General Adaptation Framework

(GAF)

“Framework for Semantic Adaptation of
Maintenance Resources”

SmartResource Tekes Project
Deliverable D 1.2

Industrial Ontologies Group

Agora Center, University of Jyvaskyla

July — October, 2004
_Jyvas Kyla, Finland

- INDUSTRIAL ONTOLOGIES GROUP

10G

GENERAL ADAPTATION FRAMEWORK (PART I)

Technical report
SmartResource: Proactive self-maintained resources in Semantic Web

2/24/2005

University of Jyvaskyla

Agora Center

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi
Title: General Adaptation Framework

Work: Technical report

Status of document: working draft

Number of Pages: 45

Keywords: General adaptation framework, Semantic Web, Agent, Device, Human,
Expert, Software Interface, Industrial Maintenance, Global Understanding Environment

Abstract: This document represents conceptual, operational and architectural
characteristics of software components and their cooperation using family of UML
diagrams. Report covers technical aspects of General Adaptation Framework and is
dedicated to describe domain in semi formal way to allow unified understanding of all
concepts related to adaptation. This report is a starting point of software development

process and captures design features.

Abbreviations

OWL - Web Ontology Language
RDF — Resource Description Framework
RDFS — RDF Schema language

XML - eXtensible Markup Language

Contents

1 INTRODUGCTION .ottt aeeeseasaeseeessessesssesesesesesesssssnnssnsnsnnnnens 5
1.1 TASKS AND GOALS ..eiieeetttieis et e eteeeettaesseeeseeessaearseeesaeeessba s seeeesseessssnnrsreeeseeessnns 5
1.2 BACKGROUND.eeeee ettt ettt et e e e ettt e e ettt e e et e e e e e e e e e ee e e e eeeaeeeeennanees 6

1.2.1 Framework for semantic adaptation of reSources.........c.cccvvvevveveiiesneiennen, 6
1.2.2 Data INTEGIAtION......ccvviiiieciie et ee e nae e ane s 6
1.2.3 SOTtWArE INEEGIAtION.c.iiviiiiiiiciiee e 7

2 DESCRIPTION OF CONCEPTS ...t e e e e e e ne e e 8
2.1 OMARTIRESOURCE ... i eeeieeeeee et ettt et e e e e et e e e e e ee e et e e e eaa e sseeeeeeeessanasseeeareennnnns 8
2.2 REAL VWORLD RESOURCEttttttettteeeteaeteaeaeaeseaaaaesssasessassssssssassssssssssssssssssssesesenesnnees 8
2.3 WVEB SERVICE ... iiteeeeteee ettt et et e e e et e e e e e e e e e et e e et e e e eeeeeeeee s s e e eesaeeeensnnnnnens 8
2.4 HUMAN ettt ettt ettt ettt ettt ee e e e e eeee et e e e e e e et e e e e e e e e e ee e et e eaeeeneneneseeeneneseneennees 9
25 F N Y = 1 == T 9
2.6 A GENT ettt 9
2.7 GLOBAL UNDERSTANDING ENVIRONMENT ...cttteettteeseeeeeeeessenaeseesssssesssnnassssessessnsnns 9
2.8 ADAPTATION «eieieeeieee ettt 9
2.9 GENERAL ADAPTATION Lttettutueeteeeetteeeeaeseeeaeesessssnassessssesessssnasssesssesesssnasseeesseesssnns 9
2.10 PLACE OF SMARTRESOURCEcoitiiiii e 10
2.0 R .. 10
2.0 RS ... e ——————— 10
P2 G T ©] N o] 10 1 2T 11
204 GUN A DAPTER ettt ettt ettt e e et e et e et e e e e e e e et e et e e e e eeeeeeeee e e aeeeeeeereesnaaareeeeeees 11

3 ONTOLOGY DESIGN. ... 13

4 SCENARIOS OF INTERACTION ..o 16
4.1 SMARTRESOURCE INTERNAL SCENARIOSoeieiiteettiiieseeeesseessssnssesessseesssnnseeeesees 17

411 AGENtTO RWR ..o 18
412 RWR 10 AQBNT ... 21
4.1.3 SmartResource internal interoperationcccccvvveveeieiecve e, 26

5 ADAPTER SOFTWARE COMPONENT DESIGN FOR SEMANTIC

ADAPTATION. ..ottt r et e et et e s besbesbeabeaseeneeneeeeeens 27
5.1 ADAPTER — ABSTRACT REALIZATIONccciiiiiiiiiiiiiiiiieiieiisie et 27
5.1.1 Adapter Class DIiagram..........ccocveieiieiieeie e ese e 27
5.1.2 F Ao Fo 01] Qo= U1 o] o SR PR 28
513 Protocol Class DIagramcccooiereriiiienisie e 29
514 Agent to RWR COMMUNICATION.ooviiiiiiiiiiiiieieeee e 30
5.15 Abstract view on semantic adaptation proCessccoceveevvereeresieesvereennns 31

5.2 ADAPTER WITH CONCRETE REALIZATIONctiiitiiitieesireesiteeesiteesssseessineessineesnsneens 32

5.2.1 Concrete Adapter Class DIagramccoceoveereeiienieeriesiesee e see e 32
5.2.2 Concrete Adapter CreatioNcceoereriririeieie e 33
5.2.3 Concrete Protocol Class Diagram.........ccecvvevveresieeresieseese e seesie e, 33
5.2.4 Agent to Rwr communication with concrete realizationccccoveue..ne. 34
5.2.5 Semantic adaptation with concrete realizationc.ccoceviiiiiiiiciiennnnn, 34
5.2.6 Partitioned logic of semantic adaptation.............ccoceverereniieninisieeees 35
5.2.7 Run-time concrete realization 10ading..........cccceeevivereniieniecre e, 38

6 ADAPTATION OF HUMAN, DEVICE AND WEB SERVICE USING GAF....40

6.1 HUMAN ADAPTATION . . e ettt ettt et e e et et e et e e e e e e e e e e e eeeeeeeenneeeee e eerennaaeerennnns 40
6.2 DEVICE ADAPTATION ovttuiisteeeeteetttissssessesessssaassssesessssssnssesssssessssnsseeesssessssnnnnees 40
6.3 VVEB SERVICE ADAPTATION «..eeeeetteee e e e eeeeeeeeee e e e e e e e e e aaaeeeeeeeeesnnnaaseeeeeeeeennnaaeens 40
6.3.1 MV BC SEACK ..ot e e et e e e e e e e 40
REFERENGCES. ... oottt ettt ettt ettt ettt et et et et e seeeeeeseeeeeeeeeseseseseaesesesenennnnnees 43

v

1 Introduction

Rapid development of new technologies and implementation of new innovations bring to
industry new possibilities for conducting its business. Recently on-research stage
technologies are available for implementation already. Wide data range wireless transition,
increasing computation power and decrease the price of components are result of recent

science achievements.

However today’s state of affairs show us improvements of data processing and acquisition
from one hand, from another hand it’s still difficult to process data by intelligent software

that allows integration of heterogeneous systems.

Data, represented in systems is in its own format, has no semantic description, often non-

interoperable.

The main objective of general adaptation framework is to design generic approach for
building resource adapters and development of appropriate ontologies for semantic

adaptation.

Taking into account wide variety of possible resource types, data formats and ways of
accessing and acquisition, adaptation of such resources in unified resource management

environment is important development challenge.

1.1 Tasks and Goals

Tasks of stage:

e Development of general framework for semantic adaptation of resources.

e Development and implementation of semantic adapter for real world resource.
Goals of stage:

e To study approaches for semantic adaptation of resources; design generic software
components for adaptation of different real world resources.

University of Jyvaskyla

Agora Center

e Design, development and implementation of a prototype of ontology-based device

adapter

1.2 Background

1.2.1 Framework for semantic adaptation of resources

There is a variety of resources intended for integration into maintenance environment.
Originally, as it thought, all resources were divided into three base classes: devices,
services and humans. These resources represent real world objects, which should interact
in some way. The adaptation of such resources in common sense lies in providing an
environment for heterogeneous resources which would allow them to communicate in a

unified way via standard protocol.

Originally the task of adaptation is extremely difficult and leads to the big challenge. There
is a variety of organizations and projects working in field of application and data

integration.

Basically we can consider adaptation from two sides: adaptation of heterogeneous
applications and adaptation of heterogeneous data which is in different formats. Both types
of integrations are intended to be implemented in prototype of general adaptation

framework.

1.2.2 Data integration

Let’s suppose the tracing of data such as data lineage, mappings, and transformations. The
picture bellow depicts different types of data which need to be integrated such as flat files,

XML-based data, data from specific applications in specific format.

e ——

Data Integration -‘
J LT -
= r

legacy Data ERP,CRM, 5CM Flat Files Weh (Other Applications

The integration process may include the following key functions:

- Extracting, transformation and loading — for building data warehouse or operation
data stores and giving end-user/sources/applications possibility to proceed
integrated data

- Data replication, to allow multiple heterogeneous servers and databases to share
data in real time

- Data Synchronization — to allow the sharing of data between servers and remote
devices when connectivity is temporary
It’s intended in the term of this project to investigate and develop adaptation

framework for extracting data and transformation it into specific designated format.

1.2.3 Software integration
Application integration — another part of general adaptation task. The data is generated by
different resources with specific applications. Considering this part of integration we can

distinguish following application specific features:

- application functions
- application APIs

- application interfaces

All variations of these features have effect on process of adaptation and architecture of

adaptation framework.

2 Description of concepts

Definition of concepts is given in context of Adaptation task thus some definitions can

expand ones given in previous project papers.

2.1 SmartResource

Under SmartResource we will understand conjunction of Real World Resource (RWR),
Adapter and Agent. Concept SmartResource represents exactly one RWR. It has one

Adapter and one Agent

2.2 Real World Resource

Real World Resource is a complex concept compounded from first part software
component which provides access interface to second part real world entity. In wide sense
notion of RWR s to represent some entity in real world for which adaptation framework
can be applied. In context of industrial self maintenance goals of this project real world

entity is Device, Human or Web Service.

