
 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 1

UBIWARE Deliverable D3.4:

UBIWARE Platform Prototype v.3.1

December, 2010

Date December 20, 2010
Document type Report
Dissemination Level UBIWARE project consortium
Contact Author Vagan Terziyan
Co-Authors Michal Nagy, Michael Cochez, Viljo Pilli-Sihvola,

Joonas Kesäniemi, Oleksiy Khriyenko
Work component UBIWARE Platform
Deliverable Code D3.4
Deliverable Owner IOG, JYU
Deliverable Status Mandatory, Internal
Intellectual Property Rights Unaffected

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 2

Table of Contents

Introduction .. 3
1 New agent classification ... 4

1.1 Platform infrastructure agent ... 4
1.2 Application infrastructure agent .. 4
1.3 Personal user agent .. 4
1.4 Personal user worker agent .. 5

2 New agent platform infrastructure .. 6
2.1 Policy agent .. 6
2.2 Ontology agent ... 6
2.3 Ubiware directory facilitator .. 7
2.4 Web interface agent ... 10
2.5 Application manager agent .. 10
2.6 User manager agent .. 10
2.7 Package manager agent .. 11

3 New platform infrastructure web applications .. 13
3.1 Desktop .. 13
3.2 Application manager .. 14
3.3 User manager ... 14

4 New tools for developers .. 15
4.1 SAPL builder ... 15
4.2 QueryMessageSenderBehavior .. 16
4.3 Persistency subsystem .. 17

5 Conclusion .. 20
Appendix A: Glossary .. 21

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 3

Introduction

The UBIWARE project aims at a new generation middleware platform which will allow
creation of self-managed complex industrial systems consisting of distributed,
heterogeneous, shared and reusable components of different nature, e.g. smart machines
and devices, sensors, actuators, RFIDs, web-services, software components and
applications, humans, etc. The technologies, on which the project relies, are the Software
Agents for management of complex systems, and the Semantic Web, for interoperability,
including dynamic discovery, data integration, and inter-agent behavioral coordination.

UBIWARE deliverable D3.3 presented the integrated development results from all the
work packages, i.e. the current state of the UBIWARE 3.0 platform prototype. Current
deliverable D3.4 follows up and brings a platform update – UBIWARE 3.1.

New version of the platform went through significant changes. The most important of
them is the new architecture that follows cloud computing paradigm. Other changes
include performance improvements and new features. This report can be understood as a
“changelog” between platform version 3.0 and 3.1.

Firstly, we bring a new agent classification system that simplifies the management and
policy control of agents. In the new version of the platform there are four types (classes)
of agents. Each agent class is being started differently, has different rights (controlled by
policies) and different tasks associated with it. Section 1 describes new agent
classification in more detail.

Secondly, the new agent classification enabled new platform architecture. The platform
infrastructure reported in deliverable D3.3 has been extended and improved. Now, the
platform contains seven platform infrastructure agents, each supporting one type of
platform functionality. More information about the new architecture can be found in
Section 2. Section 2.7 contains information about new packaging system for UBIWARE
applications.

Moreover, we developed two new web applications supporting the platform
administration. First application is used for user management and the second one is used
for management of UBIWARE applications. Section 3 contains more information about
these applications.

Finally, we create several new Reusable Atomic Behaviors (RABs) and several libraries
that simplify UBIWARE application development. They are described in section 4.

Sections 1, 2 and 3 require only basic technical knowledge. Section 4 is more technical
and contains more information related to development of UBIWARE applications.

This deliverable consists of the software itself and an accompanying report.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 4

1 New agent classification

With the upcoming shift of Ubiware toward cloud computing infrastructure, there was
necessity to revise the agent classification schema. In previous versions of Ubiware, there
was just one class of agent. However, in cloud computing architecture, some element are
performing functions related to platform runtime and others are related to specific
application run by some user. For this reason we create a new classification schema. The
schema can be seen in Figure 1. Our new classification involves the following agents
classes: platform infrastructure agent, application infrastructure agent, personal user agent
(PUA) and personal user worker agent (shortly called worker agent). The following
subsections will deal with each agent in more detail.

