
SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 1

SmartResource Project

Technical report

 “Deliverable 2.1, General Proactivity Framework (Pro-GAF)”

1. Introduction

There is a huge amount of academic and industrial initiatives world-wide related to agent-oriented
analysis. To organize those efforts a special Co-ordination Action for Agent Based Computing,
AgentLink III1, funded by the European Commission's 6th Framework Program was launched on 1st
January, 2004 until December 2005. The AgentLink III initiative currently has registered 99 projects
and 128 software products based on agent approach. Core technologies of several commercial
organizations utilize different agent paradigms. For example, Whitestein Technologies2 and Agent
Oriented Software Pty Ltd3 have provided advanced software agent technologies, products, solutions,
and services for selected application domains and industries since 1999. Agent-based approach has
been tried in a research of industrial automation systems domain [2, 7].
Modeling of multi-agent systems and behavior of concrete agents in it has been one of the interesting
and significant topics in the concerned domain. Model-driven approach to design of agent behaviors
emerged a long time ago and initially was based on UML modeling [9, 11]. Later this approach was
extended to a level of meta-modeling [10]. As one of the mature UML-based methodologies for
modeling multi-agent systems, Agent Modeling Language can be mentioned [12]. Currently, AML is
used in commercial software projects, is supported by CASE tools and in the nearest future first
version of its specification will be presented to public for its further development.
One of the famous formal theories about behavior in multi-agent systems [13] is developed and
lectured in Free University of Amsterdam4.
All the above efforts have elaborated in details a conceptual base of agent behavioral modeling and
motivated its further development. There were even attempts to elaborate a conceptual convergence
of an agent layer and Web Service Architecture [8]. However, academic efforts lack concrete details
concerning methodology of modeling or have just very preliminary prototype implementations as e.g.
the Agent Academy project [1].
Recently, ontology-driven approach is growing as an option to Model-driven one, while having
several advantages:

− Possibility of reasoning on a level of a single model and inter-model relationships and
mappings, supporting meta-model level as well.

1 http://www.agentlink.org/
2 http://www.whitestein.com/
3 http://www.agent-software.com/
4 http://www.vu.nl/

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 2

− Support of flexibility for tools (e.g. XSLT transformations) based on ontology during
an evolution of the ontological model (see analysis of evolution of classes and
properties and its impact on tools in [14]).

− More flexible modeling framework based on a graph [15].
DERI is among research centers that are very close to implementing really powerful prototypes of
ontology-driven modeling for Web Services and Multi-Agent Systems. Significant efforts for
development of agent goal-behavior frameworks based on WSMO standard (ontology-driven) have
been conducted by a research group from DERI according to their vision of Semantic Web Fred [3].
As a possible option of implementation of agents behavior engine are Horn-like rules. W3C
standardization efforts aimed at this direction, have recently resulted into a family of standards:
RuleML5 (Rule Markup Language), SWRL6 (a Semantic Web Rule Language Combining OWL and
RuleML), FOL RuleML7 (First-Order-Logic RuleML), SWRL FOL8 (SWRL extension to First-Order
Logic). All these standards are tightly related to previous research carried out by IBM alphaWorks
Labs in development of CommonRules9 and BRML (Business Rule Markup Language). The
initiative within CommonRules was aimed at a development of a framework for specification of
executable business rules by non-programmer business domain experts. The final result represented a
reusable technology of business rules and rule-based intelligent agents embodied as extensible Java
library. Industrial Standards related to modeling and automation of business behavior are currently
concentrated around BPEL4WS10 and ebXML11.
From the technological side, there are reliable options to be a basis for implementing frameworks for
modeling behaviors in multi-agent systems: JADE-Jess-Protégé12 and Aglets SDK13. In the JADE
implementation several Java upper classes have been provided [4] and this promoted use of the JADE
platform in implementation of tools for modeling complex agent behaviors. The JADE Framework
has been extended by a BDI infrastructure within the Jadex14 project [5] and its behavioral model was
extended by Hewlett Packard Lab in their HP SmartAgent initiative [6].
The research presented in this document aims at development of a framework of ontology-driven
proactive behavior of resources using Multi-Agent Systems.

