
IOG

SMART RESOURCE PROTOTYPE ENVIRONMENT V. 2.0

DELIVERABLE 2.3

Technical report

SmartResource: Proactive Self-Maintained Resources in Semantic Web

12/13/2005

University of Jyväskylä

Agora Center

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi

Title: SmartResource prototype environment, v. 2.0, Proactivity Stage, Deliverable 2.3

Work: Technical report

Status of document: final

Number of Pages: 28

Keywords: Java Agent Development Framework, Agent Behavior, Proactivity of

Resources, Agent Implementation, Agent Communication, Adapters, Java Naming and

Directory Interface, Prototype environment

.

 I

Abbreviations

JADE – Java Agent Development Framework

FIPA – The Foundation for Intelligent Physical Agents

EJB – Enterprise Java Beans

JNDI – Java Naming and Directory Interface

ACL – Agent Communication Language

 II

 III

Contents

1 INTRODUCTION ...1

2 JADE – A PLATFORM FOR THE SMARTRESOURCE AGENT SCENARIO 2
2.1 CHOICE OF A MULTI-AGENT SYSTEM ...2
2.2 ACCESS TO ADAPTERS...3
2.3 BEHAVIOR OF AGENTS IN JADE..4

3 IMPLEMENTATION OF THE SCENARIO IN JADE ..6
3.1 PLATFORM LAUNCH ..7
3.2 AGENTDEVICEGENERATOR (MACHINE) ...8
3.3 DEVICEAGENT..11
3.4 EXPERTAGENT..15
3.5 SERVICEAGENT ..20
3.6 PLATFORM IN RUNTIME ..21
CONCLUSIONS...23
REFERENCES ...24

 1

1 Introduction
Reported deliverable D2.3 belongs to Proactivity Stage [1] of SmartResource project [2] and

focuses on an architectural design of agent-based resource management framework and on

enabling a meaningful resource interaction. Its research and development tasks include adding

software agents (Maintenance Agents) to the industrial resources, enabling their proactive

behavior. For this purpose, Resource Goal/Behavior Description Framework has been designed,

which is a basis for making resource's individual behavioral model. The model is assumed to be

processed and executed by the RGBDF engine [3] used by the Maintenance Agents. Agent-based

approach for management of various complex processes in the decentralized environments is

being adopted and popularized currently in many industrial applications. Presentation of the

resources as agents in the multi-agent system and use of technologies and standards developed

by the Agent research community is a prospective way of industrial systems development.

Creation of framework for enabling resources’ proactive behavior and such agent features as

self-interestedness, goal-oriented behavior, ability to reason about itself and its environment and

to communicate with other agents, can bring a value to the next-generation industrial systems.

According to SmartResource’s project implementation plan, D2.3 is meant to automate the

scenario of interaction between Device, Expert and Web Service that was implemented in the

SmartResource prototype environment v. 1.0 (Adaptation Stage) [4]. The logic of interaction has

to be implemented in a multi-agent system involving DeviceAgent, ExpertAgent and

WebServiceAgent respectively. This implementation is a practical part of the previous second

project year deliverables: Resource Goal/Behavior Description Framework (D2.1) [5] and

Design of the SmartResource Platform (D2.2) [6].

2 JADE – a platform for the SmartResource agent scenario

2.1 Choice of a multi-agent system

As a basis for implementation of the interaction scenario between SmartResource agents (see

task of this deliverable) Java Agent Development Framework (JADE)1 has been chosen. Such

choice is made, because Java language is the basis for JADE that makes its integration with

previous version of the SmartResource Prototype Environment easy. Additionally, the JADE

platform is mature in providing a variety of tools for the debugging and deployment phases of

the agents. JADE fully follows FIPA2 specifications, which are important for further ontological

description of multi-agent coordination.

In general, the implementation task assumes migration of the scenario’s logics from the Control

Servlet to the community of agents implemented in JADE (see Figure 1).

