
 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 1

UBIWARE Deliverable D3.3:

UBIWARE Platform Prototype v.3.0

August, 2010

Date Aug 31, 2010
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Oleksiy Khriyenko, Sergiy Nikitin, Michal Nagy,

Joonas Kesäniemi, Michael Cochez, Atte Pulkkis
Work component WP1, WP2, WP3, WP4, WP5
Deliverable Code D3.3
Deliverable Owner IOG, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 2

Table of Contents

Introduction .. 3
1 Platform Development ... 4

1.1 New Agent Platform architecture .. 4
1.1.1 Application agents in UBIWARE ... 5
1.1.2 Platform infrastructure agents ... 5
1.1.3 One-click platform startup .. 9

1.2 UBIWARE towards modern web .. 10
1.2.1 A new UBIWARE 3.0 Web Architecture ... 11
1.2.2 Web application architecture details ... 12
1.2.3 UBIWARE Desktop .. 14
1.2.4 Developing Web Applications with UBIWARE .. 15
1.2.5 Administrator’s interface .. 17

1.3 Policies in UBIWARE ... 21
1.4 Core Platform Improvements ... 22

1.4.1 RDF2BEAN .. 22
1.4.2 Semantic Action Script ... 23
1.4.3 Development “under the hood” .. 25

2 A Use Case: Mashupper – Agent-enabled Social Web ... 30
2.1 Social Ontology ... 31
2.2 Agent Architecture ... 32
2.3 User Interface ... 33

2.3.1 OAuth authentication .. 34
2.3.2 Building Personal User Network .. 35
2.3.3 Using Personal User Network ... 37
2.3.4 Geographical status updates panel .. 38
2.3.5 Activity timeline ... 39

2.4 Conclusions .. 40
3 Smart Interfaces: Context-aware GUI for Integrated Data (4i technology) 41

3.1 Background .. 41
3.2 ResourcesCloseness_RDFConvertor - general RDF adapter for 4I Browser 41

3.2.1 Adapter functionality and architecture .. 41
3.2.2 GUI of the convertor ... 42
3.2.2.1 “Simple text” and “Simple numeric” fields ... 43
3.2.2.2 “Keywords field” ... 44
3.2.2.3 “Complex text field” .. 44
3.2.2.4 “Interval field” ... 45

3.3 Conclusions and future work ... 45

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 3

Introduction

The UBIWARE project aims at a new generation middleware platform which will allow
creation of self-managed complex industrial systems consisting of distributed,
heterogeneous, shared and reusable components of different nature, e.g. smart machines
and devices, sensors, actuators, RFIDs, web-services, software components and
applications, humans, etc. The technologies, on which the project relies, are the Software
Agents for management of complex systems, and the Semantic Web, for interoperability,
including dynamic discovery, data integration, and inter-agent behavioral coordination.

Work in this project is divided into seven work packages which are running in parallel:
1. Core agent-based platform design
2. Managing Distributed Resource Histories
3. Security in UBIWARE
4. Self-Management and Configurability
5. Context-aware Smart Interfaces for Integrated Data
6. Middleware for Peer-to-Peer Discovery
7. Industrial cases and prototypes.

Work-packages 1 through 6 are research work packages; however, the research efforts are
combined with agile software development processes. Prototypes of the UBIWARE
platform, integrating the work in these 6 work packages at different levels of their
readiness, are developed during each project year, as UBIWARE 1.0, UBIWARE 2.0 and
UBIWARE 3.0. Due to the prolongation of the project, we will have one more version of
the platform release – UBIWARE 3.1, which will be reported in the final steering group
meeting.

UBIWARE deliverable D3.1 reported on the research results from work packages 1, 2, 4
and 5. At that time it was decided to postpone the research on work packages 3 and 6.
Nevertheless, we are presenting in this report the current status of the research and
development findings for all work packages – from 1 to 6. As a demonstration case of the
platform improvement and evolution we have chosen a Social Network integration
scenario, which can be considered as an industrial case and thus falls into the work
package 7. This deliverable, D3.3, presents the integrated development results from all
the work packages, i.e. the current state of the UBIWARE 3.0 platform prototype.
Naturally, during the development stage, solutions described previously in D3.1 have
undergone some changes and improvements.

This deliverable consists of the software itself and an accompanying report.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 4

UBIWARE Deliverable D3.3:
Workpackages involved WP1, WP2, WP3, WP4, WP6:

1 Platform Development

1.1 New Agent Platform architecture

In the year 3 of the platform evolution we have put our main effort to the platform
usability issues. To make the platform attractive as a middleware solution, we have to
offer a set of platform features that are comparable with other software development
middleware available on the market today. Furthermore, to be able to demonstrate the
benefits of the platform, we have to show a clear add value the platform may offer.
This deliverable has brought the UBIWARE platform to the qualitatively new level of the
middleware solution – the platform now combines the features of the application server,
the semantic web platform and the agent-driven platform, where agent-driven semantic
applications can serve end customers with the high quality web-based GUIs, enhanced
user-friendliness and responsiveness. The platform has become an application-
independent runtime environment, where special infrastructure agents take care of the
platform itself, not of the applications being run on it. At the same time, we introduce
personal user agents, thus making the platform user-oriented (see Figure 1.1).

Figure 1.1 – UBIWARE 3.0 platform architecture

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 5

We design the UBIWARE platform infrastructure for creation of various kinds of
applications. Those applications have a freedom to use a web front-end, on-the-platform
user management and other infrastructure or define their own platform components
depending on the needs of the application.
In the UBIWARE 3.0 architecture we identify two groups of agents. The first group
includes the agents which are application-specific, whereas the second group gathers
infrastructure agents providing services to those application-specific ones. In the next
section we shortly introduce the new structure of the UBIWARE application and then
discuss the role of the infrastructure.

1.1.1 Application agents in UBIWARE

We start with describing how an agent-enabled application should be designed to fit the
UBIWARE 3.0 platform infrastructure. We introduce three different agent sub-types for
application agents:

- Personal user agent (PUA): In the view of the unified approach used in
UBIWARE, every external resource is represented with an agent. Humans, which
we call users of our platform, are represented by personal user agents (PUA).
Each platform user may have only one personal user agent in the platform.

- Application worker agent (AWA): This agent is the bridge between the personal
user agent and the application infrastructure agents (not to be mixed up with the
platform infrastructure agents). It is used as a representative of the PUA towards
the application. The main reason for having this mediator is robustness –if the
application code resides in the main user agent (PUA) and it is not written well
then it might corrupt the operation of the PUA. Therefore, we put code of each
application into the separate agent called worker. Having AWA has another
important advantage - it gives application developers safety of storing data
concerning a specific user into the worker agent, being sure that no other
application will be able to retrieve or modify this data.

- Application infrastructure agents (AIA): These agents are building blocks of
applications which do not have to be replicated for each individual user. AIA’s
represent applications on the platform and may provide aka “application services”
to other agents. They can provide certain functionality to web applications, for
example, in the desktop login when the actual user is not even known yet. This
type of agents is also applicable when the application is not user-specific or does
not have a web interface. As an example, we can consider the Fingrid industrial
use case where agents are doing background work continuously without user
interaction.

1.1.2 Platform infrastructure agents

In this subsection we shortly describe the infrastructure agents and their roles in the
platform. These agents are application-independent and are designed to handle the
platform operation.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 6

- Policy Agent(PA)

o Description: The policy agent is the agent responsible for policy checks.
Its use will be further described in the chapter about policies.

o Implementation: The policy agent has two responsibilities. At first, it
processes information messages about agents being allowed to perform
certain actions and about agents being in a certain state (Which would then
allow them to perform a certain action). The second task performed, is
checking of allowance queries. Whenever the Policy Agent receives a
message containing a question in the form {<agent>
pol:isAllowedToDo <action>} sapl:configuredAs
<parameterList> it will start the investigation procedure to check
whether this requestor agent is allowed to perform this action. The check
procedure matches the request against the responsibility design patterns.
The check may involve a sequential chain of smaller checks. If a link in
the chain is not able to tell whether this action is allowed, it gives the
responsibility of deciding to the next link in the chain. If a link is able to
decide whether the action is allowed or disallowed, the chain is stopped
and the result is sent. The last checker in the chain is final and sends as a
result that the action is denied. The following checkers (links) are currently
implemented:

 Infrastructure agent check (Infrastructure agents have all rights

 Type check (Agents of certain types have certain rights, for
example application worker agents are allowed to register
themselves to the directory facilitator.)