2. RGBDF – Resource Goal and Behaviour Description Framework

Autonomous systems must be automatic and, in addition, they must have a capacity to form and
adapt their behaviour while operating in the environment. Thus, traditional AI systems and most
robots are automatic but not autonomous - they are not independent of the control of their designers.
Autonomous systems are independent and are able to perform a self-control. As it is argued in this
research, to do this, they must be motivated.

2.1 Resource Proactivity Approach
In Agent Environment as well as in real world the base for any interaction is behaviour of each
individual. Further, integration of these individual behaviours may form behaviour of Agent Alliance.

5 http://www.ruleml.org/
6 http://www.daml.org/2003/11/swrl/
7 http://www.daml.org/2004/11/fol/folruleml
8 http://www.daml.org/2004/11/fol/
9 http://www.research.ibm.com/rules/commonrules-overview.html
10 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
11 http://www.ebxml.org/
12 http://jade.tilab.com/doc/examples/JadeJessProtege.html
13 http://www.trl.ibm.com/aglets/
14 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 3

In real world almost all of behaviours (actions) are goal-driven, but some of them are not. With
software agents in mind we are focused just on the goal-driven behaviour. What is a goal-driven
behaviour? Such behaviour means performing set of rules, which are aimed for achievement of
certain goal. In return, goal is a fact which does not exist in a description of the environment, and an
agent aims at appearance of the fact. As a result, we have a trio: behaviour which is driven by certain
goal and which lies in performing actions following a set of behavioural rules. However, even having
a rule base, which enables an agent to achieve a goal, still extra information (environmental facts) is
needed. This is because each rule has to have a sufficient condition. In our case a sufficient condition
is a presence of input data for action performing. Having the sufficient condition we should take into
account necessary condition: presence of a goal along with a certain context (set of facts of the
environment) for performing the goal. Not all goals assume execution of unambiguous rule(s). Some
goals can be represented by aggregation of more specific goals.

Referring to the trios that were discussed above, each agent should have initial set of those trios
(regulated by initial role). These trios represent expertise and experience of an agent. As well as in
real world agents can exchange their expertise (rules for execution of actions depending on the goals
and direct software modules for execution of actions). Availability of a wide spectrum of the trios
gives a possibility for agent to automatically divide up goals (which cannot be achieved because of
lack of information) to sub goals and to create a chain of nested trios.

One more thing from a modelling paradigm that can be applied to an agent is an agent role. Agent
role means aggregate of goals corresponding to a specific purpose of the agent. Individual role does
not assume a fixed set of activities, the set of the goals can be different even for the same role
depending on the context. Such approach to the goal and behaviour description brings a possibility
for agent to be more autonomous. Through utilization of this approach agent can change its role, set
of the goals corresponding to its purpose depending on a condition of the environment. In other
words, an agent can change its behaviour based on a context.

Approach of RG/BDF assumes concentrating all the goals, roles descriptions and templates of
behavioural rules in ontology. The templates of behavioural rules are described in a general way with
a purpose to be applied to any particular agent. Such description requires utilization of a handy and
flexible description schema (RG/BDFS-Lite), which will be presented later. Architecture of general
Agent Platform is represented in Figure 1.

Figure 1. SmartResource platform architecture

On its own platform agent has Resource History, where it stores all statements about resource states,
conditions and actions that have been performed by the resource agent and other information that can

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 4

be useful for it (statements about the environment). Some executable modules (code) that agent must
perform also can be located there as an output of its behavioural rule chain. Otherwise, the agent has
to utilize external web services. Agent always has to interact with ontology server to be able to
download necessary role, goal description or behavioural template whenever the agent needs it.

Behavioural template represents a rule for behaviour in RDF serialization. The template is
represented by a behavioural statement rgbdfs:Behaviour_Statement (it will be described in the next
chapter) and contains necessary condition (goal) and sufficient condition (condition of the
environment) as the contexts of rule execution and a set of the executive descriptions (specification of
the executable modules that should be invoked) as an output of the rule.