Figure 1 - Evolution of the SmartResource Prototype Environment

On the other hand, adapters that were implemented during previous project year, reside at the

JBoss Application Server as they are. It is one of the challenges to implement the access of

agents hosted by JADE to the adapters.

As it is shown in the Figure 2, the scenario of interaction between agents includes the following

stages:

1 http://jade.tilab.com/
2 http://www.fipa.org/

 2

Figure 2 - Scenario of interaction between agents

1. Accumulation of a history of the industrial machine.

2. Diagnostic request processing and response generation by ExpertAgent.

3. Learning of the WebServiceAgent based on labeled data received from

ExpertAgent.

4. Diagnostics of alarm situations by WebServiceAgent.

2.2 Access to adapters

As it was planned, the implemented agents access the adapters for data transformation needs. For

this purpose, an abstract class ResourceAgent has been designed. It implements the initialization

of local history storage of an agent from common history stored at the Joseki server.

Additionally the class makes necessary preparations for a successful lookup of the adapters by

agents: an instance of a context (JNDI naming directory) that allows for adapters (implemented

as EJBs) to be found by their names. See appropriate code below.

 3

The hierarchy of Agent classes implemented in second version of the SmartResource Prototype

environment is given in Figure 3.

Figure 3 - Hierarchy of agent Java classes

2.3 Behavior of agents in JADE

So far, developers of JADE have provided a possibility to implement behaviors of agents using

the hierarchy of classes shown in Figure 4. This structured approach to modeling behaviors

makes JADE platform even more suitable for experimental research of the RGBDF schema and

RGBDF engine.

 4

Figure 4 - Hierarchy of different behaviors of agents in JADE

 5

3 Implementation of the scenario in JADE
The implemented classes have been distributed among the following packages of previous

version of the SmartResource prototype environment:

Figure 5 - Map of Java packages in the implementation

The package org.smartresource includes abstract class ResourceAgent mentioned above. As it is

shown in Figure 5, packages org.smartresource.device, org.smartresource.service and

org.smartresource.expert use classes implemented in org.smartresource. The packages contain

main classes: DeviceAgent, ServiceAgent and ExpertAgent respectively (Figure 6).

Figure 6 – General view of the DeviceAgent and ExpertAgent classes

 6

3.1 Platform launch

In order to succeed with the interaction of the agents on the platform, we have to start all the

platform components in a predefined order. First the Joseki server must be started because every

agent initializes an appropriate adapter, and requests for ontology from joseki storage. Next we

start JADE platform as such without agents on it. As far as resource adapters are implemented

mainly as EJB’s, we start the JBoss server with adapters. During the JBoss initialization, an

ExpertAdapterAgent (helper agent, which is a part of expert adapter, see subchapter 3.4 for

details) is created and deployed to JADE. Then we deploy Service and Expert agents, which are

ready to accept incoming request messages. Now the AgentDeviceGenerator and DeviceAgent

can be started. These two agents constitute the initial point of the platform operation, as far as

they originally generate messages, which go to expert and service agents. When all the agents are

running, the configuration of JADE is the following:

Figure 7 – General view of the JADE platform

The number of containers shows that agents are started from different places such as Java code

in a servlet of the JBoss server or a command line.

 7

AgentDeviceGenerator instantiates the Device class of the org.smartresource.device.generator

package developed in a previous version of the prototype (see Figure 8).

See Figure 7 that illustrates the message flow between agents. The monitoring of the messages

was performed using SnifferAgent of JADE.

This agent simulates industrial device generating states of the industrial device in XML format.

The frequency of generation is stable with a period of 10 seconds, thus every 10 seconds the

agent sends INFORM ACL message to DeviceAgent with the XML state in its content.

3.2 AgentDeviceGenerator (Machine)

Figure 7 - Message flow from AgentDeviceGenerator to DeviceAgent

 8

Figure 8 – Generator package: inheritance, dependence and associataion UML diagram

 9

Below is a sample of the XML message that is sent.

