, ISBN: 978-972-
8865-87-0, pp. 191-194.

[22] Naumenko, A., Srirama, S., Secure Communication and Access Control for Mobile Web
Service Provisioning, In: Proceedings of International Conference on Security of
Information and Networks (SIN2007), 8-10th May, 2007.

[23] Naumenko A., Semantics-Based Access Control in Business Networks, In: Jyvaskyla
Studies in Computing, PhD Thesis, Volume 78, Jyvaskyla University Printing House, 215
pp., June 28, 2007.

[24] Naumenko A., Katasonov A., Terziyan V., A Security Framework for Smart Ubiquitous
Industrial Resources, In: R. Gonzalves, J.P. Muller, K. Mertins and M. Zelm (Eds.), In:
Enterprise Interoperability II: New challenges and Approaches, Proceedings of the 3rd
International Conference on Interoperability for Enterprise Software and Applications
(IESA-07), March 28-30, 2007, Madeira Island, Portugal, Springer, pp. 183-194.

 D2.3: UBIWARE Platform Prototype v.2.0

© 2009 UBIWARE Deliverable D2.3 26

[25] Naumenko A., SEMANTICS-BASED ACCESS CONTROL - Ontologies and Feasibility
Study of Policy Enforcement Function, In: Proceedings of the 3rd International Conference
on Web Information Systems and Technologies (WEBIST-07), Barcelona, Spain - March 3-
6, 2007, Volume Internet Technologies, INSTICC Press, pp. 150-155.

Submitted or going to be submitted:

[26] Khriyenko O., Terziyan V., Similarity/Closeness-Based Resource Browser, In: Proceedings

of the Ninth IASTED International Conference on Visualization, Imaging and Image
Processing (VIIP-2009), July 13-15, 2009, Cambridge, UK, 7 pp. (submitted).

	Introduction
	1 UbiCore – Core Distributed AI platform design
	1.1 Platform Changes
	1.1.1 UBIWARE platform as a service

	1.2 S-APL language changes

	2 UbiBlog – Managing Distributed Resource Histories
	2.1 Ontonuts engine
	2.1.1 How it works (a reminder)
	2.1.2 Software implementation of the engine
	2.1.3 Handling ontonut definitions
	2.1.4 Handling Ontonut calls
	2.1.5 Organizing the plan execution
	2.1.6 Implementation of the OntonutBehavior
	2.1.7 Donuts support in the engine

	2.2 Summary

	3 Smart Interfaces: Context-aware GUI for Integrated Data (4i technology)
	3.1 Background and previous development
	3.2 Visual configuration of resource similarity/closeness visualization context
	3.3 Achieved results

	Bibliography
	Appendix A: UBIWARE Publications List (up to the April of year 2009)(

