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For Decades, We've Equated Recurrence With Time

The success of RNNs in modeling language,
speech, and time-series has deeply
embedded the notion of *fime* into our
understanding of recurrent architectures.
The sequence index is almost always
interpreted as a temporal step.

RNNs and their gated variants have long been a foundational
tool for modeling sequential data... As a result, the notion of
time... has become deeply embedded in both the conceptual
understanding and practical use of recurrent architectures.

This close association between recurrence and time obscures
a more fundamental property of RNNs: they are, at their
core, models of ordered data, not of time per se.
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The Core Insight: Order is a Design Variable, Not a Given

What happens if the same data are @ £
projected into multiple ordered views, Sort by RolkbV AN 3
each capturing a distinct form of e A O Ol
structural evolution?

® Time >|“H Time} @ = A

We argue that “ordered projections constitute

a missing conceptual layer in sequential SQEEDY ShallclSeporciisie
modeling.” Time becomes just one possible A O
axis among many. Sort by

Time

Formalism teaser: An RNN'’s recurrence relation operates over an

ordered index set. It does not intrinsically encode temporal O /\ D
duration, causality, or simultaneity. Any index permutation
creates a new, valid sequence for an RNN to model.
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A Chess Game Is More Than Just a Sequence of Moves

The Conventional View A Multi-Axis View

The same game, represented as an
8x8xT tensor, can be ‘sliced’ in other
ways:

A chess game is traditionally seen
as a temporal sequence of board
states. An RNN would process move
1, then move 2, etc. This is the

T neskee viesl « File Slices: Sequences showing the

evolution of a single column (file)
over the entire game. This reveals
patterns of vertical control and
pawn structure.

Rank

 Rank Slices: Sequences showing

| the evolution of a single row (rank)
_ | : over the game. This highlights
Time b File horizontal control and defensive

alignments.

These alternative slices encode ‘orthogonal structural information’ that is difficult to extract
from a purely temporal analysis. They transform spatial regularities into ordered sequences.
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Visualizing a Multi-Order World:

Time, File, and Rank Slices
Showing the ‘Scholar’s Mate’ game (1. e4 e5 2. QhS Nc6

3. Bc4 Nf6 4. Qxf7#) represented as a multi-axis tensor. Conventional View:
A Sequence of Board States
Time = Time =1 Time = Tlme = Time = 4 Time = Tlme = Time = Captures the sequential dynamics

and move-by-move progression.
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File=c¢ File = d

Structural View 1:
Evnlutiun of Vertical Space

Reveals patterns in vertical
control, like pawn chains and
attacks along a file.

Structural View 2:
Evolution of Horizontal Space

Highlights horizontal piece
coordination and defensive
alignments.

Rank = 4 Rank =5 Rank =6 Rank=7

While non-temporal slices appear unusual to a human eye, they provide

rich, structured sequences for a machine learning model to learn from. . "



SE-RNNs: An Architecture for a Multi-Order World

Key Concept: Structural Evolution RNNs (SE-
RNNs) are designed to learn from multiple
ordered projections simultaneously. The term
“structural evolution” is used to emphasize that
recurrence is applied to ordered
transformations, not just temporal dynamics.

Architectural Blueprint (High-Level):

1. FFNN Backbone: A standard feedforward
network acts as the primary decision-maker,
learning from the original, non-sequential
data.

2. RNN 'Advisors': For each ordered projection
(e.g., along Time, File, Rank), a separate,
independent RNN learns the 'structural
evolution' along that axis.

3. Fusion Module: A dedicated 'Integrator’
module learns to combine the insights from
the FFNN backbone and the various RNN
advisors into a single, unified prediction.
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The SE-RNN Blueprint: A Symphony of Specialists

Axis-Specific RNNs (R,)
Each RNN is an expert on
one projection m, (x). It
produces a summary vector
zj, encoding the structural

evolution along its

assigned axis.

Feedforward Backbone (F)
Provides a strong, non-
sequential baseline
prediction pathway by
capturing global attribute

interactions.
QOutput is u = F(x).

e

&

Pre-train Specialists

Stage 1:

Stage 2!
Train the Integrator

Stage 3:
Fine-Tune

my(x)
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FFNN Backbone

Fusion
Module

Context-Aware Fusion (G)

The key integrator. It does not
simply concatenate inputs.
Instead, it uses mechanisms
like gating or attention to
modulate the influence of each
each RNN advisor based on the
global context provided by the
FFNN backbone.

Staged Training Strategy

1. Pre-train Specialists: Train
the FFNN backbone and each
RNN advisor independently
and in parallel.

2. Train the Integrator: Freeze
the pre-trained specialists.
Train only the fusion module
to learn how to combine their
outputs.

3. Fine-Tuning (Optional):
Perform limited end-to-end
fine-tuning with controlled
learning rates.
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The Experimental Question: Does Multi-Axis Modeling Actually Help?

To conduct proof-of-concept experiments to validate that SE-RNNs can outperform a strong FFNN
baseline, particularly when complex, hidden interdependencies exist in the data.