The functionality of the AgentDeviceGenerator is implemented as a TickerBehaviour of JADE.

In the fragment of the corresponding code below we can see that frequency of “ticking” is set to

10000 milliseconds. Device class is used inside the implementation of this behavior for

generation of the XML messages.

 10

Execution of the behavior by the agent was monitored by the Introspector utility agent in JADE

(see Figure 9). Additionally the Introspector agent allows for monitoring incoming and outgoing

messages for agents hosted by the JADE platform.

Figure 8 - Monitoring behavior of AgentDeviceGenerator in JADE

3.3 DeviceAgent

This agent receives messages with states in XML format from AgentDeviceGenerator, uses

DeviceAdapter implemented earlier for transformation of the XML message into RscDF

representation. The state in the RscDF format is stored in the local history of the agent and

further every minute the DeviceAgent generates alarm message to ExpertAgent.

The messages sent from DeviceAgent to ExpertAgent (ACL REQUEST) can be shown using

SnifferAgent in JADE (see Figure 10).

 11

Figure 9 - Monitoring of the messages from DeviceAgent to ExpertAgent

Details of the message can be viewed directly from the SnifferAgent by two clicks (see Figure

12). The message is a request for diagnostics in RscDF format. It contains all the history

collected by DeviceAgent so far with the AlarmRequest composed from a template.

The behavior of the DeviceAgent is not such simple as the behavior of the

AgentDeviceGenerator. It consists of the composition of three behaviors: CyclicBehavior,

OneShotBehavior and TickerBehavior (you can find them in Figure 4). They are composed in

the following way (Figure 11):

 12
Figure 10 - Behaviors that compose the logics of the DeviceAgent

There are two threads of behavior of the agent: communication with AgentDeviceGenerator and

communication with Expert and Service agents.

Figure 11 - Message-request from DeviceAgent to ExpertAgent

The cyclic behavior listens to incoming messages from other agents. When it receives the

message with a state in XML format from the AgentDeviceGenerator, the agent invokes

transformation methods of the adapter and stores the state in the RscDF format to the local

history (see the code below).

 13

Overall in cyclic behaviour there are 3 processing cases which process incoming messages: one

mentioned above, and two procedures for processing messages from ExpertAgent and

ServiceAgent respectively. In case of message from Expert Agent the logic is the following:

The agent stores the response from expert to the local storage and increments the counter of the

expert replies. After increment it checks whether it is enough learning exaples (i.e. expert

replies) for learning a service by comparing the current number of expert replies with the

predefined variable learningsetsize. If the amount is sufficient for learning, it launches the

behavior “learnservice”.
 14

In case of receiving the message from ServiceAgent, the procedure determines the type of the

message received from the ServiceAgent by checking the User Defined Parameter

“service_resp_type”. If the value equals “learned”, the procedure sets the trigger

is_service_ready to true. Else if the value equals “diagnosis”, it stores the diagnosis to the local

history. See the code fragment below:

Ticker behavior implements periodical (once per 60 seconds) requests for diagnostics sent to

ExpertAgent or ServiceAgent. It checks for a trigger is_service_ready value. While the value is

false, all the diagnostic requests are sent to an ExpertAgent, but as soon as service has learned

(DeviceAgent has received a confirmation message with the UserDefinedParameter

service_resp_type=”learned”), the trigger value is switched to true and since that moment all

the diagnostic requests are sent to the ServiceAgent. The request generation logic includes

downloading a template of the request from a server and then filling it by the elements parsed

from the local history.

