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The Conventional View: Recurrence is Fundamentally Tied to Time

Time =

For decades, the power of RNNs has been almost exclusively harnessed for temporal
sequences, conflating the model’s mechanism (order) with its most common application (time).

Canonical Use Cases Implicit Assumption The Limitation
 Natural language processing The sequence index is time. This has This “time-centric” view discards rich,
» Speech recognition become deeply embedded in both the non-temporal structural information
» Time-series forecasting conceptual understanding and practical ~ present in many complex datasets.

use of recurrent architectures.
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The Real Insight: RNNs are Models of Ordered Data, Not Time Itself

Conventional View Proposed View

Attribute Axis

The core recurrence relation h; = f(h;_4, x;) operates on an ordered index, not a physical clock.
This opens the door to modeling any meaningful sequence.

What an RNN Actually Models What an RNN Does NOT Intrinsically Model
A function over a totally ordered index set. Duration, time intervals, or irregular gaps.
An assumption that a recursive state can summarize prior structure. Simultaneity or asynchronous events.

Physical causality (this is imposed by the data’s ordering,
“The defining feature of an RNN is recurrence over an index, not time.”  not the model).
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A Chess Game Isn’'t One Story, It's Three: Time, Files, and Ranks

The same chess game can be viewed as multiple, distinct stories (sequences) by ‘slicing’ the data
cube along different axes. Each view reveals unique strategic patterns.
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[ 4 i ' ] | | Time Slices (The
Obvious Story): A
sequence of board
states, capturing
move-by-move
dynamics and
classical sequential
move dynamics.

File Slices (The
Vertical Story):
Sequences of how
each column evolves,
revealing vertical
control, pawn
structure, and
sequences of

vertical interactions.

Rank =6 Rank =7 Rank Slices (The
Horizontal Story):
Sequences of how
each row evolves,
revealing horizontal
control, defensive
lines, and sequences
of horizontal
interactions.
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We Built an Architecture to Learn from Multiple Structural Views
Simultaneously

Structural Evolution RNNs (SE-RNNs) integrate a Feedforward Network (for global patterns) with
multiple specialized RNNs (for structural “views") via a smart fusion module.
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A Modular Training Strategy Ensures Specialization and Stability

Components are trained independently first to become ‘experts,’ then a fusion module learns how
to best combine their insights, avoiding interference and boosting efficiency.
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Train the Feedforward Backbone and Freeze the weights of the pre-trained
all Axis-RNNs independently. This “experts.” Train only the Fusion

stage enforces axis-specific Module to learn how to integrate
specialization and is highly efficient. their specialized signals.

1 Pre-train in Parallel 2 Freeze & Train Fusion 3 (Optional) Fine-Tune
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Perform a final, gentle end-to-end
fine-tuning of the entire system with
a low learning rate for final
adjustments.
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We Designed Datasets to Test SE-RNNs Under Varying

Structural Complexity

To validate our architecture, we created three datasets with distinct characteristics to test where the

SE-RNN provides the most value.

Dataset 1 (Moderate Complexity) Dataset 2 (High Complexity)

Y = sin(x;"x,) + cos(x,"x,) + y = cos(x,)x, — sin(x,x,) + 0.1
tanh(x,-x,) + € :
Tests robustness on chaotic,

Tests the ability to capture smooth, multiplicative-oscillatory, and
predictable structural evolution. entangled relationships.

Dataset 3 (Adversarial /Simple)
y =1.5%, = 2.0x, + 0.5x, + €

Tests whether the architecture
adds unnecessary noise when no
complex structure exists.
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On Data with Clear Hidden Structure, SE-RNNs Consistently Outperform the Baseline

On Dataset 1, multi-axis RNNs capture structural patterns that the feedforward network misses,
leading to significant performance gains.

Mean Squared Error (MSE) on Dataset 1

(Lower is better) Against Weak Baseline

0.0158 With strong RNNs and fusion, SE-RNN

achieved a 72.4% MSE reduction (Run 6).

0.0105

Against Strong Baseline

Even against a strong FFNN, the full SE-RNN
architecture improves performance by 30.0%
(Run 8).

Best FFNN (Baseline) Best SE-RNN
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As Data Complexity Increases, the Value of Structural

Projections Becomes Even More Critical

On the highly complex Dataset 2, the SE-RNN advantage over a purely feedforward approach is
even more pronounced.