 Application context checks (Agents working in the context of an
application are allowed to perform application-specific actions. For
example a worker agent of the Facebook adapter is allowed to
perform actions to interact with the Facebook platform)

 Advanced message sender checker

• Any agent is allowed to send messages to itself.

• Communication between master and slave agents is allowed.

• A personal user agent is allowed to communicate with its
worker agents.

• Worker agents are allowed to interact with application
infrastructure agents.

• There can be specific exceptions, for example,
configuration application agents can be allowed to send
messages to infrastructure agents.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 7

o Interaction: The policy agent is indirectly interacting with any agent on
the platform which wants to perform an external action. For more details
on policies see section 1.3 of this report.

- UBIWARE DF Agent (UDF)

o (Under development) UBIWARE Directory Facilitator Agent will keep the
ontology of all the concepts used on the platform.

- Web Interface Agent (WIA)

o Description: Web Interface Agent (WIA) is responsible for all
communication over http with the outside world. The communication is
arranged by using embedded web server that handles the incoming
requests and provides web application with the access to the agent
platform. It works as a gateway for all the messaging between web
applications running on the server instance and the application-specific or
infrastructural agents. WIA is responsible for the lifecycle management of
the web server and provides services for deploying and removing web
applications from the server. WIA is also responsible for managing the
tickets related to platform-wide, single-sign-on mechanism, used in the
UbiwareDesktop (see Section 1.2.3).

o Implementation: Current WIA implementation uses Jetty as its embedded
web server. Jetty is small and versatile server hosted by Eclipse
Foundation that works as a basic HTTP server as well as a Servlet
container. WIA starts up the web server with the certain port configured,
as part of its own startup routine. When the server is up and running, WIA
deploys the configured web applications as WAR files to the server.
DeployWarBehavior allows WIA to hot-deploy WAR files to the server
without the need to restart the servlet container.

o Interaction: Web applications use WIA as a mediator when sending
messages to the agents. However, WIA does not provide direct access to
the messaging facilities. Web applications use WIA through a wrapper that
allows them to interact with one specific agent. Wrappers are available for
application infrastructure agents of the application in question and for the
user specific worker agent. When wrappers are created, WIA queries the
directory facilitator agent for the worker agent associated with certain
logged in user and application. WIA accepts new web applications for
deployment from the application manager infrastructural agent. Same
agent can also request a web application to be removed. One special case
of interaction for WIA is the authentication for the UBIWARE Desktop.
When the user provides his or hers credentials, WIA interacts directly with
the user manager agent and tries to authenticate the user.

- Package Manager Agent (PMA)

o Description: This agent is responsible for deployment of UBI packages
(UBIWARE application packages). The agent accepts a package and

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 8

unpacks it to a temporary folder. Then it goes through all package
components and handles them in one-by-one fashion. It registers all the
roles to the ontology agent, sends policy rules to the policy agent, starts
application infrastructure agents and asks web interface agent to deploy the
Web application WAR file. It also properly registers the application at
application manager agent.

o Implementation: The deployment process consists of two steps. In the first
step the agent uses a Reusable Atomic Behavior (RAB) that reads a UBI
package, verifies it, unpacks it to a temporary folder and creates a
descriptor object in the agent beliefs. In the second phase, the agent reads
the descriptor object and the above mentioned procedures are performed.
Infrastructure agents are notified and particular components of the UBI
package are redistributed among them.

o Interaction: During the package deployment process, package manager
agent communicates with platform infrastructure agents. Large files like
WAR archives are interchanged between agents by saving those to a
temporary folder and referring to them using a file path. The rest of the
messages are transferred in SAPL language.

- Ontology Agent (OA)

o Used by other agents for loading agent roles

- User Manager Agent (UMA)

o Description: The user manager is responsible for managing human users
on the platform, i.e. storing information about user names, passwords and
other personal information. UMA is also responsible for personal user
agents and it stores the lists of applications selected by the user, as well as
information about applications to be selected by default. UMA is also
starting an AWA (see subsection 1.1.1) if the user selects an application to
use.

o Implementation: UMA agent knows about application worker agents
belonging to applications, it gets this information from the package
manager agent when applications are deployed. When a user decides to
select an application for use (or the application is configured to be
automatically selected), UMA starts a suitable worker agent for the user of
the application. Internally, this agent keeps a container of application
configurations. Since this agent is also application infrastructure agent for
the user manager application, it is possible to interact with it using that
application. Whenever a user is added, this agent will keep beliefs about
the user's existence and link user name to his/her personal user agent.
UMA also serves as infrastructure behind the login screen.

o Interaction: The interaction with this agent is, as mentioned before, mainly
from within web applications, i.e. the authentication, user registration and
application selection.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 9

- Root Agent (root)

o Description: The root agent is exactly the same as any other personal user
agent. The only exception is the amount of rights it has and the moment
when it is created. Root Agent has all possible rights available on the
platform. Giving such privileges has been inspired by the root user in
Linux systems. One of the reasons to give such privileges was to provide a
way within the production environment to interact with any component in
the system. Example use cases are: malfunctioning or obsolete components
which should be discarded or a platform shutdown. The root agent is
created first and then also creates other users of the system.

o Implementation: The implementation of the root agent is exactly the same
as the implementation of normal personal user agents.

o Interaction: The root agent interacts, just like normal PUA's only with its
application worker agents.

1.1.3 One-click platform startup

In the previous version of UBIWARE, the platform was started up using a list of batch
files. The batch files contained commands to run particular parts of the platform. The
included instructions about which agent in which container should be started. This
solution had several disadvantages. First disadvantage was the dependency on the
operating system. Each operating system uses different scripting language and therefore
batch files had to be adjusted to a particular system – bat files for Windows, shell scripts
for Linux, etc. There were dependencies among the batch files and the user had to be
aware of them and start them in a particular order. The second disadvantage was the
portability. If a user wanted to run the same scenario on another operating system, he/she
had to rewrite the scripts to another scripting language and change library paths.
The current version of UBIWARE solved both problems. The platform uses several
universal scripts – one for each operating system. No matter what kind of scenario is run,
the same script is used every time. Instead of having the platform configuration in the
script, now the configuration is stored in an RDF configuration file. The configuration file
is called startup.rdf and it contains a list of several RDF resources such as agent,
container, script, role, etc. These resources are interconnected using object properties and
they form a pseudo-tree with platform resource as its root. The ontology depicted in
Figure 1.2 describes the pseudo-tree structure. We introduce an agent platform object
which can have several container objects connected to it. A container can be either a main
container or peripheral container. In containers agents are running. Each agent has a name
and a list of scripts and/or roles associated with it. Every role has a name and every script
has its location. It is a pseudo-tree, because two different agents may refer to the same
script or role.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 10

Figure 1.2 - Platform startup ontology

The existence of a startup script solves the problem of cross-platform portability. Instead
of moving the whole list of scripts and rewriting them to a different scripting language,
the user has to copy just the startup configuration file and execute a different script file,
which is already available.

Inner working
In the current implementation the startup mechanism reads the configuration from the
startup file. In the future the startup mechanism can be a service callable by an agent. This
way an agent can provide a startup semantic annotation and then call a service. As a result
a new platform is started.

1.2 UBIWARE towards modern web

In the previous version of the UBIWARE platform the only way for agents to offer the
communication with external systems was the AgentServer reusable atomic behavior and
ServerEvent class. AgentServer and ServerEvent provided a way of sending and receiving
messages through TCP sockets. This was convenient for machine to machine interaction
and for simple user interfaces, but was lacking features, such as thread pooling, caching
and support for existing tools, - those needed for building more sophisticated web based
applications. The new web application architecture based on embedded Jetty HTTP server
is designed to take UBIWARE to the modern web.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 11

1.2.1 A new UBIWARE 3.0 Web Architecture

The main idea behind the new web architecture is to allow web developers to use their old
and reliable and/or new and shiny web development tools and frameworks for the UI
development while providing easy and unobtrusive integration to the agent platform. The
high level general architecture for UBIWARE web application is depicted in Figure 1.3.

Figure 1.3- UBIWARE Web Application Architecture

Web applications running on one Jetty web server instance use specialized web interface
agent (WIA) to communicate with other agents. WIA currently only works as “dummy”
mediator, but it could also be used to monitor or restrict traffic from web applications to
the agent side. Possible response from the agent is routed back to the right web
application, which can use the returned data to modify and render its GUI.