We can divide the process of the resource goal and behaviour annotation to stages. The first one is a
stage of goal instance definition that assumes creation (process of describing) of a statement to which
an agent should strive. This goal can be specified directly by an expert or via specification of the
agent goal. Based on the goal description appropriative behaviour template(s) have to be found in
ontology, downloaded and transformed to the behavioural instance(s) on the resource platform. After
this, the needed executable modules (if they are not located at the resource platform) also can be
downloaded. As a final stage of goal/behaviour annotation process expert has to specify (add/modify)
the context of the behaviour. Now the platform contains behavioural rule(s) in RDF/XML
serialization form that can be performed by the agent engine. This engine follows the behavioural
rules till the goal is achieved.

2.2 RG/BDF-Lite
In continuation to the idea of Context Description Framework (CDF), which was developed by
Industrial Ontologies Group15, such approach can be applied to context sensitive Resource Goal and
Behaviour Description Framework (RG/BDF). RG/BDFS-Lite is an upper schema for description of
resource goal and behaviour. It is based on the CDF schema and extends it as well as Resource State
and Condition Description Framework Schema (RS/CDFS) does.

rgbdfs:Goal_Statement is a class of the goal instances. This class is similar to rscdfs:SR_Statement
and is its subclass. Triple <SSS-PPP-OOO> describes a statement of a fact, which is currently absent
in the resource history and which a resource aims to have (i. e. an agent must achieve this goal). Each
goal is dynamic and can belong to a resource only in certain context (see Figure 2).

Figure 2. Goal Statement

rgbdfs:Behaviour_Statement - a class of the behavioural instances is represented in Figure 3. This
class is a subclass of rscdfs:SR_Statement with extended properties. The rscdfs:ResourceAgent class
plays a role of a range for the subject (rgbdfs:subject). Range of the statement’s predicate
(rgbdfs:predicate) is restricted by the rgbdfs:B_Property class (subclass of rscdfs:SR_Property). An
object of the behavioural statement can be represented by rgbdfs:Behaviour_Container: a container
for nested behavioural statements (if a root behaviour is complex) or for atomic execution(s). The
rgbdfs:falseInContext property is a sub property of the rscdfs:falseInContext property. This property

15 http://www.cs.jyu.fi/ai/OntoGroup/

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 5

has a little bit different meaning than its super property. It plays a role of a trigger, which switches on
and switches off the execution of the rule (execution of the behavior, which is described via the
behavioural container). Behavioural statement will be true, if in the resource history there is no a
statement about the fact of the specified goal. The property makes a link to a goal container, which
contains goal statement(s) (because it is reasonable to execute behaviour only when a goal has not
been achieved). If presence of a goal is a necessary condition for the behaviour, then contextual
statements (condition of the environment) are a sufficient condition (which is represented by the
contextual container via the rscdfs:trueInContext property).

Figure 3. Behaviour Statement

rgbdfs:Goal_Container is a class of the instances of a goal container. This class is a subclass of
rscdfs:SR_Container in general. It represents a container of goal statements, which define the goals.
Such container plays a role of a context (using the rscdfs:falseInContext property) for a behavioural
statement till the goal is achieved, and that is why it is a direct subclass of
rscdfs:Context_SR_Container. The rgbdfs:gMember property is a property redefined from
rscdfs:member and which defines instance of the rgbdfs:Goal_Statement class as a member of the
container.

As it was mentioned in the previous chapter, goal can be divided into a set of sub goals. Thus, a goal
container also plays a role of a set of goals, members of which are sub goals of a complex goal. With
the purpose of defining a set of sub goals for a complex goal, the property rgbdfs:subGoal was
defined in RG/BDFS-lite (see Figure 4). The domain and range for this property are
rgbdfs:Goal_Statement and rgbdfs:Goal_Container classes correspondingly.

Figure 4. RGBDF Goal

rgbdfs:Behaviour_Container is a class of the instances of a behavioural container. As a subclass of
rscdfs:SR_Statement, it has a redefined rgbdfs:bMember property. The main role of the behavioural
container is collecting nested behaviours for a complex behaviour (represented by a behavioural
statement) (see Figure 5).

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 6

Figure 5. RGBDF Behaviour

Simple behaviour, that assumes execution of a certain action (invocation of certain method, code…),
can be described via the rgbdfs:execute property (instance of the rgbdfs:B_Property class), which
defines instance of rgbdfs:Execution class for a resource agent (see Figure 4). This instance
describes the exact method (code, service, etc.), inputs, outputs and other features of an executive
entity. With a purpose of defining a complex behaviour (which assumes execution of a set of nested
behaviours) for an agent, RG/BDFS-lite has the rgbdfs:hasBehaviour property (instance of the
rgbdfs:B_Property class). This property defines a set of behavioural statements for a resource agent
via a behavioural container (see Figure 5).