Figure 1: Agent classification schema

1.1 Platform infrastructure agent
Platform infrastructure agent (PIA) is an agent whose main function is to provide generic
platform-related services to other agents. There are exactly seven agents of this type and
they are available to other agents from platform startup till platform shutdown. Each of
these agents has a predefined role in the platform. You can find more information about
the agents in section 2.

1.2 Application infrastructure agent
Application infrastructure agent (AIA) is an agent that works for a particular application
running on top of Ubiware. One application can have several AIAs, whose role is to
provide services to all users who selected (“installed”) this application. For example an
application related to flower delivery might have one agent who is responsible for
delivery scheduling. This agent could be implemented as application infrastructure agent.

1.3 Personal user agent
Every user of the platform has exactly one personal user agent (PUA). This agent is a
representative of the user in the platform. If any agent wishes to communicate with any
user, the agent will contact PUA of that particular user. Therefore PUA can be understood
as an interface between the human user and any other agent on the platform. Every
personal user agent can have several “helper agents” who are called personal user worker
agents or shortly just workers.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 5

1.4 Personal user worker agent
Personal user worker agent (shortly worker) is an agent bound to a certain application and
working for a certain user of the platform. A worker agent is PUA's “minion” and creates
a connection between the user and an application that the user wishes to utilize. If the user
selected1 N applications, there will be exactly N worker agents associated with user's
PUA. The relationship between an application and a worker can be seen in Figure 2. User
A decided to select applications App1, App2 and App4. User B decided to select
application App1 and App3. Therefore PUA of user A has three workers and PUA of user
B has only two workers.

Figure 2: Relationship between PUA and its worker agents

1 Selection is explained in more detail in section 2. At this point, it is sufficient to say that selection of an
application is something similar to installation of an application on a normal operating system. After the
selection, the user can start and utilize the selected application.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 6

2 New agent platform infrastructure

The new version of platform must deal with cloud applications and therefore there was a
need to introduce new infrastructure that is capable of fulfilling this need. The new
architecture contains several agents, each providing a service to support the runtime of
cloud applications and platform itself.

We also introduce new terms like application deployment and application selection.
Starting from Ubiware 3.1 application can be deployed to the platform using Ubiware
packages with *.ubi suffix. A UBI package contains all information about the application,
its agents, its web interface, etc. New packaging system resembles packaging system of
other mature architectures such as Java application servers (WAR and EAR packages).
Since Ubiware is shifting to cloud computing architecture, we can assume that there
might be hundreds of different applications running in the cloud. It is very unlikely that
every user of the platform would like to utilize every application available on the platform.
Moreover, there might be cases when it is not reasonable for a certain user access a
certain application. An example could be security issues. Therefore the user first has to
select the application from the list of deployed applications and only after that the
application is available to him/her. Logically, only deployed application can be selected.
Applications may also be deselected.

2.1 Policy agent
Policy agent was described in detail in deliverable D3.3. In Ubiware 3.1 it has the same
function as in Ubiware 3.0. Firstly, it maintains a list of policies related to different agent
groups. Secondly, every time an agent wants to execute a Reusable Atomic Behavior
(RAB), policy agent checks if the agent has the right to do execute the RAB based on
agent’s affiliation to a group and the list of policies related to this group.

An important feature is also the ability of Policy agent to register and unregister new
group policies. For security reasons, this is allowed only by Package manager agent.

2.2 Ontology agent
Ontology agent is responsible for ontology and agent role management. The agent has
access to two repositories – ontology repository and role repository. In general there are
two ways to provide a script to the agent. One way is to directly provide the path to the
script file. This however cannot be used in case the agent is running in a different
container than the container where the script is located. The second way is load the script
as a role.

Role is an SAPL script that corresponds to an organizational role. An example where
roles are used is the message handling ability reported in deliverable D3.3. Each agent
willing to act as a message handler will load a role called “action”. This role is
downloaded from the ontology agent. This can be done even if the agent is in a different
container than the ontology agent, because the role (script) is being sent as an ACL

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 7

message. Some agents are capable of starting only by loading a role script. They cannot
be started by providing a direct path to a SAPL file. An example of such agent is the
worker agent.