Real Workl Re source

Qféb\Q
AA A

Device Human Weh Service

2.3 Web Service

Web Service — WEB based software application that performs specific functions for

anyone ordered this service [SWGuide]. Service class is subset of RWR.

2.4 Human

Human — any person (expert, operator, dispatcher) who interacts with other smart

resources. Human class is subset of RWR.

2.5 Adapter

Adapter is a software component which provides bidirectional bridge between software

component specific interface of RWR and General Interface to Agent.

2.6 Agent

Agent is a software component which represents interests of RWR in Semantic Web
environment in wide sense, and in Global Understanding eNvironment (GUN) in sense of
this project.

2.7 Global Understanding eNvironment

Global Understanding Environment — virtual environmental with appropriate architecture

for unified interaction between Smart Resources

2.8 Adaptation

Adaptation in wide sense is a process of enabling RWR to participate in GUN. This
definition indicates requirements to functionality of both components of SmartResource -
Adapter and Agent; requirements to protocol of interaction between Adapter and Agent,

Agent to Agent; requirements to overall infrastructure of GUN.

Adaptation in narrow sense is a process of enabling interaction between RWR and Agent

through Adapter.

2.9 General Adaptation

All consideration of previous subchapter remains valid. Term “General” points on
combined wide sense of Adaptation process and wide sense of RWR notion.

Two main layers are planned to use for general adaptation framework design:

The fist is well thought-out object-oriented design, based on design patterns. This layer is
aimed to elaborate the architecture and components interaction for reuse of already
developed components in adapter construction process. In other words, the adapter should
be split into elementary “bricks”. The components of adapter can be divided into reusable
components, which are common for certain types of resources and into specific ones,

which might cover resource-specific parts.

Second layer concerns the design of semantic annotation for process of assembling the
adapter. This aims at minimization of the human involving into process of adapter
assembling. Now it’s impossible to omit human’s involving in assembling process at all,
but with well designed ontology and assembling framework there is possibility to ease this
process. We distinguish two kinds of ontologies: first ontology which describes semantics
of problem domain — so-called upper ontology, and concrete ontologies which describe
semantics of characteristics of particular resources. Every resource should be semantically

annotated to provide knowledge for inference.

2.10 Place of SmartResource

We can call our research SmartResource centric. In higher abstract level we will deal with

ad-hoc network of SmartResources.

2.11 RDF

The Resource Description Framework (RDF) is a framework for representing information
in the Web [RDF]. It is intended to integrate a variety of application using XML for syntax
and URIs for naming [SemanticWeb].

2.12 RscDF

Resource State Condition Description Framework — enhancement for standard RDF, which

reflects specifics of industrial domain

10

implicit purpose of the object

functionalities to Semantic Web.

11

The concept of GUN (Global Understanding eNvironment) Adapter assumes an adaptation
-world object with agent functionality,

Ontology are about vocabularies and their meaning, with explicit, expressive, and well-
of every object from physical world to Semantic Web environment. GUN Adapter is
represented by integrated software/hardware components, which on the one hand
implement object-specific functionalities and on the other hand — common for whole
Semantic Web environment functionalities. The Adapter translates interaction activities
from device-specific format to Semantic Web one and vice versa. Adapter also

2.13 Ontology

defined semantics. [SWGuide]
2.14 GUN Adapter
supplements real

becomes explicit goal of an agent.

Ry

mE

TR
e

TR

llllllll

A

e

agents can be joined into cluster (OntoShell) [OntoShell] and the cluster will be
represented for external world as a single entity. Example: industrial plant GUN agents

The ideal GUN Adapter must adapt to a specific object automatically. The set of GUN

(adaptated field devices) are joined into a cluster and other plants sense it as a single entity
[GUN].

As for implicit purpose of the object we can remember pills: they were manufactured for
certain diseases, has strict application instructions. There can be a supplier of this product —
some store, method, price and scope of delivery, business description. If to supplement the
pills to the GUN agent and place it in some environment that supports such agents owners

of the pills can forget about this object — agent will take care about it.

Present Web resources don’t have their purpose explicit: who can find it, what should be
noticed. OntoShell is an active resource; Adapter supplements the passive resource with
active functionalities. As a result Semantic Web is populated by active, goal-oriented

agents.

12

3 Ontology design

The following ontologies must be developed:

1. 1. Industrial Devices ontology, which will include metadata about industrial
devices.

A 4

Device Class

X

Valve

Industrial Devices upper ontology

2. Industrial Device Data ontology. It will reflect the requirements for data entities
provided by Field Device. The ontology might look like:

Device | provides DataEntity | value | Literal

P

A 4

uni hasType Class

A 4

DataUnit PrimitiveDataType t

Industrial Device Data upper ontology

3. Industrial Device Data Access Methods ontology. It will classify all existent
methods of programming access to Field Device data. Example of such ontology:

13

DataEntity isAccessedBy | AccessMethod t Class

/ s

A 4

Port | accessPort Remote Local
A
accessHost
valye S
hasVype jA
v #uri S S DIl
Literal
functionCall
PrimitiveDataType DB HTTP
. Literal
sqlQuery cgiQuery
A 4
Literal Literal

Industrial Device Data Access Methods ontology

As we can see, all the ontologies depicted above have relations one to other. The last
ontology — Industrial Device Data Access Methods — is necessary just for configuration of
Adapter. When somebody wants the Adapter to access data coming from some industrial
device he must select appropriate AccessMethod from this ontology. After the method has
been defined the additional attributes correspondent to the method must be defined too. If,
for instance, user selected DB class as access method to the value of temperature in the
valve, he must define an sqlQuery, which retrieves necessary from database. When all
necessary data has been provided in the form correspondent RDF-instance is created. This
RDF-instance is sent to software module, which tailors Adapter for specific industrial

device. Semantic annotation of such data allows to compose Adapter automatically.

Thus, for every specific method of access to device data must be implemented a piece of
code. If suddenly user while configuration of Adapter doesn’t find appropriate access
method in the ontology it means that correspondent piece of code haven’t been

implemented yet. In this case Adapter has to be configured for this type of device.

14

The process of Adapter configuration can be depicted as the following:

———————
- ~

/~ device-specific ",
— \ data access)
Onto #~(_ module I
Adapter S T Tee—eeo -7

Adapter

o
e

DataBase

Ontology-based
configuration broker

Registration Form
M

Afimation

Tt/ Degres L =
Address o ™

R H[E .

Shmariure Faneetie R_D_F
Date: =g ki o ; o
Event fe b attandsd:

Workshop 1 Bymnposium

Process of Adapter configuration

15

4 Scenarios of Interaction

Main purpose of scenario is to capture features of interoperation in sense of Actor’s roles
and methods of communicational infrastructure. All scenarios are considered using client-
service paradigm of communication. Essential part of this paradigm is a request-response
pattern of communication Operational logic of semantic adaptation is encapsulated in
request and response objects. Scenarios are presented using UML Use Case diagrams in
which our project software components are represented as Actors. And methods of
underlying connection infrastructure are represented as usecases. To distinguish usecases
which are used to depict Adapter functionality in this chapter they are referred as

scenarios. Figure shows reference Use Case diagram of client-service scenario.

B

== SElVice ==

== client = =< process ==

" 22 initiste 5=

== generate ==

== get ==

Client Service

Agent, Adapter and Resource became Actors and have semantic of some of three roles

depending on context of interaction. Taxonomy of Actor concept is depicted in figure

Actor [

e o o
7N

Client Service Fadlitator

These roles are

16

e Client is an Actor which usually initiate a communication scenario making request
to other actors
e Service processes and generate responses on clients requests
e Facilitator performs an action either client or server role on behalf of another actor.
Sequence diagram of typical client-service interaction is illustrated on figure .

Client Service

I I
1: Create :

I
Request fef—— :
|
I

2: Request

i
i

I |

I

: 3: Create

i Fesponss
i

I

4 : Respond

| T]

4.1 SmartResource internal scenarios

Before modeling of Adapter functionality firstly this subchapter defines internal limited by
SmartResource concept scenarios of interaction between components such as Agent, RWR
and Adapter without considering cases when interaction of these components is initiated by

other resources.
The main idea is that

e Adapter represents an Agent for a RWR in scenarios where RWR initiates
communication.

e Adapter represents a RWR for an Agent in scenarios where Agent initiates
communication.

Thus Adapter on the level of communication between Agent and RWR performs role of

facilitator.

One more comment that Agent to RWR and RWR to Agent scenarios are a reverse from
each other. But in report all description is repeated to explicitly define interoperation

among SmartResource components because of some nuances.

17

4.11 Agentto RWR

Scenario name: Agent2RWR business view

Scenario: Agent initiates communication by sending a request to RWR. RWR processes

request to generate response. RWR responds to request of Agent by sending a response.
Initiator: Agent
Service: RWR

Scenario description: Request and Respond are usecases of delivering request and response
messages over communication channel. Request and Respond are abstract usecases

because of existing of Adapter which mediates communication.

I
== SEMViCE ==
=< PrOCESS ==

== clignt ==

== intiate == =< husiness Lse case ==

Reguest

<= business use case == g= generate ==

Respond

Agent to Adapter

Scenario name: Agent2Adapter

Scenario: Agent initiates communication by sending a request to Adapter. Adapter
processes request to generate response. Adapter responds to request of Agent by sending a
response. Adapter represents an RWR in case when Agent requests for interaction with
RWR. Thus Adapter is in role of facilitator on behalf of RWR. However Adapter can
process Agents requests on behalf of itself.