Another important part of behavioural structuring is an agent role (see Figure 6). The rgbdfs:hasRole
property defines a role (rgbdfs:Role) for a resource agent in certain context. rgbdfs:goals is another
property related to an agent role and which defines a goal or a set of the goals that correspond to the
subject role via a goal container.

Figure 6. RGBDF Role

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 7

As it was mentioned previously, resource agent can have different roles, while a set of the goals can
be different even for the same role depending on the context (environmental condition). Thus, with a
purpose of having a possibility to define a context for them, these two properties are instances of the
rscdfs:SR_Property class.

The presented Resource Goal Behaviour Description Framework is fully compliant with the BDI
(Belief-Desire-Intention) model well-known in the scientific world of Multi-Agent Systems [16]. By
now, a quite big amount of research results is available in the domain of agents based on BDI model.
Recent results report significant development of modelling frameworks for BDI agents [17] and
different logic programming languages for it, such as AgentSpeak [18]. BDI model has been actively
developed towards cooperative behaviour of agents [19], particularly with a purpose of exchanging
executive plans [20]. Figure 7 explains a parallel between BDI and RGBDF models.

Figure 7. BDI: Underlying Model for RGBDF

2.3 Definition and configuration of resource’s proactivity/behavior

Let us consider a case of agent behaviour. It will be a simple case of a device diagnostics performed
by a web service. Actually, we have two smart resources: conventional resources (field device and
web service) supplied with the agents that maintain them.

Agent, which represents a field device, plays a role of a patient that wants to take care (to know its
own condition/diagnosis) of itself in case if certain alarm happens. Thus, the goal of this agent is to
get a statement about a diagnosis from a diagnostic unit (in our case diagnostic web service) based on
sub history of device states, if an emergency statement appears. It is a complex goal and contains
nested sub goals. Agent has to send a diagnostic request to a web service that requires initial
collecting of the set of device states and searching appropriate web service. After the request has been
sent, the agent must get corresponding response with a statement about diagnosis from the web
service. On the other hand, we have a web service agent, which plays a role of a therapist (diagnostic
unit). The goal of this agent is to diagnose based on sub histories of device states. It is also a complex
goal, which assumes receiving a diagnostic request, diagnosing and sending a response back to the
field device agent.

As it was mentioned before, ontology contains templates of roles, goals and behaviours. Figure 8
represents two templates of roles and templates of goals that correspond to them.

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 8

Figure8. Role and correspondent Goal templates

Further, we will concentrate on an example of the first mentioned agent, which maintains a field
device. As you can see, the agent, which has a role of a patient, has a goal to get a diagnostic
statement about certain device in a context that the agent takes care of this device. However, it is not
an atomic goal, and therefore it has a set of nested sub goals. Next figure demonstrates, how nested
sub goals can be described in an ontology (Figure 9.).

Figure 9. Nested Goal representation

In a similar way template of agent behaviour can be described via rgbdfs:Behaviour_Statement. Such
statement links certain statement about execution (which defines executive module for a certain
action through rdf:object property using rgbdfs:Behaviour_Container) with a goal (described through
the rscdfs:falseInContext property) and with a context (which specifies a condition, when the action
has to be performed through the rscdfs:trueInContext property).

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 9

Thus, let us consider a process of goal and behavior specification for an agent. At the initial stage an
expert, which performs linking of the agent to a resource (field device), has to specify from an
ontology certain role or a goal or even a set of them for current agent. If certain role was specified,
then a set of corresponding goals or one goal can be retrieved automatically from the ontology. Then,
based on goals corresponding to the agent, appropriate behavioural templates also can be retrieved
from the ontology. After all necessary templates have been collected, their corresponding instances
(with links to concrete instances of the resource agent, resources, etc.) have to be put to the agent
storage on the resource platform. Depending on a complexity of the goals, an engine of an agent shell
(see the example in Figure 10 and Figure 11) will compose nested hierarchy of agent behavioural
rules automatically.