Ontology agent is serving not only as role provider, but also as role “acceptor”. It is
possible to contact Ontology agent and ask for role upload. It can only be done by
Package manager agent. This step will be explained in the section related to Package
manager agent. The position of Ontology agent within the platform can be seen in Figure
3.

Figure 3: The position of Ontology agent within the platform

2.3 Ubiware directory facilitator
Ubiware directory facilitator (UDF) is an agent that replaces the original directory
facilitator (DF) provided by Jade platform. Jade directory facilitator was capable of
mapping agent names to agent capabilities. Each agent was able to register itself with a
capability that it was providing. The limitation of Jade DF was the fact that the service
description was not semantic. It was just a simple string. In this traditional version of
directory facilitator, the agent can register a service, unregister it and it can also search for
services provided by other agents.

We improved the original idea of directory facilitator and the result is Ubiware directory
facilitator, which is already based on semantic technology and is more modular than the
original version. In order to understand UDF, it is necessary to understand the new way of
defining services. We understand a service as a coherent set of functionalities. As an
example we can take “Facebook service”. Let's say that by definition this service should
allow you to access your Facebook account and all data associated with it. Every service
consists of several functions. In case of Facebook service, there is a functionality that
allows you to authenticate yourself, receive a list of your friends and get detailed
information about your friend. If an agent provides Facebook service, it must provide all
functionalities associated with it. Therefore this agent must be capable of handling any

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 8

request involving user authentication, request for friends list and request for friend's
details. In other words it must have three handlers – one for each functionality 2 .
Therefore we can say that a service is defined by a set of handlers. The meaning of this
kind of definition is that every agent willing to provide this service has to implement
those handlers. The relationship between a handler and a service can be seen in Figure 4.

Figure 4: The relationship between a handler and a service

In UDF we also extended the register, unregister and search actions of the old directory
facilitator. As we mentioned before, a service is defined by handlers. UDF stores
definition of each service. In other words, it stores a map of handlers and services. An
example can be seen in Figure 5.

Figure 5: Internal representation of service definitions in UDF

Agents are registering only handlers, not services. Services are always defined by
application programmer and are a part of application package description3. In Figure 6
you can see agent A1 registering three handlers – handler H1, H2 and H3. UDF knows
that service S1 is defined as composition of handlers H1 and H2. Therefore UDF knows
that agent A1 provides service S1. Handler H3 is not mentioned in any service description.
Therefore no other conclusions about A1's services are drawn. Now, if any agent asked
who provides service S1, UDF would answer that agent A1 provides it. Naturally,
unregistration is possible as well.

2 It is possible that an agent implements one functionality with several handlers, however in order to keep
this example simple, we assume that each functionality has only one handler associated with it.
3 Application packages will be described in section 2.7.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 9

Figure 6: An agent registering its handlers.

Another action related to UDF is service search. In the previous version of DF, the agent
had to ask explicitly if there is an agent that provides a certain service. In our new
implementation, the agent subscribes to a certain service notification and UDF sends
updates whenever a new agent registers or an old agent unregisters. For example, in the
old system, if some asking agent wanted to be sure that it has an up to date list of
Facebook agents, it had to constantly ask DF for Facebook service providers. Every time
an answer was received, the list of Facebook agents from DF was compared to the
previous list of Facebook agents and whenever there was a new agent on the list, the
asking agent knew that there is a change. In the new implementation, the asking agent just
subscribes at UDF with information which service updates it wants to receive and every
time there is change, asking agent will be notified. The schema for better understanding
can be found in Figure 7.

Figure 7: An agent subscribing for service updates.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 10

2.4 Web interface agent
Web Interface Agent (WIA) is responsible for communication over HTTP with the
outside world. The communication is arranged by using embedded web server. The web
server handles the incoming requests and provides web application with the access to the
agent platform. It works as a gateway for all the messaging between web applications
running on the server instance and worker agents. WIA is responsible for the lifecycle
management of the web server and provides services for deploying and removing web
applications from the server. WIA is also responsible for managing the tickets related to
platform-wide, single-sign-on mechanism, used in the Desktop web application (see
section 3.1).