WIA stands between the web application and agent development worlds. Since it is an
agent, WIAs can be cloned and moved from one machine to another for example for load
balancing purposes. Current version of the UBIWARE platform only has one type of web
interface agent available that uses Jetty servlet container as a web server. The platform
could however also provide different kinds of WIAs for different and more specific
purposes. In addition to servlet based web applications coded with Java, another WIA
could be able to host dynamic web applications build on Ruby, Python or PHP. Or, if the
application only needs to serve simple static content, it could use WIA with a simple

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 12

HTTP server with no support for dynamic web applications. One could also say that the
agent using old AgentServerBehavior RAB is a kind of web interface agent.

The possibility to add, move, remove and configure agent based WIAs in a very dynamic
manner provides ground work for self-configurable web based agent application platform.

Although modern web applications are usually based on dynamically created content,
nothing prevents application from using Jetty based WIA to distribute static content like
images, video, html pages. In this kind of scenario the worker agent could still be used to
update or generate that content. For example, instead of generating complex statistics
report on demand, the worker agent could periodically generate updated version of the
report to certain place, where the web server can serve it as a static asset, effectively
moving the responsibility of handling mundane data transfer task from application agent
to the web server.

1.2.2 Web application architecture details

This section gives a more detailed description of the inner workings of the new web
application integration for UBIWARE platform. The solution is based on filters that have
been part of the Java Servlet specification since the version 2.3. A filter can be configured
to intercept requests and response and to transform or use information contained in them.
Common use for filters is authentication, logging and data compression. In this case a
special filter is used to inject request with an object that wraps the web interface agent,
allowing web application to use its messaging capabilities in a controlled manner. The
main components of the web integration are AgentWrapper, PlatformConnection, Servlet
filters and RABs for deploying applications.

AgentWrapper

Since it would not have been safe to let any web application to send messages to any
agent, web applications are forced to communicate with agents using the instances of
AgentWrapper class. It takes Jade agent and the name of the agent that is going to receive
the messages as the constructor parameters. AgentWrapper provides three synchronous
methods for communicating with the wrapped agent recipient:

inform() method is used to send message to the agent without expecting any kind of
response. This method can be used to, for example, inform the agent about non-critical
(i.e. no confirmation required) state changes of the web application.

requestResponse() method sends a message to the agent and waits for the response. If no
response is received within the timeout period, then the exception is thrown.

syncAction() this is a convenience method for sending ACL messages that conform to the
action protocol

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 13

PlatformConnection

PlatformConnection interface is the source of AgentWrappers. Platform connection is
injected as part of HTTP request where web application can retrieve it. Interface has
methods for getting the AgentWrappers for worker agent responsible for the web
application and for the application infrastructure agents.

Filters

UBIWARE provides three filters for different kind of application scenarios.

PlatformConnectionFilter

This is the main filter that must be used by all the web applications that are deployed
under the UBIWARE desktop (see subsection 1.2.3). The filter first checks if there is a
valid ticket in the request. If the ticket is valid, it tries to locate the worker agent
responsible for handling the web application in question for the given ticket. Finally the
filter encapsulates reference to the WIA, the name of the worker agent and a list of
possible application specific infrastructure agents into an instance of PlatformConnection
which is then stored in the HTTP request.

UbiwareAgentBridgeFilter

This filter is intended for testing and building web applications with UBIWARE platform
without the UbiwareDesktop. Filter can be configured to provide AgentWrapper for any
named agent. The name of the wrapped agent is given as initialization parameter to the
filter.

<filter>
 <display-name>UbiwareFilter</display-name>
 <filter-name>UbiwareFilter</filter-name>
 <filter-class>ubiware.web.UbiwareAgentBridgeFilter</filter-class>
 <init-param>
 <param-name>agent</param-name>
 <param-value>worker</param-value>
 </init-param>
</filter>

AuthenticationFilter

Authentication filter can be used with the web applications targeted for UbiwareDesktop
to restrict access to the certain URLs only to the logged in UbiwareDesktop users.

<filter>
 <display-name>auth</display-name>
 <filter-name>auth</filter-name>
 <filter-class>ubiware.web.AuthenticationFilter</filter-class>
 <init-param>
 <param-name>exceptions</param-name>
 <param-value>/publicServlet</param-value>
 </init-param>
</filter>

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 14

Filter takes initialization parameter “exceptions”, that is a comma separated list of URLs
that should be excluded from the filter. Exceptions can be used for example to provide
public callback URLs to otherwise restricted applications.

Behaviors

DeployWarBehavior

This is the Behavior used by the WebInterfaceAgent to deploy WAR files to the Jetty
servlet container. WARs can be hot-deployed while the server is running. Behavior adds
PlatformConnectionFilter with the mapping ‘/*’ to every deployed application so it
should only be used in conjunction with the UbiwareDesktop.

DebugWarBehavior

DebugWarBehavior is identical to the DeployWarBehavior with the exception that it does
not add any filters to the deployed applications.

1.2.3 UBIWARE Desktop

The idea behind UbiwareDesktop was borrowed from the web desktop environments.
Web desktop is a desktop environment embedded in the browser. Web desktops like
eyeOS (http://eyeos.org/) offer many of the functionalities and applications available on
basic Windows, OSX or Linux desktop environments, such as productivity suites and file
management. Some of the benefits of moving desktop to the web are high availability,
server-side session management and centralized software management.

UbiwareDesktop is a web application that is distributed with the UBIWARE platform. In
its current version the UI acts as simple launcher for other web applications deployed as
part of the desktop environment. Applications can be opened as windows inside the
desktop or in a new browser window. Figure 1.4 shows the desktop with two application
windows open inside single browser window.

Currently the main benefit of using UbiwareDesktop as the deployment target for
applications is the user management and authentication services provided by the desktop.
As in any multi-user desktop environment, UbiwareDesktop requires users to login. After
the user has successfully logged in, the UbiwareDesktop creates a ticket for the session,
which is used to authorize the subsequent requests. Ticket can be used as kind of single-
sign-on system, since other web applications can use the same ticket as a way to
authenticate users. Users can be managed using another web application that is
automatically available for all the administrative users.

In the future releases of the UBIWARE platform, desktop is envisioned to facilitate
semantic drag-and-drop between applications. In order to make that possible without
browser plugins, UbiwareDesktop could work as an intelligent, agent-driven mediator
between source and target applications.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 15

Figure 1.4 – Ubiware Desktop with running applications

1.2.4 Developing Web Applications with UBIWARE

This section describes everything needed for creating web applications that take
advantage of the UBIWARE agent platform. When starting to develop a web application
with UBIWARE platform the first thing one has to decide is whether the application will
be running under the UbiwareDesktop or not. The latter approach will be from here on
referred as the standalone approach. Applications targeted for UbiwareDesktop use the
PlatformConnectionFilter, which is added automatically by DeployWarBehavior, and
AuthenticationFilter whereas the standalone applications rely on
UbiwareAgentBridgeFilter for bridging the gap between java code and agents, and
DebugWarBehavior for deploying the application to the WIA.

The current Jetty based implementation of WIA requires all web applications to be
packaged as web application archives (WAR). This basically means that the server side
code of the dynamic web application must be developed as least partly using Java
technology. WAR file has a very specific hierarchical structure that is described as part of
the Java Servlet specification (http://jcp.org/en/jsr/detail?id=53).

Accessing the platform

Inside the UbiwareDesktop

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 16

Access to the UBIWARE platform is provided through the PlatformConnection interface,
which provides methods for retrieving agent wrapper for the worker agent or application
infrastructure agents of the web application. PlatformConnection instance can be
retrieved from the HTTP request using the following piece of code:

PlatformInterface pi = (PlatformInterface)
 httpRequest.getAttribute(PlatformInterface.PLATFORM_INTERFACE_KEY)

After that, PlatformInterface can be used to retrieve AgentWrapper, which provides
methods for communicating with the wrapped recipient.

AgentWrapper aw = platformInterface.getWorkerAgent();
aw.inform(“:icecream sapl:is :good”, “SAPL”);

In a standalone application

Standalone web applications can access the AgentWrapper directly without going through
the PlatformInterface.