3.4 ExpertAgent

The behavior of the ExpertAgent comprises the receiving message with request for diagnostics

from DeviceAgent, then transforming this message to HTML using ExpertAdapter, getting

expert’s response, transforming to RscDF and sending it back to DeviceAgent. As it was

implemented previously, the ExpertAgent sends a request for diagnostics to human expert via e-

mail service, which contains link to a diagnostics page. This page is generated on the fly and is

published on a web server. When expert opens the diagnostic page and makes a diagnosis, the

data of the form is sent to a servlet, which in turn invokes an ExpertAdapterAgent’s method to

send a message to an ExpertAgent. When ExpertAgent receives a diagnosis from

 15

ExpertAdapterAgent, it transforms it into RscDF using the ExpertAdapter and sends the RscDF

to a DeviceAgent

The behavioral implementation of the ExpertAgent is simpler than the DeviceAgents’s one. That

is, CyclicBehaviour class is used for receiving a request for diagnostics from DeviceAgent, or a

message with a diagnosis from ExpertAdapterAgent. After receiving the expected message, the

logics inside the CyclicBehavior invoke OneShotBehavior to perform data transformation from

RscDF representation to HTML or sending a reply to DeviceAgent.

Figures 13 and 14 show the incoming ACL messages, received from DeviceAgent. When a

message from device is received, the OneShotBehaviour is added.

Figure 12 - Monitoring messages and a behavior of the ExpertAgent

Figure 13 shows the moment when OneShotBehavior is active, which means that the message is

being transformed by the ExpertAdapter. As you may notice, the message in Figure 14 is the

same as the one in Figure 12 that proves the correctness of the implementation.

 16

Figure 13 - Details of the ACL message received by ExpertAgent

The code which implements processing logic of the diagnostic request from DeviceAgent is

distributed among cyclic and one shot behaviors of the ExpertAgent. The part of the cyclic

behaviour is given below.

The last line of the code above adds a new behavior to an ExpertAgent. It is a one shot behavior,

which invokes an adapter for transformation from RscDF to HTML.

 17

Below there is an HTML that is a result of the transformation performed by ExpertAdapter.

However ExpertAdapter produces not only an HTML page, it generates the pictures of the

parameter values. An important element of the generated HTML page is a hidden field,

containing the unique URI of the diagnostic request statement (see the highlighted code above).

This unique URI allows for completely asynchronous interaction with expert. An expert can

process requests in a random order, because the diagnosis statement is unambiguously associated

with the diagnostic request by the URI. The interface provided to human expert for carrying out

a diagnostics is given on Figure 15.

 18

Figure 145 – Interface generated by ExpertAdapter

After an expert has selected an appropriate diagnosis, the data is sent to a processing servlet,

which logically is a part of the adapter. The servlet processes the HTTP request and invokes

method sendDiagnosis of ExpertAdapterAgent. The role of ExpertAdapterAgent is to be the

bridging element between the servlet and ExpertAgent. Below is fragment of code with the

sendDiagnosis method:

 19

The message from ExpertAdapterAgent is processed by ExpertAgent as follows:

The behavior added in the last line of code below is a OneShotBehaviour. It sends the message

with the diagnosis in RscDF format to a DeviceAgent:

3.5 ServiceAgent

The ServiceAgent logic is quite simple. It implements one cyclic behavior for accepting

messages from device. The messages can be of two types – request for diagnostics or request for

learning. The messages are distinguished by UserDefinedParamter “learningrequesturi” and

“servicerequesturi”. In case of learning request, the adapter performs transformation and then the

behavior is added, which sends a confirmation to a DeviceAgent. When the diagnostic request is

received, it is processed in two transformation steps. On the first step the classification as such is

done, which retuns diagnosis URI. On the second stage, the diagnosis URI is wrapped into an

RscDF message using appropriate template. After the second transformation step, the

 20

OneShotBehavior is added, which sends the response with diagnosis to a DeviceAgent. For

implementation details see the fragment of the code below:

3.6 Platform in Runtime

The platform in runtime performs in asynchronous mode. The messages flow can easily be

reconfigured if we want to change the logic of some of the components. In current

implementation, the request for diagnostics is sent to an expert until enough learning examples

for service are collected. After the service has learned, all the diagnostic requests are sent to

ServiceAgent. The logic can be changed e.g. that every second example goes to Expert. This

kind of configuration may be reasonable, when the service is not reliable enough. Another

possibility is to send the diagnostic request to both Expert and Service. This kind of logic can be

implemented for Service quality verification. Thanks to the fact, that the platform consists of

highly independent agent enitites and unified semantic interchange format, the modification of

logic becomes fairly simple and converges to modification of one java method in the

DeviceAgent. Figure 16 depicts the sequence of messages passed before the first request for

learning is sent. Figure 17 shows that from now the classification requests are passed from

DeviceAgent to ServiceAgent because a Service has learned.