Mean Squared Error (MSE) on Dataset 2
(Lower is better) Mastery over Complexity

0.0278
A combination of strong RNNs and fusion

achieved a 92.4% reduction in error over
a weak baseline (Run 6).

0.0217

Value with Strong Baseline

The fully-trained SE-RNN still improves on a
very strong FFNN baseline by 21.0% (Run 8).

Best FFNN (Baseline) Best SE-RNN
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In Adversarial Scenarios, SE-RNNs Are a ‘Safe’ Choice,
Gracefully Matching the Baseline

When no complex hidden structure exists, the SE-RNN architecture robustly performs on par
with the simpler, sufficient feedforward model.

Mean Squared Error (MSE) on Dataset 3
(Lower is better) Comparable Performance

0.0026 The best SE-RNN configuration (MSE:
e 0.0025) performs comparably to—and even
slightly better than—the best FFNN
baseline (MSE: 0.0026).

Low-Risk, High-Reward

The added complexity introduces minimal
overhead. You either get a significant
performance boost on complex data or you

match the baseline on simple data.
Best FFNN (Baseline) Best SE-RNN
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The Advantage of SE-RNNs Scales Directly with
the Data's Hidden Structural Complexity

The experimental results show a clear pattern: the richer the hidden
relationships in the data, the more benefit SE-RNNs provide.

SE-RNN = FFNN. SE-RNN >> FFNN. SE-RNN >>> FFNN.
Benefit: Robustness. Benefit: Significant Benefit: Critical
Improvement. Advantage.

Hidden Structural Complexity =
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The Modular Design Allows for Highly Parallel and Efficient Training

SE-RNNs are not computationally prohibitive. Most of the heavy lifting is done in parallel, making
training time largely independent of the number of axes.

Parallel Pre-training

Typical Sequential Process SE-RNN Parallel Process
Train FFNN Backbone Short
Sequential
:> Train Axis-RNN 1 Step

Train Train Train Train Final
Model A Model B Model C Layer
nghtwmght
/y Train Axis-RNN 3 Fusion Trammg

Total Training Time Dominant Total Training Time
Parallel Phase

« Parallel Pre-training: The FFNN and all Axis-RNNs can be trained simultaneously. Training time does
not scale linearly with the number of axes.

» Lightweight Fusion: The only sequential step is training the relatively small fusion module on the
frozen outputs of the experts.
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SE-RNNs Occupy a Unique Niche in Structural and Sequence Learning

SE-RNNs combine ideas from multiple fields but create a new category focused on internally-
derived structural projections, not external modalities or predefined graphs.

Graph Neural Networks

Sta.ndard BNNg/LSTMs (GNNs)
5 fé';?iigf's' el « Require an explicit, pre-
s defined graph structure.
» Multiple, independent,
Multi-View Learning feature-derived orderings. Multi-Dimensional RNNs
_ ; » Modular, parallelizable, MDRNN
* Views are typically external and flexible. ( s)

modalities (image, text), not
generated from internal
structure.

* Tightly-coupled
recurrence on grids; not
modular or parallel.
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SE-RNNs Offer a More General and Powerful
Framework for Recurrent Modeling

By decoupling recurrence from time, SE-RNNs unlock the potential to model rich
structural evolution along any meaningful axis in the data.

Conceptual
Contribution

=

Reframed RNNs as models of
ordered structural evolution,
with time as just one special
case. This

disentangles the core
mechanism of recurrence from
its most common application.

2(z

Architectural
Contribution

Proposed a novel, modular, and
efficient architecture (SE-RNN)
that integrates multi-axis
recurrent models with a
feedforward backbone via a
context-aware fusion module.

Empirical
Contribution

3 nﬂﬂﬂ

Demonstrated that the SE-
RNN advantage scales with
data complexity, offering
significant gains on
structured data while
remaining robust and safe on
simple data.
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The Road Ahead: Exploring Learned Projections and
Real-World Applications

This work opens up exciting avenues for future research at the intersection of structure,
sequence, and learning.

Future Work

e Applying SE-RNNSs to real-world structured Thank yOU :
data (e.g., spatial-temporal analytics, tabular
data with known hierarchies).

e Developing methods to automatically
*learn the most informative projections

Code and datasets available at:
https://ai.it.jyu.fi/experiments/SE-RNNs/

instead of defining them manually. Contact Information:
 Exploring more advanced fusion Vagan Terziyan
mechanisms , such as attention-based or vagan.terziyan@jyu.fi

probabilistic integrators.
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