AgentWrapper wa = (AgentWrapper)
 httpRequest.getAttribute(

UbiwareAgentBridgeFilter.WORKER_AGENT_WRAPPER);
wa.inform(saplContent, "SAPL");

Authentication

Web application deployed to the UBIWARE is by default accessible to any who knows
the right URL. In order to make the application or part of the application available only to
the users who have logged into the UBIWARE platform, one can use the
AuthenticationFilter as described above (see subsection 1.2.2). For example, the web
application can be divided into public and restricted sections by adding the following
lines to the web.xml:

<filter>
 <display-name>auth</display-name>
 <filter-name>auth</filter-name>
 <filter-class>ubiware.web.AuthenticationFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>auth</filter-name>
 <url-pattern>/restricted/*</url-pattern>
</filter-mapping>

With this kind on configuration, everything is publicly available with the exception of
URLs starting with /restricted.

Alternative way for accessing PlatformConnection

Some of the web frameworks, like Vaadin for example, do their best to shield the
developer from the low-level details of HTTP request and response cycle. This might
mean that the developer does not have a convenient access to the HTTPServletRequest
object, where the PlatformConnection instance is stored. RequestContextFilter from the

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 17

Spring framework project (http://www.springsource.org/) provides easy access to the
request parameters by storing them to the ThreadLocal. Parameters can be retrieved using
RequestContextHolder class from the same source. This approach is used in all the
Vaadin based web applications created by the UBIWARE project using the following
filter configuration:

<filter>
 <display-name>SpringFilter</display-name>
 <filter-name>SpringFilter</filter-name>
 <filter-class>
org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>SpringFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Now, the PlatformInterface and worker agent wrapper can be accessed in the following
manner:

RequestAttributes ra = RequestContextHolder.currentRequestAttributes();
PlatformInterface pi = (PlatformInterface)
 ra.getAttribute(PlatformInterface.PLATFORM_INTERFACE_KEY,
 RequestAttributes.SCOPE_REQUEST);
AgentWrapper aw = pi.getWorkerAgent();

Example web application

In order to make the web development with UBIWARE as easy as possible, the
distribution will include a skeleton web application. Sample application includes two
agents: WIA and worker. The web application consists of simple html-form for sending
messages to the worker agent and one servlet that acts as the server-side handler for the
form.

1.2.5 Administrator’s interface

The purpose of developing the administrator interface has arisen from the need not to
only observe the platform state, but to be able to affect the platform agents on the low
level. Having a possibility to affect the platform agents, makes it more resistant to the
application malfunctioning or failures that might lead the platform to the uncontrolled
state. Another reason for having such interface is to have a possibility for low-level
configuration and platform maintenance without stopping it.

Architectural overview

The “Agent Ontology Manager” is developed as a web-based interface. The interface is
constructed with HTML and JavaScript technologies, using Qooxdoo open-source
JavaScript framework. The UI communicates with the UBIWARE platform via HTTP,
and interacts with an agent that is being configured and/or managed.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 18

The User Interface itself is divided into two tabs. The Ontology tab allows the user to
browse and edit classes, instances and properties of the ontology that defines the agent
beliefs structure. The interface allows not only browsing, but also the editing and
immediate testing of the changes – i.e. it allows the user to invoke the executable agent
components that are listed in the Instances branch. User can further define conditions of
the invocation and execute it. The results of instance invocation are shown to the user.
Agent Ontology Manager (AOM) is based on the Metso-case Agent Component Manager
(ACM) developed as industrial case for Metso Automation in year 2010. Thanks to
efficient application code structure, we were able to re-organize majority of previous
functionality into a more efficient and generic package.

User’s Guide

To navigate through the UI, click the tab icons in the upper left corner (see Figure 1.5).

Figure 1.5 – Agent Ontology Manager interface in the initial state

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 19

• “Ontology” –tab is where majority of work is done. This tab contains the tools for
adding, editing and removing items into and/or from the ontology.

• “Settings” –tab is under construction, and for now only allows changing the
address of target agent.

- Ontology -
Navigating the tree is simple: click the black arrows on the left to open and close
branches of the tree. To select an item, click anywhere on the row the item is located in.
Doing this will open an editor window for the right element (see Figure 1.6).

Figure 1.6 – Instance editing

Saving changes happens by clicking “Save”-button or “Save Data” -button. Settings will
not be saved if the page is refreshed, user selects a new component, editor window is
closed before saving or user clicks the “Cancel”-button. After you are done with editing,
pushing the “save” button above the tree will save changes permanently.

Cancelling changes can be done by clicking “Cancel”-button, or closing the editor
window by clicking the ‘x’ in the upper right corner. Also, all unsaved settings will be
discarded in event of a page refresh.

New items can be created with “New Item” –button. Clicking this button opens a dialog
that queries item type from the user. After choosing the type, a new editor window

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 20

appears for giving details about the type of element you are about to create. Item will be
created instantly after pushing “Create”.

Deleting items is accomplished by pushing the “Delete”-button found in all editor
windows. To open an editor window, click any item in the tree.

A component invocation can be done by clicking the “Execute” –button in instance editor
window. A new window opens, that allows user to define specific conditions for the
invocation. Users can add, edit and remove conditions. Editing conditions is started by
clicking any row, after which condition window opens. After editing is done, instance is
invoked with the “Execute”-button, and the results are shown in a new window.

AOM application architecture

This part will describe the internal working logic of the Agent Ontology Manager
functions and components (see Figure 1.7).

Figure 1.7 – Agent Ontology Manager interface in the initial state

- Initialization-
When the index.html –file is opened, first thing the JavaScript of the application does is
constructs the User Interface elements. Second task of this initialization is retrieving two
pieces of information from application’s Worker Agent: settings and ontology. Settings
include user-customized settings for the application. For now the only available setting is
the location of the worker agent the application uses. Ontology contains the platform
ontology in Notation-3 –format plain text RDF.

After the information is retrieved, Application parses the ontology into manageable pieces
and hands it to Ontology. Ontology creates the required objects (OntologyObject/Ontonut)
based on the parsed information, and organizes the information into a coherent tree-like
structure that can be easily handled and visualized.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 21

-Managing data-
While Application handles creating the UI elements and the communication with the
agent, Ontology takes care of the data management of AOM. Windows related to editing,
creating and deleting data are created in Ontology. This way Ontology has the control
over data management.

Searching the data tree structure is simple, since it is composed of OntologyObjects, that
contain all the data. This is possible due to all information in the used ontology being
based on classes. This way all the searches for data can be done fast recursively.

Adding, modifying and deleting data happens in a very similar way. When user triggers
certain action, first the location of data in the data tree is found by searching for it. After
the location is found, either the new data is added, or the old data is replaced with new
one, or the data entry is deleted.

-Invoking instances-
The administration interface of AOM is designed to invoke three types of instances:
Ontonuts, Policies and Configurations. Currenlty only the Ontonuts execution is fully
supported, whereas other two types are partially handled by AOM.

When the instance is invoked, the application sends the invocation information to the
agent and agent then creates the S-APL definitions needed to invoke the component in
question. Component executes automatically after the required definitions are given, and
agent then returns the results to the application, for visual representation.

-Saving the data-
Saving the data is also very simple, thanks to the data structuring. Application is able to
collect the data with a simple recursive function. Application then sends the to-be-saved
data to the agent. Since the user of the AOM has very high degree of freedom in
modifying the ontology, the changes have to be validated by the agent before saving them.
This validation process is done with a Reusable Atomic Behavior that checks the given
RDF Ontology for errors. If the validation is done successfully, the ontology can be sent
for further processing and/or storage.

1.3 Policies in UBIWARE

Policies in UBIWARE are implemented by limiting the external actions any agent on the
platform is able to perform. This approach is inspired by the fact that agents are
autonomous, i.e. they can act without direct intervention from humans or other software
processes and have their own actions and internal state. It is thus not needed to imply
restrictions on the internal beliefs' structure of the agents. Policies are enforced every time
when the agent has an unconditional commitment statement in its beliefs. The policy
check resolves whether it is allowed to perform the action. The check is done in a few
stages (see Figure 1.8).

At first, the UBIWARE agent has a policy checker object which is responsible for the
check and the type of this checker is dependent on the type of agent. Infrastructure agents,
for example, have a policy checker object which allows them to perform any action

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 22

without performing any actual check. Other agents first check the so called safe set of
actions which they are always allowed to perform.

Figure 1.8 – Policy enforcement mechanism

Next, only if the first check fails, the parameters from the commitment statement are
transformed to S-APL in textual representation. Then they are combined with the name of
the action and a query message is sent to the policy agent which is responsible for
replying to policy queries. When the response comes back and the action is allowed, it
will be performed. Otherwise, the object container of the sapl:Denied sapl:add parameter
is added to the agents beliefs.