Figure 10. Nested hierarchy of agent behaviour rules

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 10

Figure 11. Nested hierarchy of agent behaviour rules (continuation)

Now, when the rules of agent behavior have been specified, it is a time to run agent engine for
behaviour. Working space (storage) of SmartResource Platform (combination of a device and an
agent, which maintains it) should be divided into two parts: a temporal storage and a long term one.
Initially all information (all statements that concern the states and conditions of resources) are saved
to the temporal storage and play a role of a behavioral context and input data for executive modules.
As it was mentioned before, the goal statements (linked via the rscdfs:falseInContext property) play a
role of a trigger to run certain behavioural rule. If there is no a statement in the temporal storage
similar to the goal statement, then the agent engine executes a rule. Let us consider our example.
Agent starts to perform root behaviour all the time, when a statement about device diagnosis does not
exist in the temporal storage. Otherwise engine skips behavioral rule and passes to the next one on
the same level of nesting. Each level can contain both types of behavioural statements: complex
behavioural statements and atomic execution statements (which specify executive module via an
instance of the rgbdfs:Execution class). In fact, these executive modules generate (add to the
temporal storage a statement, which is required by the goal of the behavioural rule). For example,
executive module, which is described by the instance ap:ExModule#3, generates a statement which
asserts that the agent (ap:ResourceAgent#1) has sent a diagnostic request to certain diagnostic
service. Thus, agent has achieved one of the sub goals. However, two sub goals (collecting of a
history of the devise states and retrieval of suitable service for the diagnostics) have been achieved
before, because they were needed for performing the executive module #3.When the agent has
achieved the upper goal, the statement of the achieved goal is moved to the long term storage to be
kept in the history of the SmartResource. At the same time all statements of the achieved nested goals
have to be removed, too. Some of the contextual statements, which played a role of input data also
must be removed (for example, the statement about an alarm, which plays a role of a context for a
process pf sending a diagnostic request; and statements about the states of the device, which were
used for the diagnostics).

3. RGBDF-Schema and Goal/Behaviour Ontology

RGBDF-Schema and goal/behaviour ontology are given in Appendix A.

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 11

4. Conclusions

As it has been presented, ontology-driven approach in modeling agent behavior is anticipated to
become a powerful solution providing more benefits than conventional model-driven approaches.
RGBDF that was described in this document has been designed within the second stage of the
SmartResource project (Proactivity Stage). Resource Goal/Behavior Description Framework
continues development of a modeling basis for the overall SmartResource platform. Further tools and
use cases that will be developed within the Proactivity Stage based on RGBDF, will form a solid
ground in favor of ontology-driven approach to modeling agent behavior.

5. References

[1] G. Laleci, Y. Kabak, A. Dogac, I. Cingil, S. Kirbas, A. Yildiz, S. Sinir, O. Ozdikis, O. Ozturk:
A Platform for Agent Behavior Design and Multi Agent Orchestration. AOSE 2004: pp. 205-
220.

[2] T. Pirttioja, I. Seilonen, P. Appelqvist, A. Halme, and K. Koskinen, Agent-based architecture
for information handling in automation systems, 6th IFIP International Conference on
Information Technology for Balanced Automation Systems in Manufacturing and Services
(BASYS 2004), Vienna, Austria, September, 27-29, 2004.

[3] Stollberg, M.; Keller, U.; Zugmann, P.; Herzog, R., Semantic Web Fred - Agent Cooperation on
the Semantic Web, 3rd International Semantic Web Conference, Hiroshima, Japan, 7 - 11
November 2004.

[4] Specification of Java library for programming agent behaviors,
http://jade.tilab.com/doc/api/jade/core/behaviours/Behaviour.html.

[5] L. Braubach, A. Pokahr, W. Lamersdorf, Jadex: A Short Overview, in: Main Conference
Net.ObjectDays 2004, AgentExpo.

[6] M. Griss, S. Fonseca, D. Cowan and R. Kessler, SmartAgent: Extending the JADE agent
behavior model, HPL 2002-18, Jan 2002 (AOSE workshop).

