SMART RESOURCE PROTOTYPE ENVIRONMENT V. 2.0
DELIVERABLE 2.3

Technical report
SmartResource: Proactive Self-Maintained Resources in Semantic Web

12/13/2005

University of Jyvaskyla

Agora Center

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi

Title: SmartResource prototype environment, v. 2.0, Proactivity Stage, Deliverable 2.3
Work: Technical report

Status of document: final

Number of Pages: 28

Keywords: Java Agent Development Framework, Agent Behavior, Proactivity of
Resources, Agent Implementation, Agent Communication, Adapters, Java Naming and

Directory Interface, Prototype environment

Abbreviations

JADE - Java Agent Development Framework

FIPA — The Foundation for Intelligent Physical Agents
EJB — Enterprise Java Beans

JNDI - Java Naming and Directory Interface

ACL - Agent Communication Language

Contents

1
2

INTRODUCGCTION .ottt ettt e e s st e e s s s b te e e s s sabaa e e s abrenas 1

JADE - APLATFORM FOR THE SMARTRESOURCE AGENT SCENARIO 2
2.1 CHOICE OF A MULTI-AGENT SYSTEM .coiiiiitiitiiiiie s iiittteee s e e e s s ssisbbrees s s e e s s s sssbanenses 2
2.2 ACCESS TO ADAPTERScc it ettt 3
2.3 BEHAVIOR OF AGENTS INJADE ... 4

IMPLEMENTATION OF THE SCENARIO IN JADE ..o, 6
3.1 PLATFORM LAUNCH 11vtiiiiic ittt s s sibbbbae s e s s e s s s ssaabbban e e e s e s s s ssanbbanaeeeas 7
3.2 AGENTDEVICEGENERATOR (MACHINE)coiiiiiiiitisiisiesieieie et 8
3.3 [SV [0 = A] =1 N TSRS 11
3.4 = o AN €] = N 15
3.5 =1 AV Aol =5 AN €] =1 N LSOO 20
3.6 PLATFORM IN RUNTIME ...vtviiiitiiieieieieieteeeeeesseesesessssssessssesssssssssssssssssssssssssssssssssssees 21
(076] N[0 MU L] L] N 1= TR RROPOPPRRR 23
REFERENCEStvttttttettessesssnns 24

1 Introduction

Reported deliverable D2.3 belongs to Proactivity Stage [1] of SmartResource project [2] and
focuses on an architectural design of agent-based resource management framework and on
enabling a meaningful resource interaction. Its research and development tasks include adding
software agents (Maintenance Agents) to the industrial resources, enabling their proactive
behavior. For this purpose, Resource Goal/Behavior Description Framework has been designed,
which is a basis for making resource’s individual behavioral model. The model is assumed to be
processed and executed by the RGBDF engine [3] used by the Maintenance Agents. Agent-based
approach for management of various complex processes in the decentralized environments is
being adopted and popularized currently in many industrial applications. Presentation of the
resources as agents in the multi-agent system and use of technologies and standards developed
by the Agent research community is a prospective way of industrial systems development.
Creation of framework for enabling resources’ proactive behavior and such agent features as
self-interestedness, goal-oriented behavior, ability to reason about itself and its environment and

to communicate with other agents, can bring a value to the next-generation industrial systems.

According to SmartResource’s project implementation plan, D2.3 is meant to automate the
scenario of interaction between Device, Expert and Web Service that was implemented in the
SmartResource prototype environment v. 1.0 (Adaptation Stage) [4]. The logic of interaction has
to be implemented in a multi-agent system involving DeviceAgent, ExpertAgent and
WebServiceAgent respectively. This implementation is a practical part of the previous second
project year deliverables: Resource Goal/Behavior Description Framework (D2.1) [5] and
Design of the SmartResource Platform (D2.2) [6].

2 JADE - a platform for the SmartResource agent scenario

2.1 Choice of a multi-agent system

As a basis for implementation of the interaction scenario between SmartResource agents (see
task of this deliverable) Java Agent Development Framework (JADE)' has been chosen. Such
choice is made, because Java language is the basis for JADE that makes its integration with
previous version of the SmartResource Prototype Environment easy. Additionally, the JADE
platform is mature in providing a variety of tools for the debugging and deployment phases of
the agents. JADE fully follows FIPA? specifications, which are important for further ontological

description of multi-agent coordination.

In general, the implementation task assumes migration of the scenario’s logics from the Control

Servlet to the community of agents implemented in JADE (see Figure 1).

= RscDF-repository

** (nrolo
‘&\‘:..l'.- i
g
b

Sanvice Ageat Expert Agent Manitoring

K ad control
Agpard F Davios -

K
S
| s— —

Expert Device Service
Adapter .ﬂd}pl‘ﬂr Adlaplor

i@

EJB Com‘amer

. -
" ‘I::'l:ls's

“ee .&pplrc:tmrr Server

Figure 1 - Evolution of the SmartResource Prototype Environment

On the other hand, adapters that were implemented during previous project year, reside at the
JBoss Application Server as they are. It is one of the challenges to implement the access of

agents hosted by JADE to the adapters.