1.4 Core Platform Improvements

The core platform improvements are one of the most significant ones in the platform,
although they are hardly visible or even presentable. In the 3.0 version we have resolved a
lot of performance critical bottlenecks and have made several extensions that facilitate the
application development on the platform.

1.4.1 RDF2BEAN

When building Java-based web applications a problem arises how to transform RDF code
utilized by agents into Java code and vice-versa. One solution could be to load RDF code

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 23

as a string and parse it in Java. There are several libraries capable of doing it. The
problem is that the Java developer has to work with RDF on a low level – statement by
statement. This way the code becomes more difficult to read and it doesn’t correspond to
the object-oriented nature of Java language.
A possible solution to this problem would be a creation of library that could transform
RDF resources into Java objects and vice-versa. The best type of Java object would be a
bean that would have several fields corresponding to object and datatype properties of a
resource. There is a 3rd party library called Jena beans that accomplishes this, but it has
one significant limitation. The library uses Java annotations for bean class definitions and
field definitions. However, when the library reads an RDF code, it converts it into
instances of corresponding Java beans, but it doesn’t remember their URIs (Uniform
Resource Identifiers), which is a potential problem source. For example, if the user
changes the structure of bean instances and wants to save them back to the RDF form,
he/she will not receive the same URIs as those that were read and therefore the generated
document will not correspond to the rest of the document still residing in the agent or
anywhere else on the platform.
This disadvantage encouraged us to implement our own library for RDF-bean conversion.
The library introduces the concept of storage. It is an object that represents storage for
RDF resources. The Java developer uses a storage object together with Java bean classes
written by him/her that correspond to the ontology of the data that will be read. Each Java
bean class corresponds to a class in the ontology. We say that the bean class handles an
ontology class. The Java developer creates an instance of a storage and registers relevant
Java bean classes. After the registration, the user reads the RDF data by providing a string
represented in Notation3. The storage converts all instances of registered classes into Java
objects. These objects can be retrieved from the storage based on their URI or based on
their type. The developer may change properties of objects and subsequently save them
back into RDF form without changing the URI.

1.4.2 Semantic Action Script

In the previous version of the platform, the communication between agents was handled
by two Reusable Atomic Behaviors (RABs) – MessageSenderBehavior and
MessageReceiverBehavior. They allowed the agent to send and receive an ACL message.
The user was able to set conversation identifier (to match sending and receiving message),
ontology (to match different conversation), content and more. The content could have
been a string or a container containing SAPL code. This wide variety of options gave a lot
of freedom to the agent developer. On one hand this was beneficial, but on the other hand,
it was important to agree precisely on the communication model. In addition to that, user
had to write a set of rules that were handling incoming messages. If an agent was able to
receive many types of messages, it had to have many rules to handle them. Since all the
rules share the same context called G context, the developer had to be cautious and not
produce data that could trigger an unwanted rule. With increasing number of rules, the
problem became more difficult to manage. Also, message handling rules looked very
similar and many times the developer had to copy basically the same piece of code just
with small modifications. If it was possible to pack this rule into a more compact form, it
would improve the readability of the code.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 24

The platform already introduced concepts as Listener, Informer and Believer. These were
SAPL roles that an agent could download in order to receive certain capability. An
example could be Believer role, which made the agent capable of accepting other agent’s
code. This way one agent could tell the other agent what to do, which was beneficial for
coordination. The problem was that the Believer role made the agent to believe (meaning
store) anything that other agent sent. This was a form of code injection, which is not
considered a safe method of communication, since malicious code can be injected as well.
Some filtering from the believing agent’s side was needed. This brought us to the idea of
creating a script that would give an agent the capability to provide some interface to the
outer world, but at the same time to fully control what will happen after the message was
received through this interface, not just blindly “believe” (store) it.

The Action script allows the agent developer to specify so-called action handlers that
handle particular type of action message. In order to understand a handler, an action
message will be presented first. Action message is an ACL message with a predefined
structure. Its content is SAPL code, more precisely the content is exactly one RDF
resource of type com:Action. The ontology of an action resource can be seen in Figure
1.9.

Figure 1.9 - Action message ontology

The action resource has an action name (referenced to by point to an ActionName
resource) and list of parameters associated with it. There is no “executable” code included
as it was in case of Believer script. The parameter list depends on the ActionName.
Usually ActionName and parameter list a matter of agreement between the action sender
(agent that requests an action) and action receiver (agent that performs the action). The
developers agree on particular ActionName resource they will use to mark the messages
and the parameter list that they will exchange.

The agent receiving an action message has an action handler prepared. An action handler
is an RDF resource with 3 properties (Figure 1.10). In order to distinguish between
handlers, ActionName has to be specified. This is done through :handles property.
Property :params points to a container that contains a list of parameters that are expected
and variables bound to parameter values. These variables are then used in a container that
is bound to the handler by the :code property. As the name suggests, this container keeps
the actual code of the action and may use variables defined in params container. This way
the action sender agent only can specify the parameters and the code execution is fully
controlled by the action receiver agent.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 25

Figure 1.10- Action handler ontology

An example of an action object can be seen below. It is an action for querying all
messages of some facebook user. The action object has action name soc:getAllMessages
and 4 parameters specifying sending agent (in order to know who to respond to),
facebook profile ID and time period which should be queried.
:action1 rdf:type com:Action ;

com:hasActionName soc:getAllMessages ;
com:hasActionParams {

com:sender sapl:hasValue “agentPeter” .
soc:profileID sapl:hasValue “54981618” .
soc:fromDate sapl:hasValue “01-06-2010 00-00-00

EEST” .
soc:toDate sapl:hasValue “10-06-2010 12-00-00

EEST” .
} .

Partial code of a typical handler can be seen below. In params section it queries the
parameter values, bounds them to variables and in the code section it uses them as part of
the code.
: getAllMessagesHandler rdf:type com:Handler ;

com:handles soc:getAllMessages ;
com:params {

com:sender sapl:hasValue “agentPeter” .
soc:profileID sapl:hasValue “54981618” .
soc:fromDate sapl:hasValue “01-06-2010 00-00-00 EEST”

.
soc:toDate sapl:hasValue “10-06-2010 12-00-00 EEST” .

} ;
com:code {
 // . . . code . . .
}

1.4.3 Development “under the hood”

Within the core improvements section we distinguish those improvements that are not
immediately visible even by platform developers, but still have significant impact on the
platform operation. The list of the changes is given below:

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 26

- Commands and the synchronization infrastructure
o The agents provided by Jade have one thread which executes the behaviors

of the agent with a round-robin scheduling algorithm. The same thread is
used to maintain the beliefs' structure of the agent. If another thread would
access the beliefs of the agent concurrent with the agent's thread, the
internal representation of the beliefs might get corrupted. Those
inconsistencies would in general be noticed by
ConcurrentModificationExceptions. Version 2 of the UBIWARE platform
provided two specialized solutions for external modifications of beliefs.
The first one could be achieved by using the cyclic possibility of behaviors.
The behavior was then executed and checked whether the other thread
created or managed by the behavior was ready to modify the beliefs
structure. If this was the case, the actual modification was performed in the
agent's thread. The second solution concerned server and GUI events.
These events received special attention from the agent in a therefore
created behavior. This behavior checked whether an even arrives and if
that is the case, it processes the event and provides a result back by for
example writing the result to the java.io.OutputStream provided with the
ServerEvent or modifying the GUI which sent the GUIEvent. The new
approach unifies the two before mentioned solutions by using the
command pattern. Using design pattern syntax, we could say that any
client (other thread) is able to create a command
(ubiware.core.commands.UbiwareAgentCommand) which can be received
by the UBIWARE agent. The UBIWARE agent has a behavior which will
be the actual executor of the action. This behavior is scheduled in the agent
and is thus executed in a thread safe way. An extension of this system is
the blocking command which allows another thread to block till the actual
action is executed inside the agent's thread.