2.5 Application manager agent
Application manager agent (AMA) acts as application registry. Every application
deployed to Ubiware platform has to be registered at AMA. The information about
application description can be seen in Figure 8.

Figure 8: An application description at AMA.

Apart from acting as a registry, AMA is also capable of answering several requests. The
most important is that it can accept a request to register an application. The request must
contain application name, context path, worker agent definitions, etc. Application name is
the name that the user sees in the menu. Context path is the path that will form a URL,
where the application can be reached. Worker agent definition describes which roles an
agent has to load if it wants to act as a worker agent of this application. This is important
in selection process.

2.6 User manager agent
The most important task of User manager agent (UMA) is to act as user registry. For
every user it remembers his/her username, password, corresponding personal user agent
name and more. UMA is capable of answering several kinds of requests (Figure 9).
Firstly, it is the user registration request. It can come only from worker agent of the
administrator, because only the administrator has the right to add new users to the

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 11

platform. Secondly, UMA is also able to answer the question about the worker agent
name that is working for a particular user in particular application. Moreover, User
manager agent can provide list of registered users if it asked for it. This question can be
asked only by administrator’s user manager worker agent.

Figure 9: User manager agent and communication that it is involved in.

2.7 Package manager agent
As mentioned earlier, Ubiware 3.1 introduces new way of deploying applications. In the
previous version of the platform, the developer had to deploy every piece of code
manually. Now we provide an automated deployment mechanism built on top of
application package called UBI package (UBIWARE application package). UBI package
is essentially a compilation of several files (SAPL script, WAR web applications, etc.)
that is packed into one zip file with extension *.ubi.

Package manager agent is the agent that is responsible for deployment of UBI packages.
The agent accepts a package and unpacks it to a temporary folder. Then it goes through
all package components (scripts, RABs, WAR files) and handles them in one-by-one
fashion. The whole process of deployment can be summarized in 6 steps (Figure 10).

Figure 10: User manager agent and communication that it is involved in.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 12

Firstly, all roles specified in the package are read and uploaded to Ontology agent. They
will be used later on for application infrastructure agent startup and worker agent startup.
Secondly, the application has to register all service definitions if there are any provided.
Moreover, all policies have to be registered with Policy agent. Only after that application
infrastructure agents can start. Next step is to ask Web interface agent to deploy a WAR
file so that the web interface is available. Lastly, the application is registered at
Application manager agent and can be selected by users.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 13

3 New platform infrastructure web
applications

The shift to cloud computing architecture made us introduce new web applications related
to basic function of the platform. Since the platform works with users, there has to be a
way to manage user accounts. For this purpose we developed User manager application.
Also, the platform needs some application management tool where the user can select
applications and the administrator can deploy, undeploy and modify applications. This
tool is called Application manager application. There is also a need to

3.1 Desktop
The idea behind UbiwareDesktop was borrowed from the web desktop environments.
Web desktop is a desktop environment embedded in the browser. Web desktops like
eyeOS (http://eyeos.org/) offer many of the functionalities and applications available on
basic Windows, OSX or Linux desktop environments, such as productivity suites and file
management. Some of the benefits of moving desktop to the web are high availability,
server-side session management and centralized software management.

UbiwareDesktop is a web application that is distributed with the UBIWARE platform. In
its current version the UI acts as simple launcher for other web applications deployed as
part of the desktop environment. Applications can be opened as windows inside the
desktop or in a new browser window. Figure 11 shows the desktop with the application
menu.

Figure 11: Ubiware desktop web application.

Currently the main benefit of using UbiwareDesktop as the deployment target for
applications is the user management and authentication services provided by the desktop.
As in any multi-user desktop environment, UbiwareDesktop requires users to login. After
the user has successfully logged in, the UbiwareDesktop creates a ticket for the session,
which is used to authorize the subsequent requests. Ticket can be used as kind of single-
sign-on system, since other web applications can use the same ticket as a way to
authenticate users. Users can be managed using another web application that is
automatically available for all the administrative users.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 14

In the future releases of the UBIWARE platform, desktop is envisioned to facilitate
semantic drag-and-drop between applications. In order to make that possible without
browser plugins, UbiwareDesktop could work as an intelligent, agent-driven mediator
between source and target applications.