Initiator: Agent

Service: Adapter

18

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

== client == << process 55 zervice , facilitator ==

== et == == generate ==
—@

Agert Aclapter

== jnitiate ==

Adapter to RWR

Scenario name: Adapter2RWR

Scenario: Adapter initiates communication by sending a request to RWR. RWR processes
request to generate response. RWR responds to request of Adapter by sending a response.
Adapter is always in role of facilitator in sense of operating on behalf of Agent and in role

of client in sense of initiating communication with RWR.
Initiator: Adapter
Service: RWR

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

B

== client | facilitator == <= BEIVice ==

% % == jnitizte == == Qrocess == f
RWWR

Respond
Aclapter == get == <= generate ==

Request

19

Agent to RWR communication

Scenario name: Agent2RWR

Scenario: Agent initiates communication by sending a request to RWR. To do this
accordingly toAgent2Adapter scenario Agent requests Adapter which operates as service
on behalf of RWR. Then Adapter forwards as client request to RWR on behalf of Agent
accordingly to Adapter2RWR scenario. RWR processes request to generate response.
RWR responds to request of Agent by sending a response. To do this accordingly to
RWR2Adapter scenario RWR responds to Adapter which represents Agent and operates as

client. Then Adapter forwards response to Agent on behalf of RWR operating as service.
Initiator: Agent

Facilitator: Adapter

Service: RWR

Scenario description: Request and Respond are usecases of delivering request and response
messages over communication channel. Request and Respond are abstract usecases
because of existing of Adapter which mediates communication. Request includes
Agent2Adapter scenario Request and Adapter2RWR scenario Request. Respond includes
RWR2Adapter scenario Respond and Adapter2Agent scenario Respond. Adapter as a
software component appears in roles of client and service performing also representative

role of facilitator.

20

Agent to Real World Resource comm unication

== PUSINesSs Use case ==
Request

.
== zotware component == . == indude ==

== client ==

== initigte == __ proce ss »=== sevice , facilitator == = client , facilitator == =< PrOCESE == == sepvice ==
Adapter == intiate ==
. == generate ==
== get ==
g == generate == Aelapter =< get ==
- == indude == ,°

-
=< indude == ™ 2
== business use case ==

Respond

4.1.2 RWR to Agent

Scenario name: RWR2Agent business view

Scenario: RWR initiates communication by sending a request to Agent. Agent processes

request to generate response. Agent responds to request of RWR by sending a response.

Alternative: RWR initiates communication by sending a request to Agent. Agent processes

request. In such case interoperation goes without feedback link of response.
Initiator: RWR
Service: Agent

Scenario description: Request and Respond are usecases of delivering request and response
messages over communication channel. Request and Respond are abstract usecases

because of existing of Adapter which mediates communication.

21

[
== clients=) == SENvice ==
== intiate == << husiness use case =>
Request e raaaE s
== huginess use case == == generate ==
Respond
Age it

Alternative scenario: RWR initiates communication by sending a request to Agent. Agent

processes request. In such case interoperation goes without feedback link of response.

Y

== Selvice ==

== cliegnt ==

== intiate == == husiness use case =>

Request

== Qrocess =>

RWR Age it

RWR to Adapter

Scenario name: RWR2Adapter

Scenario: RWR initiates communication by sending a request to Adapter. Adapter
processes request to generate response. Adapter responds to request of RWR by sending a
response. Adapter is always in role of facilitator in sense of operating on behalf of Agent
and in role of service in sense of processing the requests of RWR.

Initiator: RWR

Service: Adapter

Scenario description: Request and Respond are usecases of delivering request and response
messages over communication channel.

22

== client ==

== initiate ==
== get ==
RWR

Alternative scenario: RWR initiates communication by sending a request to Adapter.

== gelvice | facilitator =~=

== PIOCESS ==
== generate ==

Adlapter

Adapter processes request.

== client ==
% == intiate ==
RWR

Adapter to Agent

== sevice , facilitator r—~=—

== IOCESS == %

Aclapter

Scenario name: Adapter2Agent

Scenario: Adapter initiates communication by sending a request to Agent. Agent processes
request to generate response. Agent responds to request of Adapter by sending a response.
Adapter operates on behalf of an RWR and thus in facilitator role. However Adapter can
generate request on behalf of itself.

Initiator: Adapter
Service: Agent

Scenario description: Request and Respond are usecases of delivering request and response

messages over communication channel.

23

[

== client | faciltator == == Selvice ==

== intiste == == [IOCESS =5

<= get = == generate ==
Aclapter Agert

Alternative scenario: Adapter initiates communication by sending a request to Agent.

Agent processes request.

[

== client | faciltator == == Selvice ==

% % == jnitiste ==

Aclapter Agert

=< [rocess ==

RWR to Agent communication

Scenario name: RWR2Agent

Scenario: RWR initiates communication by sending a request to Agent. To do this
accordingly toRWR2Adapter scenario RWR requests Adapter which operates as service on
behalf of Agent. Then Adapter forwards as client request to Agent on behalf of RWR
accordingly to Adapter2Agent scenario. Agent processes request to generate response.
Agent responds to request of RWR by sending a response. To do this accordingly to
Agent2Adapter scenario Agent responds to Adapter which represents RWR and operates
as client. Then Adapter forwards response to RWR on behalf of Agent operating as

service.
Initiator: RWR

Facilitator: Adapter

24

Service: Agent

Scenario description: Request and Respond are usecases of delivering request and response
messages over communication channel. Request and Respond are abstract usecases
because of existing of Adapter which mediates communication. Request includes
RWR2Adapter scenario Request and Adapter2Agent scenario Request. Respond includes
Agent2Adapter scenario Respond and Adapter2RWR scenario Respond. Adapter as a
software component appears in roles of client and service performing also representative

role of facilitator.

Alternative scenario: RWR initiates communication by sending a request to Agent. To do
this accordingly toRWR2Adapter scenario RWR requests Adapter which operates as
service on behalf of Agent. Then Adapter forwards as client request to Agent on behalf of
RWR accordingly to Adapter2Agent scenario.

Real World Resource to Agent comm unication

<= initigte == < process ==

== client == == Service ==

=< inftiate == = == intiate == =2 PIOCESS 5
Adapter
== get == =< get == =< generate ==
Adapter Adapter b
’
.
’

s -
L r

b =< indude s> ,°
,

== generate ==

25

4.1.3 SmartResource internal interoperation

Agent to Real World Resource comm unication

== client ==

== initiate == == business use case ==

Request

== husiness use case == == generate ==

\
Agent \zﬁ‘ == get == \ Respond
=< jndude == ',

== software component ==

r o -
\ 5 == software component ==
i == indude == !
!

I

== husiness use case ==
Interoperate

! \

Agent fez indude == 1 RWR
== SEIVice ==)

<= process ==

== husiness use case ==
Reqguest

== PUSiNess Use case ==
Respon

Bgent << generate ==

== selvice ==
=< Proce sg ==

26

5 Adapter software component design for semantic adaptation

We consider at the beginning of the chapter only case when an Agent initiates
communication to a Resource. So everywhere interoperation is considered from an Agent

point of view. In other cases comments are given.

5.1 Adapter — abstract realization

Form Adapter as a software component only one functionality is required, that is to
provide unified interface to resource. Agent performs requests to Resource to get data
about its state. So Adapter is a software component which serves one Agent to access one
Resource. Adapter as software component is referred further as Adapter application.

This subchapter captures process of requesting Resource. Figure represents this using Use

Case diagram.

== client == == service == [
[
Adapter

__

Agent RWE

On this figure Agent is an external actor

5.1.1 Adapter Class Diagram

“Adapter” is a class which implements adaptation functionality and in this case represents
whole Adapter application which creates instance “adapter”. The Adapter class is an
implementation of “Facade” pattern of software design [1]. This class contains reference to

an instance “rwr” of “Rwr” class and an instance “transformator” of “Transformator” class.

“Agent” is a class to represent external actor Agent in a role of client for the Adapter
application. This is an abstract class and is a base class for creating concrete class to
implement functionality of interaction with external actor Agent to perform requests to

27

external actor RWR. Agent class contains a reference to Adapter class to be able to invoke

method requestRwr.

“Rwr” is a class to represent external actor RWR in a role of service for the Adapter
application. This is an abstract class and is a base call for creating concrete class to
implement functionality of interaction with external actor RWR to process requests of

external actor Agent and to generate response to the actor Agent.

Agent and Rwr are the “border” classes in sense of capturing all important features of
external to Adapter application actors.

“Transformator” is an abstract class to define also in abstract way transformation methods
of from Agent request to Rwr request and from Rwr response to Agent response
transformation. This class is dedicated to define a starting point for subsystem which
encapsulates semantic adaptation.

[
Transformator
dngance: T nsformator Agent
+oetinstanced): Transformator w.!adapte|'.,q<."apter
+transfommA gentReque stireque st FromAgentNat ise Reque st ToRwiVatire Request Anstance: Ageat
+ransfomPRwiResponss(response:Fio mRwmiativeResponse). TodgentNative Resuo nse +getinstanceiadapt er: Ada ptes: Age nt
N ;
i =
, =
-
| e
Adapter Rwr
e RWT dnstance: Rwr
Hransfanmator: Transformator - - -
+getinstance() fRwr
+Aclpater)) void +requestirequest: ToRwNatiee Reque gl Fio mRwiVativeResponse
+requestR wireguest: Fro mAgentNatire Reques): FromRwiNative Response

5.1.2 Adapter creation

As it was said before Adapter is a “Facade” class for whole application, this means that
instance of Adapter has references to instances of other “border” classes Agent and Rwr

and “utility” class Transformator.

So at the point of Adapter instance creation all other instances should be created too.

Agent, Rwr and Transformator classes are designed accordingly to “Singleton” pattern of

28

software design. This pattern ensures that only one instance of a class exists in the system.