- Applications of the synchronisation infrastructure
o RabRunnable: On top of this framework, a concurrent agent wrapper is

created. This wrapper is called RabRunnable and can be used as a normal
java.lang.Runnable. The advantage of the RabRunnable is that from within
the runnable, calls to the agent can be made in a thread safe manner while
preserving the possibility to schedule this Runnable in whatever execution
service is desired for the application. An example of the use of
RabRunnable is the HttpDataFetcherBehavior which fetches files from the
web to the agent. When the file is big or the connection is slow and the
input output operation would block often, it is beneficial to start a separate
thread to fetch the file. Doing this with RabRunnable allows that thread to
send the result of the fetch straight to the agent whenever it is ready
without concurrency problems.

o Initial Beliefs
 When a UBIWARE agent is started from within another agent, it

was not possible to supply the agent with initial beliefs
dynamically. We could only give the agent certain roles and scripts
which the newly created agent would then load from the repository.
Using this command, we are now able to dynamically add beliefs
to the agent upon creation. This means that we are for example able

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 27

to tell an application worker agent who its personal user agent is in
the creation phase of that agent.

o GUI implementation
 The new way of implementing local GUI's for agents is using the

command model too. Whenever a user action is performed in the
GUI (Which is in case of Swing running in the AWT event queue.),
a command object will be created and send to the agent. The result
of the command object is that the agent gets in thread-safe way
knowledge about the event. Then the agent can decide about
consequent actions. An example of this system can be found in the
buttonGUI where button presses are converted to agent.

- AgentServerBehavior
o If an individual agent wants to run its own web server, it can do so easily

by using the AgentServerBehavior. This was also possible in the old
version of the platform but is now optimized by using the concurrency
tools. When an agent starts the behavior, it will get beliefs injected about
arriving web requests. Upon that, the agent has to prepare a response to the
events and start for example HTTPResponseBehavior using its response as
a parameter. Internally, Jetty (an enterprise level web server) is used to
receive the HTTP request. This ServerEvent is then placed on the
blackboard of the agent. After that the agent gets information about the
request to its beliefs. When answering the request, the ServerEvent from
the blackboard is taken and the answer is sent using that ServerEvent
object.

- Enhanced Reusable Atomic Behavior
o Version 2.0 of the platform has provided the possibility for developers to

develop own reusable atomic behaviors. In the version 3.0 we took this
approach to the next level by providing the enhanced reusable atomic
behavior class. The structure of this class was born from the fact that most
Reusable Atomic Behaviors work in the same fashion which tempted us to
use the template method pattern. Its functionality could be divided in two
parts. The first part is parameter initialization and the second one is the
actual action code. Whenever the parameter initialization fails, the action
code will not be executed. Another aspect of this class is a frame for the
parameter initialization itself. Parameters coming from the agent must be
checked for correctness. The enhanced behavior provides convenience
methods which return the parameter value checked against the requested
criteria. The bottom line of this class is to provide a convenient and
programming error-prone infrastructure for behavior developers.
Approximately 2/3 of the currently existing RAB's are written with
enhanced technology.

- SaplBuilder
o While programming agents, it is often needed to produce S-APL code

which is given to the agent. This used to be done by producing an S-APL
String representation which was then provided to the agent. The new
approach allows for creation of S-APL code in an object oriented fashion.
Statements are assembled from Subject, Predicate and Objects and
containers and documents from statements. This way, we can assure that
the generated S-APL code will always conform to the S-APL syntax and

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 28

thus we avoid hard to find programming errors. Another benefit is that in
the future, there will be stronger support for this way of providing S-APL
code to the agent. The result of this will mainly be seen in performance
since the S-APL code does not have to be parsed after creation with
objects.

- S-APL compilation and production
o Production: The beliefs of the UBIWARE agent are composed of S-APL

statements. Internally, the beliefs are stored in a way which allows the
agent to transform them easily. But whenever the agent is communicating
with the outside world or with other agents, the internal representation has
to be transformed to a textual representation. This textual representation is
then used in the communication. When communicating about data sets
bigger as we had been using in the second version of the platform, we
noticed that the speed of generating a textual representation of the internal
S-APL code was too slow. This was solved by using a different algorithm
for producing the S-APL text. Theoretically; with s being the number of
statements and d as the depth of the code's container structure; the older
implementation worked with an efficiency of magnitude O(s+s*(4s)) =
O(s^2) and created O(d) string builders during the process. The algorithm
was very copy intensive. Potentially, for every statement the whole result
had to be copied 2 times from one buffer to another one, resulting in the
whole result being copied 2*s times. This gave also problems regarding
memory usage and waiting for garbage collection. The new algorithm
performs its actions in O(s) efficiency and uses exactly 1 string builder
during the process. An old burden; ID's which were generated even tough
not used in any further reference in the generated S-APL document; was
also removed during re-implementation. The speed improvement is not
only visible theoretically, - the practical gain of using new algorithm and
better use of recursion, resulted in major speed ups. In a concrete case
when converting a bigger data set (183262 statements) from the agent’s
beliefs to a flat textual representation, we saw in the old implementation
that 30 minutes was not enough to do the job. In the new implementation,
the generation takes a couple of seconds! One more speedup and bug fix
was realized by reusing a buffer of white spaces. When the data set was
nested too deeply in the old implementation, an IndexOutOfBounds
exception was thrown because the end of the buffer was reached. In the
new implementation, the buffer is growing if the situation demands it. The
improvement of this conversion can be noticed trough out the whole
platform, because any message which is sent between agents is now
generated with the more efficient algorithm. Other places, where this speed
up is noticed is in the debug view and backup of beliefs.

o Parsing: Parsing S-APL has been speed up by making parts of the compiler
static instead of recreating them on every parse action. The result is less
significant as the speed-up in S-APL production but still makes a
difference for message receiving and adding beliefs to the agent.

- Generating unique instances
o In version 2 of the platform, the current time of the Java virtual machine

was often used to generate unique ID's for all kinds of resources. Even
inside S-APL code, the sapl:Now sapl:is "time" belief of the agent is often

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 29

used to create a new ID or URI for a resource. The problem with using the
current time is that getting the current time from the operating system
requires a trap to kernel (or similar) which always implies a delay. Another
problem is that two consequent calls to the operating system are not
guaranteed to result in different values. These problems are solved by
creating unique instance generators. These generators use an internal
counter which can only be incremented in a synchronized way. Using the
unique instance generator from S-APL code trough the ID() expression
call, we can create a unique ID or resource name in S-APL. Whereas the
“current time” function can be used only for its direct purpose.

- UBIWARE agent internals
o The UBIWARE agent code has become cleaner by extracting the

Blackboard and resource prefixing capabilities to dedicated objects.
Furthermore, methods used to query the agents’ beliefs structure are no
longer exposed to the internal representation of the beliefs. Instead they
receive a set of bindings from which they are able to find the values of
their specified variables. This gives us also the possibility to improve the
internal representation without having to change all code using the agent.

o When loading RAB classes, the old implementation used reflection in a
straight manner to load the class for a certain RAB. Then the class object
was stored in the agent for later reuse. Version 3 of the platform uses a
dedicated RAB class loader which we call RABLoader. This class is a
java.lang.ClassLoader which is guaranteed to only load java classes which
inherit from Reusable Atomic Behavior. The RABLoader is shared among
all UBIWARE agents in the same virtual machine, making RAB loading
only needed once.

- General improvements
o Trough out the whole code base, we started using better programming

techniques and use a smarter choice of collections for working with data.
Examples are using unsynchronized types where there was no need for
synchronization (usage of ArrayList instead of Vector and StringBuilder
instead of StringBuffer). One more efficiency gain is realised by having
String constants for the most used URI's.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 30

UBIWARE Deliverable D3.3:
Workpackages affected WP7, WP6:

2 A Use Case: Mashupper – Agent-
enabled Social Web

The Mashupper application uses data from three prominent social network platforms:
Facebook, LinkedIn and Twitter. As the largest player in the field with more than 500
million users, Facebook is becoming a virtual world of its own. It fulfills the need for
general socializing in the web and covers both leisure and work. LinkedIn on the other
hand is very much profiled to the business and professional side of the social networking.
Then there is the Twitter, which has capitalized on the people’s need to hear and to be
heard, preferably in real-time. The social connections in Twitter are looser than in
LinkedIn or Facebook. Everything you write to Twitter (or tweet) is public and can be
read by anyone. In Twitter, user can start to follow his or her friends or actually anyone
who seems interesting enough, in order to receive updates from those people in real-time.
Facebook, LinkedIn and Twitter is a good set of services to start with, but there are many
other interesting social networking sites out there. Adding new information sources to
Mashupper is relatively simple task, thanks to the agent-based architecture of UBIWARE
platform, given of course that the social network service provides some kind of API for
external services.
The scope of the Mashupper is built on top of the concept of Personal User Network
(PUN), which is defined as the combination of different kinds of human connections,
which a particular user may have in the social web.