 21

Figure 156 – Message Sequence before ServiceLearningRequest

Figure 167 – Message Sequence up to ServiceLearningRequest

 22

 23

Conclusions

The transformation of the prototype environment v1.0 to v2.0 was aimed at automating the

platform in terms of agent technology, which would act as a set of agents representing resources

behind them. Supplying every resource by its own agent, we have explored the implementation

specifics of the asynchronous message exchange applied to the use case of the knowledge

transfer from expert to service. The implementation has discovered a new type of interaction

with the resources which have undetermined response time and web-based interface. An expert

as the most complex resource for adaptation required a lot of efforts to be done towards weaving

different technologies into logically bundled component. The complex interoperation tasks

between JADE and application server included EJB invocation from an agent platform, on-the-

fly creation of the html data, dynamic processing of the expert response and artificial bridging

from the web server to an agent platform via creation and posting an agent from the servlet to the

running platform. We named this kind of interaction as resource choreography.

 24

References

[1] Kaykova O., Khriyenko O., Terziyan V., Zharko A., General Proactivity Framework (Pro-

GAF) , Technical Report (Deliverable D 2.1), SmartResource Tekes Project, Agora Center,

University of Jyvaskyla, February-May, 2005.

[2] Official web-page of SmartResource TEKES project, http://www.cs.jyu.fi/ai/OntoGroup/

SmartResource_details.htm

[3] Khriyenko O., Proactivity Layer of the Smart Resource in Semantic Web, In: Proceedings of

the 3-rd European Semantic Web Conference ESWC06, June 11-14, 2006, Budva, Montenegro,

Springer, LNAI, 14 pp. (submitted 18 November, 2005).

[4] Kaykova O., Khriyenko O., Kovtun D., Marttinen J., Naumenko A., Nikitin S., Terziyan V.,

Tsaruk Y., Zharko A., SmartResource Prototype Environment, Version 1.0, “Adaptation Stage”,

Technical Report (Deliverable D 1.3), SmartResource Tekes Project, Agora Center, University

of Jyvaskyla, July-December, 2004.

[5] Kaykova O., Khriyenko O., Terziyan V., Zharko A., RGBDF: Resource Goal and Behaviour

Description Framework, In: M. Bramer and V. Terziyan (Eds.): Industrial Applications of

Semantic Web, Proceedings of the 1-st International IFIP/WG12.5 Working Conference IASW-

2005 , August 25-27, 2005, Jyvaskyla, Finland, Springer, IFIP, pp. 83-99.

[6] Kaykova O., Khriyenko O., Terziyan V., Zharko A., Design of the SmartResource Platform,

Technical Report (Deliverable D 2.2), SmartResource Tekes Project, Agora Center, University

of Jyvaskyla, June-October, 2005.

http://www.cs.jyu.fi/ai/OntoGroup/
http://www.cs.jyu.fi/ai/OntoGroup/IASW-2005/index.html
http://www.cs.jyu.fi/ai/OntoGroup/IASW-2005/index.html

	Introduction
	JADE – a platform for the SmartResource agent scenario
	Choice of a multi-agent system
	Access to adapters
	Behavior of agents in JADE

	Implementation of the scenario in JADE
	Platform launch
	AgentDeviceGenerator (Machine)
	DeviceAgent
	ExpertAgent
	ServiceAgent
	Platform in Runtime
	Conclusions
	References