Dataset 1: Moderate Complexity Dataset 2: High Complexity Dataset 3: Adversarial/Simple
Smooth, trigonometric interactions Highly nonlinear, multiplicative, and A simple linear combination where an
designed to test the ability to capture oscillatory interactions designed to FFNN should be sufficient, testing the
subtle structural evolution. stress the model's capacity to extract architecture’s robustness against
non-obvious patterns. redundancy.
y = sin(x;X,) + cos(x,X3) + y = cos(X,)"X, - sin(x,"X,) + 0.1-€ y = 1.5%, - 2.0x, + 0.5, + €

tanh(x,;-x,) + €
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Finding 1: The Richer the Hidden Structure, the Greater

the SE-RNN Advantage

Across datasets with non-trivial interactions, SE-RNNs
consistently and substantially outperform the FFNN
baseline. The benefit grows with the complexity of the
underlying data structure.

Distilled Results

On Dataset 1 (Moderate), SE-RNNs achieved an
improvement of up to 72.4% over the baseline FFNN.

On Dataset 2 (Complex), the advantage became even

more pronounced, with an improvement of up to 92.4%.

This trend strongly supports the hypothesis that SE-
RNNs are particularly well-suited for datasets where
structural evolution along multiple axes carries
predictive information.

Relative MSE Improvement
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Moderate Complexity
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High Complexity
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Finding 2: The Architecture is Graceful, Not Brittle

The "Adversarial” Test: On a simple linear dataset (Dataset 3), where an FFNN is already near-optimal, how does

SE-RNN perform?

The SE-RNN architecture gracefully defaults to

performance comparable to the FFNN baseline. It does not
catastrophically fail.

When the FFNN is strong, SE-RNN performance is very
close, sometimes with a slight degradation due to
redundancy (e.g., -10.95% relative improvement in Run 8).

Even in this simple case, the best SE-RNN configuration
(Run 6, MSE=0.0025) still slightly surpassed the best FFNN
baseline (Run 2, MSE=0.0026).

Conclusion: SE-BNNs provide a safe, adaptive framework.
They provide substantial improvement when rich hidden
structure exists, and maintain near-baseline performance
when that structure is trivial.

SE-RNN MSE
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Efficiency by Design: Parallel Training and a Lightweight Integrator

The Challenge Parallel Execution

An architecture with multiple RNNs could seem
computationally expensive.

RNN,
Training...

=
4

The SE-RNN Solution FFNN RNN,
Modularity enables efficiency. Training Training

o Parallel Pre-Training: The FFNN backbone and
all axis-specific RNNs can be trained
simultaneously. The total time is determined by
the longest single component’s training, not the
sum of all components. l

» Sequential Bottleneck is Small: The only
sequential step is training the fusion module,
which integrates the frozen outputs. This module

is typically small and requires far fewer resources. Sequential
Takeaway: The SE-RNN architecture allows Fu Siﬂn_ MﬂdUIE Step
exploitation of multi-axis structural information Training
without incurring prohibitive time costs... (Integrator)

structural enrichment is achieved with minimal
additional computational burden.
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Positioning SE-RNNs in the Landscape of Structural Learning

vs. Multi-Dimensional
RNNs (MDRNNSs)

MDRNNSs entangle dimensions
within a single, complex
recurrent process on a grid.

SE-RNNs decouple projections,
training independent 1D RNNs in
parallel and integrating their
outputs.

This allows for non-grid data and
heterogeneous axes.

vs. Multi-View Learning

Multi-view models typically use
externally defined, heterogeneous
data sources (e.g., image + text).

SE-RNNs internally generate
views by creating ordered
projections of the same feature
space.

It’s structural re-interpretation,
not data fusion.

vs. Transformers

Transformers replace recurrence
with self-attention on a single
sequence.

SE-RNNs are orthogonal: they
multiply the number of axes
along which ordered processing
occurs, retaining the inductive
bias of recurrence on each axis.

The Unique Niche

SE-RNNs introduce systematic recirrence over multiple feature-derived orderings, subsuming the FFNN as a
core component, creating a flexible architecture whose benefits scale with the data’s structural complexity.
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A Three-Fold Contribution to Sequence Modeling

Conceptual Contribution

We provide a precise analysis that
disentangles recurrence from
time, reframing RNNs as models
of ordered structural evolution.
This introduces “order” as a
first-class design variable.

:
N

Architectural Contribution

We propose the SE-RNN
architecture, a modular and
parallelizable framework
combining an FFNN backbone
with multiple axis-specific RNN
“advisors” and a context-aware
fusion module.

A~

Experimental Contribution

We demonstrate through
systematic experiments that SE-
RNNSs offer significant
performance gains on data with
complex hidden structures, while
remaining robust and safe to
deploy on simpler data.
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The Future of Sequence Modeling is Multi-Ordered

The Paradigm Shift Future Directions

By decoupling recurrence from time, we o Applications: Exploring SE-RNNs on real-
move from a single, privileged timeline to a world spatial-temporal analytics,

richer, multi-perspective view of data. structured tabular data, and complex

decision-making tasks.
e Architecture: Developing methods to

This work contributes both a novel automatically learn the most informative
modeling paradigm and concrete RINDCINGS SrNc Ao

e : : expressive fusion mechanisms.
empirical evidence for its relevance,  Theory: Further exploring the implications
inspiring future research at the of treating order as a modeling choice for
intersection of structure, sequence, multi-view learning and modular neural
and learning. SN

Code and Datasets: ai.it.jyu.fi/experiments/SE-RNNs/
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