PUN is used to link the different online identities or profiles into one and same
connection, through which the user can observe the integrated presence of that
connection in the current web2.0 landscape.

Mashupper web application was developed using web development framework called
Vaadin (http://vaadin.com/). Vaadin is a mature framework based on Google’s web
toolkit. It is developed and maintained by IT Mill company. Vaadin includes good
collection of UI components for creating snappy looking web interfaces with relative ease.
One of the main reasons why Vaadin was selected was the fact that the web applications
can be written entirely in java, without having to bother with web related technologies
such as HTML, CSS or Javascript. Vaadin made it easy especially for developers with
experience in building Swing based Java applications.
In order to make a successful UBIWARE-driven application we start with the common
domain model construction and build a Social Ontlogy.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 31

2.1 Social Ontology

Social ontology is a domain specific simple ontology for the social web. The main
concepts and their properties are depicted in the Figure 2.1. PersonalUserNetwork can
basically be thought of as set of people that the user has some kind of connection with.
These connections are modeled using HumanConnection class. The name was chosen to
emphasize the fact that connection refers to a single human being. This person can then
be represented in the social web by multiple digital identities, modeled in the ontology as
SocialNetworkProfiles. SocialNetworkProfile is the common parent of more service-
specific profiles such as FacebookProfile, LinkedInProfile and TwitterProfile.

Figure 2.1- Social Ontology

The concept Status refers to any kind of state information available. It is used to bring
together status updates from Facebook, network updates from LinkedIn and tweets from
Twitter. After all, they are all used to represent the current state, or status of mind of the
particular HumanConnection at a particular moment in time. Location, as an increasing
important factor of the social web, can also be included as part of the Status using
GeoLocation class.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 32

2.2 Agent Architecture

Mashupper consists of four applications. In addition to the web application providing
main Mashupper UI, there is one web application for every social network adapter.
Adapter UI is used to authorize adapters.

Mashupper is designed to run under UbiwareDesktop. It means that every user receives
four worker agents, each responsible for one of the web applications. Normal
infrastructure agents are naturally also running. Figure 2.2 shows all the agents involved
and their roles.

Figure 2.2- Mashupper Application Agents

MashupWorker is responsible for storing the knowledge about the Personal User Network
of the user and works directly with Mashupper web application. It coordinates all the
message interaction between involved agents. Adapter workers handle all the information
related to the external service API, such as URLs of the service interface, client ID, keys
for signing and access tokens for authorizing requests. They also know how to access the
external service using API-specific RABs. There is one worker for Facebook, LinkedIn
and Twitter.

Figure 2.3 shows an example of agent interaction coordinated by the MashupWorker,
where web application requests for detailed profile information for a certain
HumanConnection. In this case the HumanConnection has been linked to both Facebook
and LinkedIn social network profiles. The MashupWorker queries worker agents of both
services, waits for their results and returns the combined information to the web
application in RDF format.

In the current use case Mashupper is the only agent using the services provided by social
network adapters. Nothing stops other agent applications in the platform from taking the
advantage of the same information. Or even better, they can use the Personal User
Network stored at the Mashupper agent and target their actions to a certain

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 33

HumanConnection instead of a single service. In other words, Mashupper can be reused
as a component in future application scenarios.

Figure 2.3- Mashupper agent interaction

2.3 User Interface

When a user starts Mashupper for the first time, the PUN is naturally empty as shown in
Figure 2.4.

Figure 2.4- Personal User Network is initially empty

User should initiate the process of Personal User Network construction manually by
starting the configuration, which can be accessed by clicking “Configure” button.
Configuration view shows the list of available social network adapters and the content of

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 34

the users of current Personal User Network. Initially, all the adapters are in the offline or
non-authenticated state (see Figure 2.5). User must activate adapters by granting the
access to its accounts in social networks as explained in the next section.

Figure 2.5- The Adapters are initially offline

2.3.1 OAuth authentication

All three available social adapters use APIs that utilize Open Authentication (OAuth,
http://oauth.net/) as their authentication mechanism. Social network adapter can be
activated by right-clicking over the adapter and selecting “Activate” link. This opens up
the UI of the adapter with the instructions how to authenticate and authorize the selected
adapter (see Figure 2.6).

Figure 2.6- Activation UI for the LinkedIn adapter

After following the “Authorize” link and saving the PIN provided by the external service,
the social network adapter UI displays the updated state of the adapter to the user (see
Figure 2.7).

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 35

Figure 2.7- LinkedIn activation was successful

When the user closes the social network adapter UI, Mashupper application refreshes the
list of adapters, now showing the LinkedIn adapter as authenticated and ready for use
(Figure 2.8). Authentication process should be completed with all the adapters from
which the user wants to retrieve data from.

Figure 2.8- The list of social network adapters refreshed

Adapter remains active and authenticated until the user manually revokes the access token
it has received in the authentication process.

2.3.2 Building Personal User Network

When the appropriate adapters have been authenticated the user can start building his or
hers Personal User Network. The user can retrieve the list of people with whom he or she
has any kind of contact using the “Update” link associated with every adapter (Figure 2.9).
In Facebook this means the list of friends, in LinkedIn, - the connection or contacts of the
user and in Twitter – the list of people the user is following (Figure 2.10).

Figure 2.9 - Updating Personal User Network with friends from Facebook.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 36

Figure 2.10 - After successful import, the friends are added to Facebook column of the

Personal User Network.

Figure 2.11 shows the state of PUN after user has retrieved contacts from all the available
adapters. Every row in the PUN table represents one human connection. Mashupper
supports simple merging of the data using the display name. In the example it has
automatically merged Pete Smith from Facebook and LinkedIn into the same connection.

Figure 2.11 – State of the PUN after all adapter updates

The same Pete Smith is also found in the Twitter column, but under the name “pesmith”.
The user can now manually link “pesmith” in Twitter with the “Pete Smith” in Facebook
and LinkedIn by drag-and-dropping the name “pesmith” onto to the same row with two
other Petes. Mashupper will replace the “empty” label with “pesmith” and remove the
first, now empty, connection (Figure 2.12).

After user has created all the necessary links between different online identities, the PUN
is saved to the MashupperWorker agent by clicking the “Save” button.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 37

Figure 2.12 – Organizing PUN by linking profiles from different networks

2.3.3 Using Personal User Network

When the user opens up the Mashupper application, the content of his or hers Personal
User Network is shown in the left column. Table lists the names of HumanConnections in
the Personal User Network (Figure 2.13). Every connection is linked to one or more
social network profiles as described in the previous section. When user selects one of the
connections, Mashupper uses the associated profiles to retrieve information about that
person from the external services. In the current implementation, information sources are
Facebook, Linked and Twitter. The retrieved information is shown using three different
panels.

Figure 2.13 – PUN lists the human connections

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 38

Profile panel

Profile panel shows the combined profile information about the selected person (Figure
2.14). There are also links to person’s profile page in all the “adapted” services. The
current version of the profile panel includes only basic personal fields. Work experience
is retrieved from both Facebook and LinkedIn and combined into single list. If user
hovers the mouse pointer over the values in the table, Mashupper shows the source of that
particular piece of information. For example in Figure 2.15 the name “Pete Smith” was
found in both Facebook and Linked and merged as single value, but in Twitter the person
uses alias “pesmith”.

Figure 2.14 – A profile panel view

Figure 2.15 – The source of the information is shown by pointing the mouse over it

2.3.4 Geographical status updates panel

The next panel uses Google Maps to display geo-tagged status updates on a map (Figure
2.16). Panel is automatically updated every minute and the new updates with
geographical information attached to them are added seamlessly to the map. User can
click on the marker to display the status message.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 39

Figure 2.16 – Latest status updates on the map

2.3.5 Activity timeline

Activity timeline panel uses the Javascript widget from SIMILE (http://www.simile-
widgets.org/timeline/) to visualize the stream status updates on a timeline. User can scroll
the timeline back and forth and click on updates to display the whole message. Timeline
is updated automatically every minute with the new status updates from Facebook,
network updates from LinkedIn and tweets from Twitter (see Figure 2.17).