Thus we meet logic of the domain that adapter serves one agent and one resource.

getinstance is a static method in all classes. As Agent, Rwr and Transformator are abstract
classes, they cannot have instances. So this method returns instances of the classes which
extend these abstract ones and implement concrete logic. Process of creation instances of
subclasses and code of this method is described by subchapter “Run-time Adapter

configuration”

Figure shows collaboration diagram of Adapter creation. If Adapter as class is a part of
Agent application then creation is performed by calling constructor of Adapter class from
some point of Agent application. If Adapter class is standalone application then it has static
method main as entry point and creates instance of itself in this method by calling a
constructor too. Then instance of Adapter class invokes getinstance methods of Agent,
Rwr and Transformator classes to serve interaction between them. Instance of Agent class

gets reference to instance of Adapter class to be able to invoke Adapter class method

requestRwr.
—1 . agent.=getinstanceiadapter) A
adapt er Ada pter ‘Agent
—2 it =getinstance()
cRwr
. Transformator
—= 3 : transfomator =getlnstancel)
A0 Adpaten)

5.1.3 Protocol Class Diagram

Figure introduces abstract classes of requests and responses to define in abstract way
process of semantic adaptation of external actor Agent to external actor RWR. This is

achieved by including four classes without fields and methods. Notion of these classes is to

29

support signature of request and transformation methods in Adapter, Agent, Rwr and

Transformator classes.

Concrete realization of request and response logic depends from nature of external actors
Agent and RWR and this logic is encapsulated in subclasses which are defined in
subchapter “Adapter with concrete realization”. So informally these classes serve as

dummies on this stage of software design.

FromAgentNativaRaguest ToRwrNativaRaguast

ToAgentNatveResponse FromRwriNativeaResponsa

5.14 Agent to RWR communication

Sequence of methods invocation to perform request from Agent class instance to Rwr class
instance is shown in figure. The agent is an instance of the class Agent, the adapter is an

instance of the class Adapter and the rwr is an instance of the class Rwr.

1 The agent creates instance x of the class FromAgentNativeRequest

1.1 The agent invokes method requestRwr using reference of to the adapter (see
subchapter 4.1.2) passing x as a parameter and getting an instance y of the class
ToAgentNativeResponse

1.2 The adapter after a stage of request transformation (see next subchapter) has an
instance X’ of the class ToRwrNativeRequest and invokes method request using
reference to the rwr passing x’ as a parameter and getting an instance y’ of the class
FromRwrNativeResponse

1.3 The rwr on method request invocation generates an instance y’ of the class
FromRwrNativeResponse

More precisely this abstract process of the semantic adaptation is described in next chapter

30

‘ agert: Age it ‘ |adaﬂer.Adap_ter ‘

1: create :

1
[

[

% FiomAgentNative Request |
1.1 1y =regquestR wix) :

1

1.2y =regquest(x"

¥ FromRwmNativeResponse ‘

| 0

5.1.5 Abstract view on semantic adaptation process

Figure gives abstract view using Collaboration diagram on process of semantic adaptation.
The agent, adapter, rwr, x and y’ are the same instances as in Figure in previous chapter.
The transformator is an instance of the class Transformator and the x’ is an instance of the

class ToRwrNativeRequest and the y is an instance of the class ToAgentNativeResponse.

1 The agent creates x

1.1 The agent invokes method requestRwr of the adapter passing x as a parameter

1.2 The adapter invokes method transformAgentRequest of the transformator
forwarding x as a parameter

1.3 The transformator creates and returns X’ performing semantic adaptation of agent
native request model which is encapsulated in x to rwr native request model which
is encapsulated in X’

1.4 The adapter invokes method request of the rwr passing x’ as a parameter

1.5 The rwr creates y’ and returns it to the adapter as response

1.6 The adapter invokes method transformRwrResponse of the transformator
forwarding y’ as a parameter

1.7 The transformator creates and returns y performing semantic adaptation of rwr
native response model which is encapsulated in y’ to agent native response model
which is encapsulated in 'y

31

[
agent Age ot adapter Acapter e Rwr
—1 1 y=requestR wix) —»1.4 yi=requestix’)
+ 1.6: y=transformBRwrResponse(y]
+ 1.2: x"=transformAgentReque gx)
transfonmator. Transformator
+ 1: create + 1.3 create + 1.7 : create + 1.5 create
x FromAgentiNative Request x: ToRwNatie Request y. TedgentMNatireResponse ¥ FromRwiNativeResponse

So as you can see instances of protocol classes are real bearers of the Agent to RWR

request and response semantics.

Creation of the instances of the concrete protocol classes which capture semantic of

request and response interfaces of external actors Agent and RWR is a subject of the next

subchapter.

5.2 Adapter with concrete realization

5.2.1 Concrete Adapter Class Diagram

Transformator

dnztance: Tm naformator

+oetinetance(). T asformaior

+Hrangfomd gentReque sifreque st Fromd genthiatie Request): ToRwiNGt e Request

Agent
+HrandomRwrResponseregno e Fo mRviiativeRegponze) Tadgenthatve Reghonss o
ﬁk . Endapt e Adapter
r_} Ao &g it
. ConereteAgent
ConereleTr ansfomeat or saetinstanceadapt e Adapter) ge of
1
. L
: z i +genermeRequest()void g = s e
+Concret eTransformaton(y void , {Ceonciet etk youl o -
T , e - +C onereteR vl void
Adapter v
{9 R Rwr
Aransformaton: Tia psformator ingance Bwr
+blppaten) vaid

+requestRwiraquest FromAgentNotive Reguesl: FomRwiNativeResponse |- = ™

sgetinstanceal): M
+requestirequest: ToRwmative Requea Frm mfwiative Response

32

5.2.2 Concrete Adapter creation

AN
inst: -Agent 3
hanceJoen —1 .1 ingance: =getinstanceladapter)
adapter Adapter | —q : agent =getinstance(adapt er) instance: Concret eAgent
—=1 2 instance = new Concretedgert()
ingance: fwr
—2.1: ingtance:=getinstance()
—2: e =getinstance) ingtance ConcreteR wr
—=2 2 ingdance = new ConcreteR wi)
ingance T nsformator
—3.1: ingtance=getinstance()
—=3: transfonmator:=getlnstance () ingtance € oncreteTransformator
40 Adpaten)
—=3.2: instance = new ConcreteT ransfonm atoi()
5.2.3 Concrete Protocol Class Diagram

From AgentNativeRaguast ToRwrNativeRaguast

AN [‘)

Conc retefFromAgenth ativeR equest ConcreteToRwrl ativeR eqquest

+Concret eFrom Agenth ativeR eques(T void +ConcreteToR wMati veR eque st void

ToAgentNativeResponse FromRwriNativeResponsea

ConcreteToAgenth ativeR esponse Conc retefromi wrh ativeR esponse

+ConcreteToAgenth ativeR esponse([void +C oncret eFrom B wr N ativeR esponse() void

33

5.2.4 Agent to Rwr communication with concrete realization

‘agem:Concreteﬂent ‘ ‘adamerﬁdamer | ‘rw:ConcreteRW' ‘

1
1: create :

|
|
|
x ConcreteFramAgentiativeReques)‘—1 |
|
|
1

1.1 yi=reguestRwix)

1.2: yi=requesi{x)

yiConcreteFromB wiativeResponse

| 0

5.2.5 Semantic adaptation with concrete realization

—1 .1 y=requestRwix) —1 4 yi=requesix) AN
agent:ConcreteAdgert acdapt er Ada prer o C oneret eRwe
+ 1.2: x’=transformA gentReque st(x)
+ 1 Concretefrom Agenth st veR equest() + 16: y=transformRwrResponsafy’)
transformator.C oncret eTransformator * 1.5: ConcreteFramR wiiativeR esponss()
+ 1.3: Concret eToR wiiati veR eque () + 1.7 : ConcreteToAgenthl ativeR esponse()

xConcreteFromAgenti ativeReqguest ®.ConcreteToR wilNativeReque st y.ConereteToAgentM ativeR esponse y.ConcreteFromBw MativeR esponss

Sequence of method invocation and request/response creation for semantic adaptation
process with pieces of source code.

ConcreteFromAgentNativeRequest x = new ConcreteFromAgentNativeRequest();
return Xx;
1.1:

ConcreteToAgentNativeResponse y =

(ConcreteToAgentNativeResponse)super.adapter.requestRwr(x);

1.2:

34

ToRwrNativeRequest x’ = transformator.transformAgentRequest(x);

1.3:

ConcreteToRwrNativeRequest x” = new ConcreteToRwrNativeRequest();
return x’;

1.4:

FromRwrNativeResponse y’ = rwr.request(x’);

1.5:

ConcreteFromRwrNativeResponse y* = new ConcreteFromRwrNativeResponse();
1.6:

ToAgentNativeResponse y = transformator.transformRwrResponse(y’);
1.7:

ConcreteToAgentNativeResponse y = new ConcreteToAgentNativeResponse();

5.2.6 Partitioned logic of semantic adaptation

ConcreteAgent class as an encapsulation of logic of an external actor Agent depends from

realization of ConcreteFromAgentNativeRequest and ConcreteToAgentNativeResponse

classes. Thus development of this domain can be performed independently from particular

nature to an external actor RWR. So ConcreteAgent class captures model

request/response interface, model of underlying data which encapsulated in Agent side

protocol concrete classes and logic of interoperation within external actor Agent as it is

shown in figure.

35

From AgentNative Ragueast Agent ToAgentNativeRasponsa

k- — — = - 4 #Fadapt er Adapter - -
dngtance: Age nt

+oetinstance(adapt er: Adapter): Age nt

Conc retefFromAgenth ativeR equest ConcreteAgent Conc reteToAgentl ativeR esponse
P
.
+Concret eFrom AgentM ativeR equest(T void +generateR eques() void +ConcreteToAgentM ativeR esponse(void
+C oncret eAgent() void

ConcreteRwr class as an encapsulation of logic of an external actor Rwr depends from
realization of ConcreteToRwrNativeRequest and ConcreteFromRwrNativeResponse
classes. Thus development of this domain can be performed independently from particular
nature to an external actor Agent. So ConcreteRwr class captures model of
request/response interface, model of underlying data which encapsulated in Rwr side
protocol concrete classes and logic of interoperation within external actor Rwr as it is

shown in figure.