[7] I. Seilonen, K. Koskinen, T. Pirttioja, P. Appelqvist, and A. Halme, Agent-based approach to
enhanced flexibility in process automation systems, 3rd International Symposium on Open
Control Systems, Helsinki, Finland, September 9-10, 2003.

[8] Zhao, L. and Mehandjiev, N. and Macaulay, L. (2004) Agent Roles and patterns for supporting
Dynamic behavior of Web Service Applications. In: Proceedings of AAMAS04 Workshop on
Web Services and Agent-Based Engineering (WSABE).

[9] A. Chella, M. Cossentino, and L. Sabatucci. Tools and patterns in designing multi-agent
systems with passi. In 6th WSEAS Int.Conf. on Telecommunications and Informatics (TELE-
INFO 04), Cancun, Mexico, May 2004.

[10] Djuric, D., Gaševic, D., Damjanovic, V., "AIR A Platform for Intelligent Systems," In
Proceedings of the 1st IFIP Conference on Artificial Intelligence Applications and Innovations,
Toulouse, France, August 2004.

[11] Viviane Torres da Silva, Ricardo Choren, Carlos José Pereira de Lucena: A UML Based
Approach for Modeling and Implementing Multi-Agent Systems. AAMAS 2004: 914-921.

[12] R. Cervenka, I. Trencansky, M. Calisti, D. Greenwood. AML: Agent Modeling Language.
Toward Industry-Grade Agent-Based Modeling. Lecture Notes in Computer Science, Springer-
Verlag, Volume 3382/2005: Agent-Oriented Software Engineering V: 5th International
Workshop, AOSE 2004, New York, NY, USA, July 19, 2004. Revised Selected Papers.

http://www.springerlink.com/app/home/contribution.asp?wasp=mm8xd75nwn5vxwd93xfr&referrer=parent&backto=issue,3,15;journal,6,1882;linkingpublicationresults,1:105633,1

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 12

[13] Dastani, M., Jonker, C.M., and Treur, J., A Requirement Specification Language for
Configuration Dynamics of Multi-Agent Systems. International Journal of Intelligent Systems,
vol. 19, 2004, pp. 277-300.

[14] Naumenko A., Nikitin S., Terziyan V., Zharko A., Strategic Industrial Alliances in Paper
Industry: XML- vs. Ontology-Based Integration Platforms, In: The Learning Organization, An
International Journal, Special Issue on Ubiquitous Business Intelligence, Emerald Publishers,
ISSN: 0969-6474, 16 pp., (to appear).

[15] Mazzocchi S., It's All about Graphs, White Paper, February 11, 2004, available at:
http://www.betaversion.org/~stefano/linotype/news/46/, last accessed 17th April 2005.

[16] Rao, Anand S. and Georgeff, Michael P., BDI Agents: From Theory to Practice, in Proc. of the
1st International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, USA, June,
1995.

[17] Mascardi, V., M. Martelli, F. Zini, and R. Degl’Innocenti: ‘CaseLP: a Prototyping Environment
for Heterogeneous Multi-Agent Systems’. Journal of Autonomous Agents and Multi-Agent
Systems, 2004.

[18] Rao, A. S. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
Proc. MAAMAW-96. Springer Verlag, LNAI 1038, pp. 42–55.

[19] Ancona D. and Mascardi V., Coo-BDI: Extending the BDI Model with Cooperativity, In Proc.
of the First Declarative Agent Languages and Technologies Workshop (DALT'03), J. A. Leite,
A. Omicini, L. Sterling and P. Torroni (Eds.), Springer Verlag, LNAI 2990, 2004, pp. 109-134.

[20] Ancona D., Mascardi V., Hübner J. F., Bordini R. H., Coo-AgentSpeak: Cooperation in
AgentSpeak through Plan Exchange, In Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2004), N. R. Jennings and C. Sierra and L. Sonenberg and M. Tambe (Eds.),
pp. 698-705, ACM press, 2004.

http://www.cs.jyu.fi/ai/papers/TLO-2005.pdf
http://www.cs.jyu.fi/ai/papers/TLO-2005.pdf
http://ninetta.emeraldinsight.com/vl=1032640/cl=74/nw=1/rpsv/journals/tlo/notes.htm
http://listserv.acm.org/scripts/wa.exe?A2=ind0404d&L=chi-announcements&F=&S=&P=538