Figure 2.17 – Activity timeline

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 40

2.4 Conclusions

By developing the Mashupper application we tried to demonstrate the applicability of the
UBIWARE 3.0 platform to the variety of tasks, not necessarily related to the heavy
industry domain. The easy implementation of the Social Networking demo has proven
that UBIWARE is genuinely middleware solution – with globally broad scope of
application areas. Whatever we develop within the platform, we can reuse further in
absolutely different application cases and scenarios. The social networking blocks and
components are now available as reusable parts for any new application case.
In the nearest future we plan to extend the platform by giving the user more freedom in
combining different information sources and functional blocks in the simple Lego-
looking way, thus allowing the user-driven customization and even creation of agent tasks.

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 41

UBIWARE Deliverable D3.3:
Workpackage WP5:

Task T3.2_w5:

3 Smart Interfaces: Context-aware GUI
for Integrated Data (4i technology)

3.1 Background
According to the vision presented in Deliverable D3.1 this year, source data adaptation is
on of the challenges that we have to solve to make 4I Browser more or less working
system. 4I Browser is kind of engine that provide context-sensitive visualization of
resources via MetaProviders, it provides interoperability between different resources and
services and adds some additional functionality. Thus, repository of resource descriptions
is an input data for the Browser. Current prototype has default imbedded sample
repository of resource descriptions in internal format. To make Browser able to work with
any external repository, we have to elaborate general adapter that enable to convert data
from any format to the required one. New data formats appear all the time and will
require new adaptation modules. Thus, optimal way for such module elaboration is to
make it extendible, be able to add new adaptation sub-module for new data format
transformation.

Regarding to the plan of Inno-W industrial case, we elaborated adaptation sub-module to
convert their RDF (N-triple) repository into internal format. It was just one hard-coded
adaptation sub-module that transforms all the instances of “Proposal” class to internal
format with a respect to supported data fields of internal format to be browsed through 4I
Browser in the context of close/similar resources. Following this approach and with a
purpose to allow user import and transform any repository (in RDF or N-triple format)
him(she)self, we elaborated general adapter with graphical interface for necessary
transformation specification.

3.2 ResourcesCloseness_RDFConvertor - general RDF
adapter for 4I Browser

3.2.1 Adapter functionality and architecture

According to the general architecture of 4I Browser, adaptation of data sources is done
via importing the source to the Browser and converting the data to the internal format. In

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 42

the same time with converting the original data format to internal one, adapter have to
build all necessary visualization context descriptions and provide visualization module
(MetaProvider) binding information.

ResourcesCloseness_RDFConvertor as well as a previous InnoW_Idea_RDF_Convertor
is developed as remote services with three input parameters (“resultType”, “servletURL”,
“sourceFileURL”) and works with both input formats: RDF with XML serialization and
RDF in N-triple format. Description of the outputs and responses are pretty the same as in
previous convertor (see Deliverable D3.2). The main difference is a provided graphical
user interface that allows convertor configuration for appropriate source transformation.

With a help of convertor user makes a copy of the repository that contains instances
(instances of the selected by user resource classes) with the properties of 5 main
field/property types supported by the distance measuring function (elaborated during the
previous year as a part of visualization module that shows resource closeness). We
consider 5 types of the properties/fields: simple text field (string), keywords (set of simple
text fields), complex text field (finite set of text sub-fields with the values from the
defined set of them), interval field (with specified beginning and end of the interval) and
field with simple numerical value. Thus, graphical interface allows user to specify
necessary amount of the properties/fields and define correspondent values.

3.2.2 GUI of the convertor

To import a new source to the Browser, user should click “Import” button in the top left
part of the Browser main window. In the popped-up window user has to specify a source
(URL or local location of the source) and select appropriate convertor from the list of
available in the Browser convertors. If the ResourcesCloseness_RDFConvertor was
selected, user gets a window for convertor configuration (see Figure 3.1).

Figure 3.1 – Convertor configuration interface

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 43

After the launch, convertor checks a source and provides a list of resource classes
mentioned there. User may transform all of the classes or necessary amount of them. With
selected resource class, user gets a list of available (mentioned) in the source resources
properties in the “Resource Properties” box on the left side of the window. On the right
side user has “Transformed Properties” box that contains a list of the transformed
properties/fields. To start filling this box with transformed properties, user has to select
one or several (specification of the different transformed property/field types may
require/support different amount of initial resource properties) properties in the “Resource
Properties” box and choose one of the transformation property/field types (see Figure 3.2).

Figure 3.2 – Transformation property/field type selection

3.2.2.1 “Simple text” and “Simple numeric” fields
“Simple text field” and “Simple numeric field” are very simple transformation fields that
require from user just to specify a field name. The value of the field is a value of the
property selected in the “Resource Properties” box. Current implementation supports only
one-to-one type converting for those fields (see Figure 3.3).

Figure 3.3 – “Simple text” and “Simple numeric” fields transformation

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 44

3.2.2.2 “Keywords field”
“Keywords field” is more complex transformation field. Here we can have one-to-one or
many-to-one types of transformation. The value of the field is a value of one of the
property selected in the “Resource Properties” box or merging of the values of several
selected initial resource properties. At the same time, value of each property can be taken
as it is (without modification) or it can be tokenized by default tokens or user specific
ones defined by user (see Figure 3.4).

Figure 3.4 – “Keywords field” transformation

3.2.2.3 “Complex text field”
“Complex text field” is a finite set of text sub-fields with the values from the defined set
of them. Amount of sub-fields equals to amount of selected initial resource properties.
User has to specify a field name as well as the names of the sub-fields. Convertor
provides a list of possible values for each sub-field (there are values taken from all the
relevant resources from a source). Additionally, user can add a new possible value for the
sub-field or deselect available values to reduce amount of them. (see Figure 3.5).

Figure 3.5 – “Complex text field” transformation

 D3.3: UBIWARE Platform Prototype v.3.0

© 2010 UBIWARE Deliverable D3.3 45

3.2.2.4 “Interval field”
“Interval field” has fixed two parameters – beginning/start and end of the interval.
Interface provides a possibility to define the values for these parameters in a form of
formula that includes the values of the selected initial resource properties. During the
converting process final values of the beginning/start and the end of interval will be
calculated based on provided formula and the values of mentioned resource properties
(see Figure 3.6). User has pay attention to normalization of the properties values and be
sure that the beginning/start of the interval is less then the end.

Figure 3.6 – “Interval field” transformation

As a result, convertor generates a file that contains converted resource repository in
internal format and all necessary extensions for visualization contexts, MetaProvider
descriptions. From that point user can continue with a Browser as before: search for the
resources within an imported repository, manipulate with the contexts, visualize, etc.

3.3 Conclusions and future work
Current implementation is a working version, but due to the short development period,
current version does not contain all planned functionalities and is not tested well. For the
next period we are planning to make a comprehensive test of the current version and to
complete development of such functionalities as: storing and reuse/modification of the
convertor configurations, storing of the converted repositories (to avoid unnecessary
adaptations), import/connection of the new adaptation sub-modules to the Browser.

	Introduction
	1 Platform Development
	1.1 New Agent Platform architecture
	1.1.1 Application agents in UBIWARE
	1.1.2 Platform infrastructure agents
	1.1.3 One-click platform startup

	1.2 UBIWARE towards modern web
	1.2.1 A new UBIWARE 3.0 Web Architecture
	1.2.2 Web application architecture details
	1.2.3 UBIWARE Desktop
	1.2.4 Developing Web Applications with UBIWARE
	1.2.5 Administrator’s interface

	1.3 Policies in UBIWARE
	1.4 Core Platform Improvements
	1.4.1 RDF2BEAN
	1.4.2 Semantic Action Script
	1.4.3 Development “under the hood”

	2 A Use Case: Mashupper – Agent-enabled Social Web
	2.1 Social Ontology
	2.2 Agent Architecture
	2.3 User Interface
	2.3.1 OAuth authentication
	2.3.2 Building Personal User Network
	2.3.3 Using Personal User Network
	2.3.4 Geographical status updates panel
	2.3.5 Activity timeline

	2.4 Conclusions

	3 Smart Interfaces: Context-aware GUI for Integrated Data (4i technology)
	3.1 Background
	3.2 ResourcesCloseness_RDFConvertor - general RDF adapter for 4I Browser
	3.2.1 Adapter functionality and architecture
	3.2.2 GUI of the convertor
	3.2.2.1 “Simple text” and “Simple numeric” fields
	3.2.2.2 “Keywords field”
	3.2.2.3 “Complex text field”
	3.2.2.4 “Interval field”

	3.3 Conclusions and future work