3.2 Application manager
Application manager is a tool available to every user of the platform. Using this tool the
user can select and deselect applications (Figure 12). On the left, there is a list of
applications that are deployed, but the user didn’t select them yet. In other words, these
are the applications that are available, but the user doesn’t want/need to use them. In the
upper right corner you can see a list of applications that are selected, thus available in the
application menu of Desktop application. The user can move applications from one list to
the other. By doing so he/she selects and deselects applications. In the lower right corner,
you can see a list of applications that are “core” applications and are available by default
to every user. The user cannot deselect them.

Figure 12: Application manager agent.

3.3 User manager
User manager application is an administrative tool responsible available only to the
administrator. The administrator can add, delete and modify users.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 15

4 New tools for developers

This section describes new Reusable Atomic Behaviors (RABs) and tools that simplify
development of UBIWARE applications. In order to understand this section you should
be familiar with basic UBIWARE and Java application development.

4.1 SAPL builder
SAPL builder is a Java library that simpliefies creation of SAPL code from within a Java
class. Prior to SAPL builder, the developer had to write SAPL code by concatenating
strings, e.g. using standard Java class StringBuider or StringBuffer. This
approach was error prone. In our experience the developers made two kinds of mistakes.
First type of mistake was that they used wrong URIs in SAPL expressions. URIs could
have been wrong for two reasons – they were invalid URIs and/or they contained typos
(e.g. writing “peple” instead of “people”). Second type of mistakes was syntactic
mistakes. Developers forgot to put coma, dot or properly end the container.

SAPL builder solves problems of invalid URIs and syntactic problems, which in our
experience collectively stand behind majority of problems and bugs. However, SAPL
builder cannot eliminate typos. In order to minimize those, we also introduce new
supporting classes that will be explained later. The biggest improvement is that
abovementioned mistakes (except for typos) can be checked in compilation time, thus
saving significant amount of time otherwise spent on bug fixes.

SAPL builder library consists of several classes, all of them residing in
ubiware.util.saplbuilder package. Unless specified otherwise, every class
mentioned in this paragraph belongs to this package. Therefore we will not specify the
full class names. The most important class is SaplDocument. An instance of this class
virtually represents a document that the developer is going to write. In the beginning the
document is empty. The developer can utilize several member methods of this class in
order to insert SAPL statements into the document. Among all, the most important one is
method addStatement(Subject subject, Predicate predicate,
Object object). Three arguments of this method represent subject, predicate and
object of the triple that the developer wants to add to the document. Subject and object
can either be a container or a resource. Predicate must be a resource. A resource is
represented by class Resource and a container by class Container. A container can
be treated as another SAPL document. It even has the same method addStatement
and it is used in the same way as in case of SaplDocument class. The relationship
between these classes and interfaces Subject, Predicate and Object can be seen
in Figure 13.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 16

Figure 13: Class hierarchy of SAPL builder classes.

So far the described solution solves syntactic problems. In order to solve problems with
invalid URIs, we force the developer use java.net.URI class if he/she wants to
declare one. The reason is that if a URI is invalid, the class itself will throw an exception.
Second step to avoid invalid URIs is to create a set of constants, each representing a
frequently used resource. Instead of writing the resource name every time (and rising the
risk of making a mistake), the developer can utilize these predefined resource constants.
We already provided a set of most frequently used constants. This list can be found in
package ubiware.ontology. Each SAPL prefix is represented by one Java class
containing resource constants. An example of SAPL builder use can be seen in Figure 14.

Figure 14: An example of SAPL builder use in Package manger agent.