FromRwiriNativaResponse Rwr ToRwriNativeRequest

le” 4 dngtance: Rwr =
+oetinstance(): Rwr

+reqguesifrequest ToRwiNative Reque st) Fio mRwiNativeResponse

Conc reteFromRwril ativeR esponse ConcreteRwr ConcreteToRwrH ativeR equest

+ConereteFromBw M ativeResponse(): void +C oneret eR il void +C onereteToR wik ativeR eque st void

ConcreteTransformer performs the main job of semantic adaptation. This class depends
only from the models of Agent class to Adapter class and Adapter class to Rwr class

interfaces which are encapsulated in four concrete protocol classes.

36

This class implements method of Agent class request to Rwr class request adaptation and
method for corresponding adaptation of responces.

Transformator

dnstance: Transformator

+oetinstancel): Tra naformator

+hransfomd gentReque stfrequest Fio magentiat ire Reqguest): ToRwmNat ire Request
+transformRwrResponse(respo nse:Fo mRwmNativeResponse): ToAgentNatirveReguonse
T iy T
| [| |
W A4 W W
FromAgentNative Requesit ToAgentNative Response FromPRwriNativeResponse ToRw riNative Request

FAY ﬁ) Z‘S FAS

Conc reteToAgenthl ativeR esponse

ConcreteFromB wrl ativeR esponse

+ConcreteTolgent ativeR esponse() void -

ConcreteTransformator [+ConcreteFromPRwi ativeR esponss():void

Conc reteFromAgentH ativeR equest +ConcreteTranstormator () void

ConcreteToRwrl ativeRequest

+Concret eFromAgentMativeR equest(Tvoid

+C oncret eToR vl ativeR eque st(Tvoid

Thus by such software design we achieved:

e Abstract level design to capture interoperation and task of semantic adaptation is
proposed
e Concrete realization can be done by extending proposed abstract design
e Implementation of external actor Agent dependent part, external actor RWR
dependent part and logic of semantic adaptation is separated from each other and
can be performed for different options independently.
Agent Transformator Rwr
#adapt er Ada pter Anstance: Tim nsformator Anstance: Rwr
anstance.Agent +aetinstanced): Tra nsformator +getinstanced: Rwr
+aetinstance(adapt e Adaptery Agent +transformA gentReque sireque st FromAgentNat ive Request): ToRwiNat ive Request +request{request: ToRwiNatire Request Y Fro mRwiNative Response
AN T i +transt wiResy (response:Fio iveResponse) T ireResponse | T
‘ o . i @
= - : ; ,

ra ;‘_’P [P. Fa¥

ComncreteToAgentl ativeR esponse

ConcretefromRwrll ativeResponse

Lore (e st +ConereteToAgerthlativeR esponse(rvoid ke[¢ | = +ConcreteFromR wiativeR esponse() void Concreteiur
+generateR equest()void ConcreteToRwrH ativeR equest
+ConcreteAgent(yvoid C T jee—— +Concret eTransformator (). void +ConcreteR wiIvoid
+ConcreteToR wi ativeR eque st} void
+ConcreteFrom AgertNativeR equest(void

37

5.2.7 Run-time concrete realization loading

Runt-time concrete realization loading should be performed accordingly to configuration

defined by ontologies described in chapter 3.

[
Configuration Adapter
nameConaeteAgent: String T Rwer
nameConaeteR we String Aransfomator: Transformator
nameConcreteTranstormator String -agent: Agent
+gethlam eC oncrete Agent(1 String +Adp ater{confie; Configuration): voic
+getMam eC oncreteR wr():String +requestR wilreguest: Fro mAgentiNatice Requesl FomRwiNativeResponse
+getMam eC onareteT ransfomaton): String 5 T T
+Configuration() void # ! !
- | k%
! i Rwr
Agent ! | dnstance: Rwr
|

w.!adapter.Adapter | | +aetinstancefname: Stringt Awr
anstance: Age nt | | +requestirequest ToRwm\ative Reque st Fro mRwiative Response
+ietinstancefadapt er: Ada pter name: Stringt Age ot W

Transformator

dnstance: Transformator

+getinstancelname: String} Tra nsformator
+hransformd gentReque slirequest Fro mAgentNative Request): ToRwiNative Reqguest
+hransformRwrResponse(response. FiomRwmNative Re sponse): ToAgenitNativeRegionse

—=1 : agent.=getlnstance{adapt ername)

adapt er Adapter Age nt

—=2 . rw=getinstanceiname)

L Rwr

. Transformator

—=3 transfonmator =getinstanceiname]

-0 Adpaten config)

Class clas = Class.forName(name);

instance = (Agent)clas.newlInstance();

Class clas = Class.forName(name);

instance = (Rwr)clas.newlnstance();

38

Class clas = Class.forName(name);

instance = (Transformator)clas.newlnstance();

39

6 Adaptation of Human, Device and Web Service using GAF

6.1 Human adaptation

At first sight it seems that human is the most difficult part for adaptation, but when we take
a closer look we can distinguish basic roles of human as a proactive resource. First of all
human may act as a web-service, for example for image recognition. So human can be
annotated as a web-service with its inputs and outputs formalization. Second human may
be looking for some service or data, then human’s agent should contain certain functional
features for human’s orders execution. It can be for example search features, accounting or
shopping. Human’s agent should be extensible. In other words it must be extensible via

plugins and of course configurable.

6.2 Device adaptation

6.3 Web Service adaptation

Service as a resource has its own specific features, which distinguish it from Device and
Human. First, let’s take a look at existing technologies in web-service integration. Below is

the web-services stack proposed by W3C consortium.

6.3.1 Wa3C stack
The W3C Web Services Workshop, led by IBM and Microsoft, has agreed that the

architecture stack consists of three components: Wire, Description, and Discovery.
Wire stack

The following table shows what layers constitute the Wire Stack.

Other "extensions"
Attachments Routing
Security Reliability
SOAP/XML
XML

40

Table 1.1 — W3C Wire Stack

Wire Stack has extensions to two layers: SOAP and XML. This means whenever the
SOAP is used as the envelope for the XML messages, they must be attached, secure,
reliable, and routed to the intended service requester or provider. In the stacks of other
organizations, SOAP and XML are not treated as "extensions." IBM, for instance, refers to

SOAP as a tool for its stack layer, "XML-Based Messaging."
Description stack

The Description Stack, the most important component, consists of five layers:

Business Process Orchestration
Message Sequencing
Service Capabilities Configuration

Service Description (WSDL)
XML Schema

Service Interface | WSDL
Service Description

Table 2.5 — W3C Description Stack

This stack starts with orchestration of business processes from which the messages are

sequenced, depending on how service capabilities are configured.

W3C uses WSDL to describe service interface and service implementation, neither of

which is explicitly highlighted in other stacks.
Discovery stack

As the name implies, the Discovery Stack involves the use of UDDI, allowing businesses
and trading partners to find, discover, and inspect one another in a directory over the

Internet, as follows:

Directory (UDDI)

Inspection

Table 2.6 - W3C Discovery Stack

41

The Inspection Layer refers to WSIL (Web Services Inspection Language) and WS-

Inspection specifications.

Putting all three stack-components together, we have the Architecture Stack.

Other "extensions”
Attachments Routing
Security Reliability
SOAP/XML

XML

Business Process Orchestration
Message Sequencing
Service Capabilities Configuration

Service Description (WSDL)
XML Schema

Service Interface | WSDL
Service Description

Directory (UDDI)

Inspection

Table 2.7 — W3C architecture stack

Today, SOAP (Simple Object Access Protocol), WSDL (Web Services Description
Language), and UDDI are emerging as the Internet de facto standards for Web services.
SOAP has been accepted and is being standardized by the World Wide Web Consortium
(W3C). WSDL has been submitted to the W3C for standardization, and is emerging as the
de facto standard language for the description of Web services. UDDI is poised to be the

de facto standard for the Web service repository.

SOAP, WSDL and UDDI provide a “grammar” for web-service definition. In general they
define certain ontology for service representation. This ontology can be reused in General
Adaptation Framework and furthermore, can be extended via semantic unambiguous
descriptions of parameters, for automation of service integration, orchestration and

discovery.

42

References

[RDF] Resource Description Framework specification site, http://www.w3c.org/RDF/

[PracticalRDF] Shelley Powers, ”Practical RDF,” O’Reilly, 2003, 350 pages, ISBN 0-596-
00263-7

[SemanticWeb] Semantic Web activity site, http://www.w3c.org/2001/sw/
[OWL] Web Ontology Language specification site, http://www.w3c.org/2004/OWL/
[XML] Extensible Markup Language specification site, http://www.w3c.org/ XML/

I0G, 2004] Official Web-Site of Industrial Ontologies Group, http://www.cs.jyu.fi/ai
/OntoGroup .

[DAML+OIL] DAML+OIL language web page, http://www.daml.org/2001/03/daml+oil-

index.html
[DAML-S] DAML-S 0.7 Draft Release, http://www.daml.org/services/daml-s/0.7/

[Ermolayev et al., 2004] Ermolayev V., Keberle N., Plaksin S., Kononenko O., Terziyan
V., <http://lwww.cs.jyu.fi/ai/papers/IJIWSR-2004.pdf>Towards a Framework for Agent-
Enabled Semantic Web Service Composition, International Journal of Web Service
Research, Idea Group, ISSN: 1545-7362, Vol. 1, No. 3, 2004, pp. 63-87.