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 13

Appendix A: RGBDF-Schema and Goal/Behaviour Ontology

RG/BDF Schema as RDF/XML
<?xml version='1.0' ?>

<!DOCTYPE rdf:RDF [
 <!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
 <!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>
 <!ENTITY rscdfs 'http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/rscdfs#'>
 <!ENTITY rgbdfs 'http://www.cc.jyu.fi/~olkhriye/rgbdfs/0.1/rgbdfs#'>
]>

<rdf:RDF
 xmlns:rdf="&rdf;"
 xmlns:rdfs="&rdfs;"
 xmlns:rscdfs="&rscdfs;"
 xmlns:rgbdfs="&rgbdfs;"
>
<rdfs:Class rdf:about="&rgbdfs;Role">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Role</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rdfs;Class"/>
</rdfs:Class>

<rdfs:Class rdf:about="&rgbdfs;Execution">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Execution</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rdfs;Class"/>
</rdfs:Class>

<rdfs:Class rdf:about="&rgbdfs;Goal_Statement">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Goal_Statement</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rscdfs;SR_Statement"/>
</rdfs:Class>

<rdfs:Class rdf:about="&rgbdfs;Behaviour_Statement">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Behaviour_Statement</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rscdfs;SR_Statement"/>
</rdfs:Class>

<rdfs:Class rdf:about="&rgbdfs;Goal_Container">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Goal_Container</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rscdfs;Context_SR_Container"/>
</rdfs:Class>

<rdfs:Class rdf:about="&rgbdfs;Behaviour_Container">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Behaviour_Container</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rscdfs;SR_Container"/>
</rdfs:Class>

<rgbdfs:B_Property rdf:about="&rgbdfs;B_Property">
 <rdfs:comment>Type of itself</rdfs:comment>
 <rdfs:label>B_Property</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rdfs;Class"/>
 <rdfs:subClassOf rdf:resource="&rscdfs;SR_Property"/>

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 14

</rgbdfs:B_Property>

<rdf:Property rdf:about="&rgbdfs;gMember">
 <rdfs:label>member</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;Goal_Container"/>
 <rdfs:range rdf:resource="&rscdfs;Goal_Statement"/>
 <rdfs:subPropertyOf rdf:resource="&rscdfs;member"/>
</rdf:Property>

<rdf:Property rdf:about="&rgbdfs;bMember">
 <rdfs:label>member</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;Behaviour_Container"/>
 <rdfs:range rdf:resource="&rscdfs;Behaviour_Statement"/>
 <rdfs:subPropertyOf rdf:resource="&rscdfs;member"/>
</rdf:Property>

<rdf:Property rdf:about="&rgbdfs;falseInContext">
 <rdfs:label>falseInContext</rdfs:label>
 <rdfs:domain rdf:resource="&rgbdfs;Behaviour_Statement"/>
 <rdfs:range rdf:resource="&rgbdfs;Goal_Container"/>
 <rdfs:subPropertyOf rdf:resource="&rscdfs;falseInContext"/>
</rdf:Property>

<rgbdfs:B_Property rdf:about="&rgbdfs;hasBehaviour">
 <rdfs:label>hasBehaviour</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Behaviour_Container"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&rgbdfs;execute">
 <rdfs:label>execute</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
</rgbdfs:B_Property>

<rscdfs:SR_Property rdf:about="&rgbdfs;subGoal">
 <rdfs:label>subGoal</rdfs:label>
 <rdfs:domain rdf:resource="&rgbdfs;Goal_Statement"/>
 <rdfs:range rdf:resource="&rgbdfs;Goal_Container"/>
</rscdfs:SR_Property>

<rscdfs:SR_Property rdf:about="&rgbdfs;hasRole">
 <rdfs:label>hasRole</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Role"/>
</rscdfs:SR_Property>

<rscdfs:SR_Property rdf:about="&rgbdfs;goals">
 <rdfs:label>goals</rdfs:label>
 <rdfs:domain rdf:resource="&rgbdfs;Role"/>
 <rdfs:range rdf:resource="&rgbdfs;Goal_Container"/>
</rscdfs:SR_Property>