IDGenerator idGen new IDGenerator("pmaUBIPackage"); =
SaplDocument sd = new SaplDocument();
sd.addStatement(actionID, rdf.type, pma.UBIDeploymentAction);
sd.addStatement(actionID, pma.pathToUBIFile, new
 Literal("someString"));
sd.addStatement(actionID, pma.deploymentStatus, pma.UBIIdentified);
String saplString = sd.generateSapl();

4.2 QueryMessageSenderBehavior
This Reusable Atomic Behavior (RAB) is located in ubiware.shared package and its
main task is to simplify querying and consequently sending message to some agent.
Based on our practical experience, many times there is a need to query a certain structure
and almost literally copy a part of this belief structure and send it as a message to another
agent. This is a typical scenario in case of all agents containing some sort of registry.
Among platform infrastructure agents, this is true for User manager agent, Application
manager agent and many more. We will try to explain this RAB’s function on an example.

Imagine that the agent has a container containing information about some people (Figure
15). The agent remembers name, surname and age for each of each person. We would like
to send the content of this container to some agent asking for the list of people. The
problem is that the receiving agent wants to receive this list in another form than the form
in which the list is stored in sending agent’s beliefs. Therefore we need to do a
transformation. Without QueryMessageSenderBehavior we would have to make a
temporary container and with a rule copy the beliefs from the original container in the
original form into the destination temporary container in the new form. Then we would
send a message containing the content of the temporary container. After that the
temporary container would be deleted. This is very complicated and error prone.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 17

Figure 15: An example of a people registry.

:peopleRegistry :contains {
:p1 rdf:type fam:Person
 ; fam:hasFirstName "John"
 ; fam:hasFirstSurname "Doe"
 ; fam:hasAge "25" .

:p2 rdf:type fam:Person
 ; fam:hasFirstName "Peter"
 ; fam:hasFirstSurname "Smith"
 ; fam:hasAge "33" .

:p3 rdf:type fam:Person
 ; fam:hasFirstName "Mary"
 ; fam:hasFirstSurname
"Hemingway"
 ; fam:hasAge "32" .
}

With use of QueryMessageSenderBehavior we are able to query the people
container in its original form, transform it and send to the receiver agent. This all can be
done in one RAB call. An example of such call can be seen in Figure 16.

Figure 16: An example of QueryMessageSenderBehavior use.

{
 :peopleRegistry :contains ?peopleContainer
} => {
 { sapl:I sapl:do java:ubiware.shared.QueryMessageSenderBehavior } sapl:configuredAs {
 p:context sapl:is ?peopleContainer .
 p:query sapl:is {?person rdf:type fam:Person
 ; fam:hasFirstName ?fn
 ; fam:hasSurname ?sn
 ; fam:hasAge ?age
 } .
 p:sendPattern sapl:is {
 ?person rdf:type computer:User
 ; computer:hasUsername "?fn?sn "
 ; computer:hasFirstName "?fn"
 ; computer:hasSurname "?sn "
 ; computer:hasAge "?age "
 } .
 p:receiver sapl:is ?sender .
 p:conversationID sapl:is ?id .
 p:performative sapl:is "inform" .
 }
}

4.3 Persistency subsystem
Persistency of agent beliefs brings many benefits to the developer. The typical behavior
of the agent is that if it starts, it loads all the beliefs from the SAPL script that was
provided. The problem is described in Figure 17. We marked beliefs from the script as B0.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 18

These are the beliefs that the agent loads. After several iterations the beliefs will naturally
change as the agent is performing its task. Therefore after n iterations beliefs Bn might be
different than the initial beliefs. If the agent dies or it’s terminated at this point, beliefs Bn
will be lost, because if the agent starts again, it will again receive B0, not Bn. In some
applications this is the desired behavior, but in some applications it would be beneficial to
store the whole set of beliefs Bn or its part. Then, upon the next agent’s startup, the agent
will not receive B0, but Bn or a part of these beliefs.

Figure 17: Evolution of agent’s beliefs without persistency.