[GUN] Global Understanding Environment concept, http://www.cs.jyu.fi/ai/papers
/HCISWWA-2003.pdf

[IBM WSCA] IBM Web Services Conceptual Architecture document, http://www-
306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[Kaykova et. al., 2004] Kaikova H., Khriyenko O., Kononenko O., Terziyan V., Zharko A.,
Proactive Self-Maintained Resources in Semantic Web, Eastern-European Journal of
Enterprise Technologies, Vol. 2, No. 1, 2004, ISSN: 1729-3774, Kharkov, Ukraine, pp. 37-
49

43

http://www.w3c.org/RDF/
http://www.w3c.org/2001/sw/
http://www.w3c.org/2004/OWL/
http://www.w3c.org/XML/
http://www.cs.jyu.fi/ai /OntoGroup
http://www.cs.jyu.fi/ai /OntoGroup
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/services/daml-s/0.7/
http://www.cs.jyu.fi/ai/papers/IJWSR-2004.pdf
http://www.cs.jyu.fi/ai/papers /HCISWWA-2003.pdf
http://www.cs.jyu.fi/ai/papers /HCISWWA-2003.pdf

[SmartResource, 2004] Proactive Self-Maintained Resources in Semantic Web,
Presentation of SmartResource Tekes Project, http://www.cs.jyu.fi/ai/OntoGroup

/SmartResource.ppt

[Terziyan, 2003] Terziyan V., <http://www.cs.jyu.fi/ai/papers/fHCISWWA-2003.pdf>
Semantic Web Services for Smart Devices in a "Global Understanding Environment”, In:
R. Meersman and Z. Tari (eds.), On the Move to Meaningful Internet Systems 2003:
<http://www-staff.it.uts.edu.au/~wgardner/HCI-SWWA.html> OTM 2003 Workshops,
Lecture Notes in Computer Science, Vol. 2889, Springer-Verlag, 2003, pp.279-291.

[WSArchitect] Judith M. Myerson, “Web Service Architectures”, http://www.webservices

architect.com/content/articles/webservicesarchitectures.pdf
[WSDL] Web Services Description Language submission, http://www.w3.org/TR/wsdl

[WSFL] Web Services Flow Language specification by IBM, http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[W3C] World Wide Web Consortium site, http://www.w3.org/

[OntoShell] COMMUNITY FORMATION SCENARIOS IN PEER-TO-PEER WEB
SERVICE ENVIRONMENTS, Olena Kaykova , Oleksandr Kononenko , Vagan Terziyan
, Andriy Zharko

[SWGuide] Michael C. Daconta, Leo J. Obrst, Kevin T. Smith. The Semantic Web: A
Guide to the Future of XML, Web Services, and Knowledge Management. John Willey &
Sons. 2003. 281 p.

44

http://www.cs.jyu.fi/ai/OntoGroup /SmartResource.ppt
http://www.cs.jyu.fi/ai/OntoGroup /SmartResource.ppt
http://www.cs.jyu.fi/ai/papers/HCISWWA-2003.pdf
http://www-staff.it.uts.edu.au/~wgardner/HCI-SWWA.html
http://www.webservices architect.com/
http://www.webservices architect.com/
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

10G

GENERAL ADAPTATION FRAMEWORK (PART II)

Technical report
SmartResource: Proactive self-maintained resources in Semantic Web

2/24/2005

45

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi
Title: General Adaptation Framework (Part 1)
Work: Technical report

Status of document: working draft

Number of Pages: 26

Keywords: General adaptation framework, Semantic Web, Agent, Device, Human,
Expert, Software Interface, Industrial Maintenance, Global Understanding Environment

Abstract: This document continues the work described in the Part | of the corresponding
technical report and goes deeper in the development of the General Adaptation

Framework.

Abbreviations

OWL - Web Ontology Language
RDF — Resource Description Framework
RDFS — RDF Schema language

XML - eXtensible Markup Language

Contents

1 INTRODUGCTION Lottt ettt st e e e e et e e st e e e e et eeess bt eeeaeseesrsbarreeas 1
2 APPROACH TO GENERAL ADAPTATION FRAMEWORK.......ccccocciiiieeiiieen. 2
2.1 [7N Y (0]) = ISR 3
2.2 PROCESSES IN GENERAL ADAPTATION FRAMEWORKcocottiitiiieeeeeeeeeeeeiieaeeeeeeens 7
3 SEMANTIC ADAPTATION ...ttt ettt e e e e et et s s e e s seeeeernnans 9
3.1 SEMANTIC ADAPTATION EXAMPLEccvtttiiiieeeieeeetiiissiesesesesssinssesessseessineeeeeees 10
3.2 ELABORATION OF SEMANTIC ADAPTATION APPROACH........cctttieitiiiiieeeereeeesinnnnens 13
3.3 ONTOLOGY-TO-ONTOLOGY MAPPINGttuueteeeeteeeestaaseeeeeseessssnassesessseessnnasseeeeeees 16
3.4 MODEL-TO-MODEL MAPPING ...cvueeteeeeeeeee e e e eee e e e e te e e e e e e e e e e e erenaaeeeenaaeerennnns 17
3.5 ADAPTER AS SOFTWARE DESIGN .1tvtuuiieeittetsttssseeestsessssssesesssessssnseeesssees 19
REFERENCES. ...ttt e e e e ettt e e e e e e e e e e e e e e e e e e eeeeeennnn 22

7 Introduction

There is a diversity of heterogeneous systems, applications, data formats and ways of
interaction. All those systems were tailored for particular tasks, purposes and goals. The
world is heterogeneous and we face the challenge trying to integrate heterogeneous
systems into a unified environment. The “Smart Resource” project has encountered exactly

such kind of a problem.

“General adaptation” assumes a design of a sufficient framework for an integration of
different (by structure and nature) resources into Global Understanding eNvironment
(GUN). This environment will provide a mutual interaction between heterogeneous
resources. Adaptation assumes elaboration of a common mechanism for new resource

integration, and its provision with a unified way of interaction.

The main idea of adaptation is based on a concept of “adapter”, which plays role of a
bridge between an internal representation of resource and a unified environment. Adapter
is a software component, which provides a bidirectional link between a resource interface

and an interface of the environment.

GUN assumes interoperability of SmartResources; by Smart Resource we mean a
conjunction of Real World Resource (RWR), Adapter and Agent. By extending RWR
within Adapter and Agent we make it GUN compatible. General Adaptation includes

development of Adapter for RWR.

8 Approach to General Adaptation Framework

The primary intention behind the General Adaptation Framework (GAF) is a design of
common framework for adaptation of heterogeneous resources. The design of the
framework will be divided into two layers:

1. Structured software design for modules, classes, behavior and protocols;

2. Semantic adaptation of different formalizations of the industrial maintenance

domain edges.
GAF includes the following components:

1. Model, which consists of the submodels:

Adapter Functionality;
Data representation standards;
Software interfaces;

Semantic Adaptation (data mapping model);

O O O O O

Adapter Configuration Properties.

2. Process, which consists of the subprocesses:

Adapter Development;
Adapter Composition;

Adapter Deployment;

O O O O

Adapter Operation.

3. Tool set, which provide an Ul for specification of problem domain features
according to the GAF model; support of activity within GAF process and

corresponding users

4. Scenarios that comprise roles of participants in Adaptation Processes and their

interaction with Tool set and submodels.

8.1 Data models

Arbitrary number of standards exists, which define each other on different levels of

abstraction and thus form a hierarchy:

Standard n

defines

Standard 2

defines

Standard 1

defines

Formal data

representation

One of the data models, which have recently gained wide adoption, is XML — Extensible
Markup Language. The data representation using XML can be represented by the
following figure (see Figure 1):

Problems Problem domain

domain

XML Schema épecifications

XML Schema

XML Specifications \

\ XML document

Figure 1 - XML data representation

The older and more tested data representation standard is Database Model (see

Figure 2):

Problems Problem domain

domain

Relational Model

\

SQL

DB Schema

DDL Specification

A 4

Y
Content of DB

DML Specification

A 4

Figure 2 - Database data representation

The novel data representation standards, which focus primarily on semantics, are RDF and
OWL (see Figure 3):

Problems Problem domain

domain

OWL/RDFS S‘pecifications

RDF Schema/Ontology

RDF Specifications /

\ RDF document

Figure 3 - Semantic data representation

In fact, arbitrary data representation schema looks like it is shown on Figure 4:

Abstract problem Concrete problem

domains domain

Model Specification »| Domain specific model

\

Data Representation Syntax

\ 4
,| Domain specific data

Specification

Figure 4 - Arbitrary data representation

More abstract models define more specific ones. In different cases arbitrary number of
models can be found in chains and layers (see Figure 5).

Abstract Concrete

Model Specification '.,{ Domain specific model '

Figure 5 - Nested models

Semantic adaptation results in a mapping of data encoded according to one model to

another model of data representation (see Figure 6):

The most commonly used data representation standards are Relational model, XML-model

Model 1

Encoded data

Adaptation

Model 2

Encoded data

Figure 6 - Model-to-model adaptation

and RDF-model. Thus, any problem domain can be formalized using these data models

(see Figure 7):

DB Schema

\

Relational

' | Content of DB
i model

The problem domain of the SmartResource project utilizes RDF for its formalization and

all its concepts are included into RscDF-schema (Resource State/Condition Description

Problem domain

RDF Schema/Ontology

XML Schema

/

RDF document

OWL/RDFS/RDF

XML document

\

Figure 7 - Possible formalization of a domain

Framework). Finally, we get a Layered Cake of Specifications (see Figure 8):

OWL Specification as a language for RDF Specification as a language for

RscDF Schema data representation in RscDF document
RDFS Specification as a language for XML as a language of RscDF Schema
RscDF Schema

and document serialization

4

RscDF Schema of the maintenance domain

RscDF document with encoded data

Figure 8 - SmartResource Layered Cake of Specifications

8.2 Processes in General Adaptation Framework

The Processes that are included into GAF will be described according to the Template:

o0 Preconditions for process start;
0 Process execution;
0 Result.
Adapter operation process:
Preconditions: Deployed Adapter;
Process description: Automated on-line interoperability and data mapping between
Agent and RWResource;

Result: GUN-compatible Resource.

Adapter deployment process:
Preconditions: Composed Adapter;
Process description: 1) Specification of Adapter runtime property values according
to a submodel of Adapter Configuration Properties; 2) Adapter Installation.