<rdf:Property rdf:about="&rgbdfs;subject">
 <rdfs:label>subject</rdfs:label>
 <rdfs:domain rdf:resource="&rgbdfs;Behaviour_Statement"/>
 <rdfs:range rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:subPropertyOf rdf:resource="&rdf;subject"/>
</rdf:Property>

<rdf:Property rdf:about="&rgbdfs;predicate">

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 15

 <rdfs:label>predicate</rdfs:label>
 <rdfs:domain rdf:resource="&rgbdfs;Behaviour_Statement"/>
 <rdfs:range rdf:resource="&rgbdfs;B_Property"/>
 <rdfs:subPropertyOf rdf:resource="&rscdfs;predicate"/>
</rdf:Property>

</rdf:RDF>

Goal/Behaviour Ontology

<?xml version='1.0' ?>

<!DOCTYPE rdf:RDF [
<!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>
<!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>
<!ENTITY rscdfs 'http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/rscdfs#'>
<!ENTITY rgbdfs 'http://www.cc.jyu.fi/~olkhriye/rgbdfs/0.1/rgbdfs#'>
<!ENTITY gbOntology 'http://www.cc.jyu.fi/~olkhriye/rgbdfs/ontology/gbOntology#'>
]>

<rdf:RDF
 xmlns:rdf="&rdf;"
 xmlns:rdfs="&rdfs;"
 xmlns:rscdfs="&rscdfs;"
 xmlns:rgbdfs="&rgbdfs;"
 xmlns:gbOntology="&gbOntology;"
>
<gbOntology:Patient rdf:about="&gbOntology;Patient">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Patient</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rgbdfs;Role"/>
</gbOntology:Patient>

<gbOntology:Therapist rdf:about="&gbOntology;Therapist">
 <rdfs:comment></rdfs:comment>
 <rdfs:label>Therapist</rdfs:label>
 <rdfs:subClassOf rdf:resource="&rgbdfs;Role"/>
</gbOntology:Therapist>

<rscdfs:SR_Property rdf:about="&gbOntology;sentDiagnosticRequest">
 <rdfs:label>sentDiagnosticRequest</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rscdfs;DiagnosticRequest"/>
</rscdfs:SR_Property>

<rscdfs:SR_Property rdf:about="&gbOntology;receivedDiagnosticRequest">
 <rdfs:label>receivedDiagnosticRequest</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rscdfs;DiagnosticRequest"/>
</rscdfs:SR_Property>

<rscdfs:SR_Property rdf:about="&gbOntology;receivedDiagnosticResponse">
 <rdfs:label>sentDiagnosticRequest</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rscdfs;DiagnosticResponse"/>
</rscdfs:SR_Property>

<rscdfs:SR_Property rdf:about="&gbOntology;sentDiagnosticResponse">
 <rdfs:label>sentDiagnosticRequest</rdfs:label>

SmartResource project, Deliverable 2.1 Industrial Ontologies Group, 2005

 16

 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rscdfs;DiagnosticResponse"/>
</rscdfs:SR_Property>

<rscdfs:SR_Property rdf:about="&gbOntology;linkedWithServise">
 <rdfs:label>linkedWithServise</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rscdfs;Service"/>
</rscdfs:SR_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;generateHistory">
 <rdfs:label>generateHistory</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;searchService">
 <rdfs:label>searchService</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;sendDiagnosticRequest">
 <rdfs:label>sendDiagnosticRequest</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;receiveDiagnosticResponce">
 <rdfs:label>receiveDiagnosticResponce</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;sendDiagnosticResponce">
 <rdfs:label>sendDiagnosticResponce</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;receiveDiagnosticRequest">
 <rdfs:label>receiveDiagnosticRequest</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>

<rgbdfs:B_Property rdf:about="&gbOntology;makeDiagnostic">
 <rdfs:label>makeDiagnostic</rdfs:label>
 <rdfs:domain rdf:resource="&rscdfs;ResourceAgent"/>
 <rdfs:range rdf:resource="&rgbdfs;Execution"/>
 <rdfs:subPropertyOf rdf:resource="&rgbdfs;execute"/>
</rgbdfs:B_Property>
</rdf:RDF>

	2.1 Resource Proactivity Approach
	2.2 RG/BDF-Lite
	2.3 Definition and configuration of resource’s proactivity/b