Persistency subsystem allows the developer to turn on persistency for either the whole set
of agent’s beliefs or just for a specific container(s). The persistency has to be controlled
by the developer. The underlying storage system for persistent beliefs is based on a
relational database. The developer can mark a container as persistent by declaring it to be
a resource of type per:PersistentContainer. Based on the persistency ontology,
every resource of this type has several properties that are used by persistency subsystem
to determine if load or save action from/into the database should be performed. An
example of such container is shown in Figure 18.

Figure 18: An example of a persistent container.

@prefix per: <http://www.ubiware.jyu.fi/persistency#> .
:myPersistenContainer rdf:type per:PersistentContainer
 ; per:hasID "myContainer123"
 ; per:hasState per:clean
 ; per:hasContent {
 :p1 rdf:type fam:Person
 ; fam:hasFirstName "John"
 ; fam:hasFirstSurname "Doe"
 ; fam:hasAge "25" .
 :p2 rdf:type fam:Person
 ; fam:hasFirstName "Peter"
 ; fam:hasFirstSurname "Smith"
 ; fam:hasAge "33" .
 :p3 rdf:type fam:Person
 ; fam:hasFirstName "Mary"
 ; fam:hasFirstSurname "Hemingway"
 ; fam:hasAge "32" .
 }

As you can see in Figure 18, the container has an ID. This ID is used as a unique
identifier in the persistent storage. You can also see that the container is in state
per:clean. This means that the developer considers this container to be fully

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 19

synchronized with the information in the persistent storage (relational database). In case
the developer wants to store the content of this container to the persistent storage, the only
thing that he/she needs to do is to mark this container as per:dirty and the persistence
subsystem will automatically take care of it. The subsystem is permanently checking if
there is a dirty container. If it finds one, it will store its data to the persistent storage and
mark it clean. Apart from these two states, there is a state called per:initial. While
two previous states were mostly used when the agent is running, the later one is used in
the agent script (beliefs B0 in Figure 17). In that case the container does not have to have
a value for per:hasContent. A container in the initial state makes the persistency
subsystem load its content from the persistent storage. In simple words, the meaning of
per:initial is “please load my content from the persistent storage”. The transition between
different statuses can be seen in Figure 19.

Figure 19: The transition between different persistency statuses.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 20

5 Conclusion

New version of the platform underwent several changes. We created a new agent
classification schema that simplifies policy management. Platform architecture was
extended with several new platform infrastructure agents. Already existing platform
infrastructure agents were modified as well. The platform supports application
deployment in form of UBI packages through Package manager agent. User management
agent is responsible for user registration. Similar to desktop operating systems, every user
has an account, his/her own list of applications and data. Users access the platform
through Desktop application which follows the idea of web-based operating systems.
User manager agent can be accessed through “User management” application which is
available only to the administrator. Application manager agent is responsible for
application selection and deselection. Every user has access to “Application manager”
web application where he/she can customize the list of available applications. Last of
significant platform infrastructure agent changes includes a completely new directory
facilitator called Ubiware Directory Facilitator. The underlying philosophy has changed
accordingly. The rest of the platform infrastructure agents were changed as well to form a
coherent platform.

 D3.4: UBIWARE Platform Prototype v.3.1

© 2010 UBIWARE Deliverable D3.4 21

Appendix A: Glossary

AIA Application Infrastructure Agent
AMA Application Manager Agent
PIA Platform Infrastructure Agent
PUA Personal User Agent
RAB Reusable Atomic Behavior
UDF Ubiware Directory Facilitator
UMA User Manager Agent

	Introduction
	1 New agent classification
	1.1 Platform infrastructure agent
	1.2 Application infrastructure agent
	1.3 Personal user agent
	1.4 Personal user worker agent

	2 New agent platform infrastructure
	2.1 Policy agent
	2.2 Ontology agent
	2.3 Ubiware directory facilitator
	2.4 Web interface agent
	2.5 Application manager agent
	2.6 User manager agent
	2.7 Package manager agent

	3 New platform infrastructure web applications
	3.1 Desktop
	3.2 Application manager
	3.3 User manager

	4 New tools for developers
	4.1 SAPL builder
	4.2 QueryMessageSenderBehavior
	4.3 Persistency subsystem

	5 Conclusion
	Appendix A: Glossary