Result: Deployed Adapter, ready to operate.

Adapter composition process:
Preconditions: 1) New combination of interoperating modules (e.g. another
Network connection standard) or/and; 2) New data schema for already supported

data model occurrence.

Process description: 1) Software Modules Composition: Modules selection;
Modules assembling; Adapter Functionality Semantic Specification. 2) Semantic
adaptation: New class definition (resource declaration in the ontology); Creation of
new properties for a new class (if needed); Device’s interface properties definition
(connection type, data types, etc. Taken from ontology); Mapping of resource’s
data representation to RscDF data representation;

Result: Composed (Deployable) Adapter; Specified Adapter Functionality; Adapter

Configuration Properties template (allowed values, etc.)

Adapter development process:

Preconditions: RWResource with a specified interface and a data format; Access to
Semantic Adaptation, Data representation standards, Software interface models;
Ontology mapping/editing tool (mapping to already existent standards of
communication and data representation).

Process description: Software development process; Semantic annotation of the
Developed Modules.

Result: Software modules for data access or transformation; Documented and

registered in ontology.

9 Semantic Adaptation

During the data transformation process, Data Transformer involves format’s metadata

(schemas) and transformation rules. Schemas, rules and underlying ontologies constitute

the semantic adaptation.

The tasks of Semantic Adaptation are the following:

1.

2.

Semantic Adaptation defines a functionality to work with semantics of:
0 Adapter Functionality (Services provided by the adapter);
o Data representation standards and models of the adapted systems;
o0 Software interfaces standards of the adapted systems;
o]

Configuration properties of the adapter runtime environment.

Semantic Adaptation uses an Ontology-based approach to define the semantics
mentioned above:

o0 This involves associating commonly understood meaning to the definition

of adapter properties, functionality, configuration, and associated meta-data

standards.

Semantic Adaptation requires the following stages:

1.

2.

Analysis of problem domain and elaboration of a conceptual model;

Analysis of data representation formats;

Analysis of corresponding metadata (particular Database schema, for instance);
Analysis of a standard’s specification (e.g. XML Schema Specification standard);

Elaboration of the model for transformations of particular standards of data

representation;
Specification of data mapping rules;

Choosing and/or Development of the mechanism or tool of transformation
(appropriate patterns, APIs etc).

9.1 Semantic Adaptation Example

To understand better the stages of Semantic Adaptation let us consider an example. The
problem domain will be a paper machine and the process of paper manufacturing (see
Figure 9). The first stage of the adaptation will be elaboration of a conceptual model for
the selected domain. Firstly, the domain description in a natural language must exist. It can
be made either separately, or existing specifications can be used. The main point is that this
description must contain all important aspects of the problem domain. For our domain, the
description can include such phrases as “a paper machine produces paper, uses cellulose”,
etc.

After the mentioned domain description, domain decomposition follows based on the
domain description. On this stage, entities, classes, properties, relations, behaviors of the
problem domain are distinguished. After the necessary decomposition has been made,
domain formalization is performed using any appropriate data models. It can be ER-
diagrams (Entity Relationship), UML, Ontology, etc.

Description Decomposition Formalization

Figure 9 - Adaptation of paper machine domain

After the mentioned stages of the adaptation, analysis of data representation format follows
(see Figure 10). It includes analysis of the data format type (XML, text file, Excel table,
Oracle database, etc.), types of APIs that can be used in the domain (SQL-queries, Java
DOM API, XQuery, etc.), access methods to data (JDBC, OLE, etc.), sorts of standards
that are used to represent a format (ASCII, W3C-family standards).

10

XML format

- <rdf:RDF xmins:rdf="http:/ /www.w3.0rg/1999/02/22-rdf-syntax-ns#"
zmins:rdfs="http:/ fwww.w3.0rg/2000/01 /rdf-schema#"
smins:owl="http:/ /veww.w3.org/2002/07 fowl#"
zmins:de="http:/ /purl.org/dc/elements/1.1/">
<owl:Ontology rdf:about="http:/ /www.w3.0rg/2000/01 frdf-

schema#" dc title="The RDF Schema vocabulary (RDFS)" /-
+ =rdfs:Class rdf about="http:/ /www.w3.0rg/2000/01 /rdf-
schema#Resource">
+ =rdf Property rdf: about="http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type'>
- «rdfs:Class rdf about="http:/ /www.w3.0rg/2000/01/rdf-
schema#Class">
«rdfs:isDefinedBy
rdf:resource="http:/ /www.w3.0rg/2000/01/rdf-schema#" /=
«rdfs:label=Class</rdfs:label>
zrdfs:comment>The class of classes.</rdfs: comment>

Acc d by Processed by
Standard

Java API XQuer
W3C family Query

Figure 10 - Analysis of data representation format

The next stage of Semantic Adaptation for our chosen domain is Metadata analysis (see
Figure 11). This stage includes analysis of data schema used (elements, relationships,

types, etc.), possible variations (XML tags or values, etc.), hierarchy of elements and
restrictions (nesting of classes, range, etc.).

Perzan

T s ey sontactlatals|-

suillame: sting
- bithDate: sting
- gender sting

1

Status
Employee

wgnumerations

- Full-Time
- PatTime
- Casual

- Contract:

- status: Status

- jobTitle: string

- saDate: Date

- deparment: stiing

Further stage of the Adaptation is Analysis of standard (Figure 12). This stage includes
analysis of standard specification (syntax, vendors, schema, etc.), analysis of existing

formal theory (relational algebra, frame model, etc.), analysis of existing methods of

SmartResource is subclass of Class
It has SmartMessage as ancestor
Range: enumeral types
<message title=“simple”></message>
or <message>
<title>simple</title>
</message>

Figure 11 - Metadata analysis

transformation (XSLT, production rules, etc.), analysis of capabilities and restrictions

(possibilities of formalization, querying, etc.).

"jjz-) Relational theor
:’ - - Analysis Y

SQL97 standard

Atribute Relational algebra (selection, projection,
P join)
:\1 W — transformable to object model, XML model
Ome 1w Many

Figure 12 - Analysis of standard

Further, one must go on with a stage of Model transformation (see Figure 13). At this
stage, the existing approaches to transformation have to be analyzed (XSLT, piping, etc.),
the source/target resources have to be defined (XHTML to XML, Oracle DBMS to XML,
XML to RDF, etc.), possibility for further extension must be taken into account (e.g. cost
of extension during evolution), a role of metadata is also important (schema integration,

compatibility, etc.).

mransformation

A B Analysis - A can be transformed to C with XSLT;
h o 1 i - A is the XML file, C is an RDF file;
A\ P 4 - A’s schema is dynamic;
- Schemas are interoperable.

Figure 13 - Model of transformation

The next step of the adaptation process is concerned with data mapping rules (see Figure
14). This stage requires efforts for determining a protocol of transformation (elements and
types matching), representation format for the rules (Ontology, XSLT, etc.), percentage of

manual, semiautomatic and automatic matching actions.

The mechanism of transformation requires the following analyses to be done: analysis of
possible approaches (tools, APIs, Services, etc.), estimation of cost for particular approach
(time for development, price of the product, etc.), study of interoperability and extensibility

of the chosen approach (supported platforms, extensible API, etc.). For transformation,

12

1. Entity “Person” corresponds to tag <person>;
2. Entity “Salary” corresponds to property “Income”;
3.

L SO

Figure 15 - Data mapping rules

existing tools can be used or if reasonable these tools can be developed from scratch. The
most popular APIs used in transformation of XML are XSLT, SAX and DOM. In case of
RscDF the functionality for implementation must be defined: either it will be XML-to-

RDF transformation, or more.

=20 - m__ —)

Figure 14 - Mechanism of transformation

P—
A
AM

9.2 Elaboration of Semantic Adaptation approach

One of the approaches to adaptation is a serialization of the RscDF format into
intermediate well standardized and elaborated format. As the basis, it’s intended to use
XML format for this approach. For this purpose, a unified mechanism of RscDF
transformation into the XML format and vice versa has to be designed and developed (see
Figure 16). This mechanism will allow mapping schemas and data from RscDF to XML
(Figure 17).

There are some projects, which have elaborated pilot methods of transformation RDF to
XML [1, 2]. Since RSCDF is enhanced subset of RDF it’s possible to adopt these methods.

The transformation is carried out by either by replacing XPATH expressions or by the set
of XSLT style sheets (see Figure 17).

13

Database
RSCDF transformation
into particular standard XML
RscDF format in /
GUN
T~
\
HTML

Figure 16 - Unified RscDF-to-XML transformation

[
[

RDF model and
XPath expressions

RDF context] 00 :> [XML context

Set of XSLT style
sheets

Figure 17 - XPath and XSLT in RDF-to-XML transformation

Once the mechanism of transformation from RSCDF to XML and XML to RSCDF has
been designed it’s possible to use standard approaches for future transformation (Figure

18). Choosing the XML format as the start point will allow unifying process of adaptation.

Other

formats XML

J% <

oo
> W
ok o

Figure 18 - Transformation of XML to other formats

14

From existing tools that provide transformation of XML to other formats, Altova
MapForce can be mentioned [3]. This commercial tool allows XML to XML
transformation based upon two XML schemas (Figure 19). It’s also might be necessary to

perform some processing functions to pipe data from source to target.

[& ShortPo |
-~ B {}ShortPO T filter
E"""'{}E-I.ISIDmEINI Briode/raw Ll | £/ CompletePD
“&3 {}Linelt »hiool
E‘ inetiems JL——J {}CompleteP0O
E {);I;;zli::m 2 {} Customer
i} Mumber
| - {}Amount B equal i {3 FirstN ame
Ba | il {}LastMame
Emmy |6 S0ma
JEl {}Customers . {}City
EI {¥Customer {3ZIP
o DU 1, fiter . {)State
{}FirstName erinde/row 0 -3 {}Lineltems
{}LastName ehool resu “E {}Lineltem
E‘ {}{?g:;lles: B {¥Article
1ee i
i { ¥ Number
- {}City fi equal - {}Name
—ap B -4 } SinglePrice
i { 35 ate F—{ re=ulti
= Ph i { Amount
- - {)Price
| 8| Articles | o mutiply J
JEl {}Articles il resLlth
-5 O Article SEIEE
{}Number Generate code in h k| #5LT language

{}Name
J i }SinglePrice

Java language

Z# language

Z++ language

Figure 19 - XML-to-XML transformation in MapForce

MapForce allows mapping between XML and Relational database, too (Figure 20). The
process of mapping starts from the loading of database scheme and XML schema. Then
engineer manually fulfils matching between XML elements and database entities. While

mapping it might be necessary to use processing functions.

15

W ORDERS
-] a{HaD
- S F3035
a{}cos2
i SF3039 Ji to-datetime
L =F1131 bF2380
= F3055 broara | =M 0 CustomersT arget
-m {}C058 = Addiesses
a {} coso H[E Articles
i HE Customers
Fy equal 3y fiter E':_“'“:e'
= g I proceron]] [DFirstName
b [oboal eetll [CiLastName
- [}CustomerD
D Addiesses
i []Number
i [} CustomerNr
i "Etily
i Ji, multiply L [D)State
=Fa207 oo --%2:8
¢Loc 7, muliply @ Oders
O puslet] | B Orders
a{rs63 fiy divice J_..\,a\u 2] ~[ENumber
@ (RFF - pvaliel| | [B0rderlD
LE{DTM C= 1000 Falue? - [JReceived
(5G4 [D)CustomerNr
-H{}5G5 5 Articles
acTa [FNumber
o - [DArticlelD
=ElEk) CustomersT argel o [mjArticlel
i@{}cos6 -[CName
e F3413 A5 Customers - [DAmount
be=riz =L [gNumber - [Price
@} COM -~ [gFirstN ame b Tan
{SGG """ [gjLastame T fiter L[S 0rdeNr
- [FCustomerlD] o
{}s5G7 7 | L riode/row] —M@E=| Customers
{}sG8 Ly equal bbool
(SG10 ba I
B5612 FI e El
(5613
- {}5G15

Figure 20 - XML-to-Database transformation in MapForce

9.3 Ontology-to-ontology mapping

When we deal with RDF-to-RDF transformation, we inevitably face with the challenge of
ontology-to-ontology mapping and transformation. If all domain descriptions refer to a
common vocabulary (World ontology — ideal case), mapping can be done explicitly
(Figure 21). However, incompleteness of one ontology may cause inability to transform in

both directions.

transformation
“«—-—=-=->

World Ontology

Correspondence to

y T the World ontology
i 01 >
\ i
__,/\ /‘ ‘\\‘
p \
“" - o ;
.~ ‘ * \k - N s
:I 03 |(————-)| 02 , \~‘__,’
\ \ ,’

Figure 21 - Ontology-to-ontology transformation

16

In case of Peer-to-Peer ontology mapping, one ontology is mapped to other manually or in

semi-automatic way (Figure 22).

Figure 22 - Peer-to-Peer ontology mapping

Construction of mapping rules may meet the following problems:
Q Different expert vision of problem domain;
O Models may be inconsistent conceptually;

O Paradigms the models are based on may cause hardly convertible schemas.

9.4 Model-to-model mapping

To develop unified adapter to a particular standard, the following formats and structures of

data must be analyzed:

» Flat files (ASCII text files);

» Tables (Excel);

* Trees and taxonomies (xml, ontology-files);

e Marked up structures (HTML);

* Relational model (RDBMS);

* Object model (Classes and objects);

e Compound structure (any mixed specific structures).

The generic model mapping scheme is shown in Figure 23:

Model mapping tool ol Model mapping tool

chema mappin Model A chema mappin
(s pping) - ap (s pping) Model B
Data transformation Data Data transformation

(reusable part) (reusable part) ¢

Model mapping tool
(schema mapping)

< Model N
Data transformation

(reusable part)

\ 4

Figure 23 - Generic model mapping schema

17

For a concrete case the model mapping scheme will look like the following (Figure 24):

Model mapping tool XML Model mapping tool

(schema mapping) Schema (schema mapping) DB model pu

Doc transformation | XML doc) Doc transformation DB
(reusable part) (reusable part) content

:

Model mapping tool
(schema mapping) :
Data transformation —

(reusable part)

A 4

Figure 25 - Model mapping schema

Finally, the document transformation scheme is the following (Figure 25):

RscDF 2 XML XML schema to DB
Schema mapping tool model mapping tool DB
- <> XML doc |« :
Data transformation Doc transformation content
(reusable part) (reusable part) ¢
RscDF
doc

Model mapping tool
(schema mapping)

A
A 4

Data transformation L~
(reusable part)

Figure 24 — Document transformation scheme

As for the mapping tools that can be used in the transformation process, the following

existing ones are available:

« RDBMS 2 XML Schema;
e XML 2 XML (XSLT);
e RDF 2 XML;

» efc.

18

If to talk about automation of the adaptation, it is evident that fully automated semantic
adaptation cannot be implemented. The question is what level of automation is possible
and how to achieve it.
Given that unambiguous semantic description resources become machine processable,
hence automated adapter composition is possible. However, unambiguous semantic
description requires human to map the meaning of concepts and relations unless there is
already existent common ontology. The tools will be needed to simplify the process of
mapping for human. Tools will use faceted classification, adapted for each particular
domain in order to make easily accessible the most relevant concepts.
The following cases are essential in a context of automated semantic adaptation:

e casel: Explicit mapping (human assisted);

» case2: Shared ontology (both resources use same ontology or at least are mapped to

it);
» case3: Shared ontology lookup & composition (may be wrapped as a service or

implemented as an embedded functionality).

9.5 Adapter as software design

The software design of the adapter will require Abstract design of Adapter Backbone using
structural and behavioral patterns and Adapter concrete implementation using integration

patterns (see Figure 26).

In order to simplify the complexity of Adapter, the following strategy has to be utilized:

* Use model based software development techniques:
0 Pre-defined software abstractions based on integration and design
patterns provide a robust framework for developing adapters
» Partitioning logic of adaptation to multiple adapters even for one resource:
o Integration function (Connection, Parsing, Transformation, etc.)
0 Support function (System Logging, Error handling, Audit Trail, etc.)
* Reuse all external transformers instead of developing transformer functionality in

each adapter.

19

Adapter Concrete
Implementation using
integration patterns

Adapter Backbone
Abstract Design
using structural and

behavioral patterns
Adapter

Figure 26 - Adapter design scheme

This part of design (software) includes techniques and methods for software development
of components and modules. Different approaches exist for reusable and well structured
software design - such as structural patterns, design patterns, etc. Pattern approach allows
elaborating well-thought abstract adapter design with further reuse of it for concrete

adapter implementation.

For clearer understanding, Data Piping Pattern can be considered as an example of the
structural pattern. This pattern fits well to application-to-application adaptation. Each

component of this pattern is responsible for a particular function (see Figure 27).

Data Piping Pattern !
g \ Data | Data | pata L7 g i
\ Data source extractor | | transformer | | loader Data target

Figure 27 - Sample structural pattern

20

Data extractor is responsible for getting/extracting data from a source resource. Since we
have heterogeneous resources with diversity of access methods (RS 232, Bluetooth,
WLAN, LAN, etc), formats of data and APIs, each Data Extractor module must be

developed for particular source of data.

After data extraction it is piped to the Data Transformer module. Data Transformer
performs transformation involving metadata of formats (schemas) and data transformation
rules. Format’s metadata (schema) with data transformation rules (mapping) together

constitute semantic adaptation.

After transformation process, data are ready to be stored in appropriate place. Data Loader

performs this function.

21

References
[1] XR homepage: XML-to-RDF transformation format, http://w3future.com/xr/, last
accessed 19" Oct 2004.

[2] E. Miller, C.M. Sperberg-McQueen: “On mapping from colloquial XML to RDF using
XSLT”, Proc. of W3C Extreme Markup Languages 2004, August 3, 2004; Montreal, CA.

[3] MapForce homepage. http://www.altova.com/products_mapforce.html.

22

http://w3future.com/xr/
http://www.w3.org/People/cmsmcq/
http://www.altova.com/products_mapforce.html

	Introduction
	Tasks and Goals
	Background
	Framework for semantic adaptation of resources
	Data integration
	Software integration

	Description of concepts
	SmartResource
	Real World Resource
	Web Service
	Human
	Adapter
	Agent
	Global Understanding eNvironment
	Adaptation
	General Adaptation
	Place of SmartResource
	RDF
	RscDF
	Ontology
	GUN Adapter

	Ontology design
	Scenarios of Interaction
	SmartResource internal scenarios
	Agent to RWR
	Agent to Adapter
	Adapter to RWR
	Agent to RWR communication

	RWR to Agent
	RWR to Adapter
	Adapter to Agent
	RWR to Agent communication

	SmartResource internal interoperation

	Adapter software component design for semantic adaptation
	Adapter – abstract realization
	Adapter Class Diagram
	Adapter creation
	Protocol Class Diagram
	Agent to RWR communication
	Abstract view on semantic adaptation process

	Adapter with concrete realization
	Concrete Adapter Class Diagram
	Concrete Adapter creation
	Concrete Protocol Class Diagram
	Agent to Rwr communication with concrete realization
	Semantic adaptation with concrete realization
	Partitioned logic of semantic adaptation
	Run-time concrete realization loading

	Adaptation of Human, Device and Web Service using GAF
	Human adaptation
	Device adaptation
	Web Service adaptation
	W3C stack

	References
	Introduction
	Approach to General Adaptation Framework
	Data models
	Processes in General Adaptation Framework

	Semantic Adaptation
	Semantic Adaptation Example
	Elaboration of Semantic Adaptation approach
	Ontology-to-ontology mapping
	Model-to-model mapping
	Adapter as software design

	References