As it is shown in the Figure 2, the scenario of interaction between agents includes the following

stages:

! http://jade.tilab.com/
2 http://www.fipa.org/

Labelled

darn‘

“Service” data

) Labe‘l.\.ed

. dsa'*"""mr1

G_\let 1:;{{{\“@ \e 2 0\\5
24000 . (e
1\‘:\95 O e
Lg@‘.ﬁ 6\3@'

iagnostic \ﬁﬂ‘n@
model o

Figure 2 - Scenario of interaction between agents

1. Accumulation of a history of the industrial machine.
2. Diagnostic request processing and response generation by ExpertAgent.

3. Learning of the WebServiceAgent based on labeled data received from
ExpertAgent.

4. Diagnostics of alarm situations by WebServiceAgent.

2.2 Access to adapters

As it was planned, the implemented agents access the adapters for data transformation needs. For
this purpose, an abstract class ResourceAgent has been designed. It implements the initialization
of local history storage of an agent from common history stored at the Joseki server.
Additionally the class makes necessary preparations for a successful lookup of the adapters by
agents: an instance of a context (JNDI naming directory) that allows for adapters (implemented

as EJBs) to be found by their names. See appropriate code below.

protected InitialContext getlontext(3tring providerURL) throws NamingException
Hashtabhle props = new Hashtable():
props.put (InitialContext. INTTTAL CONTEXT FACTORY,
forg.inp.interfaces.NamingContextFactory™) ;
props.put (InicialContext. PROVIDER URL, providerURL):
InitialContext initialContext = new InitialContext(props):
return initialContext;

II."**
W
G
protected synchronized void initHistory()
resourcelHistory = ModelFactory.crestelefaultModel () ;
resourcelistory.read (ONTOLOGY URL) ;

The hierarchy of Agent classes implemented in second version of the SmartResource Prototype

environment is given in Figure 3.

(C jade.core.Agent

b

] evice.generator. entlevicelzenerator U esou en
M device.g tor.AgentDeviceG t & ResourceAgent

1 device.DeviceAgent = ff.llﬁ [ls [ls

3 service.ServiceAgent I 13 expert.ExpertAgent

ia expert.ExpertAdapterAgent

Figure 3 - Hierarchy of agent Java classes

2.3 Behavior of agents in JADE

So far, developers of JADE have provided a possibility to implement behaviors of agents using
the hierarchy of classes shown in Figure 4. This structured approach to modeling behaviors
makes JADE platform even more suitable for experimental research of the RGBDF schema and
RGBDF engine.

Models a complax
task i.e. a task that is
made up by
composing & numbser
of other tasks.

Behavigur

<absiract=> donel)
nStart()

nEmd(}

lock()

stari])

<abstract=> action(}

Madels a generic
task

Q

CompositeBehaviour

FEMBehaviour

[
gisterState()
gisterTransition()

Models a complex task
whose sub-tasks
carresponds to the activities
performead in the states ef a
Finite State Machine

Figure 4 - Hierarchy of different behaviors of agents in JADE

SeguentialBehaviour

‘ndSubBehaw‘ our()

Models a complex task
whose sub-tasks are
executad sequentially

Models a simple task
i.e. atask that is not

[

SimpleBehaviour

composed of sub-tasks

OneShotBehaviour

=

CyclicBehaviour

Models an atomic
task (its done()
methed returns trus)

ParallelBehaviour

‘ddSu hBehaviour()

Madels a complex task
whose sub-tasks ars
executed concurrenily

Models a cyclic
task (itz done()
method returns
fals=)

3 Implementation of the scenario in JADE

The implemented classes have been distributed among the following packages of previous

version of the SmartResource prototype environment:

1 I |

f# org.smartresource.device.generator

f# org.smartresource.device I

1

f# org.smartresource

wACCBEER

|
|
|
1

waccessy]

f# org.smartresource.service I

e

I I T

“iﬂmﬁl minstarllatan -xaclass»

)

I
I
= f# org.smartresource.expert I

Figure 5 - Map of Java packages in the implementation

The package org.smartresource includes abstract class ResourceAgent mentioned above. As it is
shown in Figure 5, packages org.smartresource.device, org.smartresource.service and
org.smartresource.expert use classes implemented in org.smartresource. The packages contain

main classes: DeviceAgent, ServiceAgent and ExpertAgent respectively (Figure 6).

9 device.DeviceAgent D expert.ExpertAgent
g4 alarm: TickerBehaviour & b CyclicBehaviour
44 b CyclicBehaviour g tr: OneShotBehaviour
o currentDiag: Model g& tr2: OneShotBehaviour
expertreplycountar: int o Ul_TEMPLATE: String
o is_service_ready: boolean < uri: String

o learningsetsize: int
| getHomeExpert() AdapterWebUlHome

44 learnservice: OneShotBehaviour
< setup()

o REQUEST_LEARNING_TEMPLATE: String
o REQUEST_TEMPLATE: String
states: ArrayList <E>

3 service.ServiceAgent

42 tr: OneShotBehaviour g8 b CyclicBehaviour
& XMLstate: String & diag_resp: OneShotBehaviour
g4 learning_ack: OneShotBehaviour
| generateDiagnosticRequest(in addressID: String): String of SERVICE_RESPONSE TEMPLATE: String
m getHomeDevice(): AdapterkF330Home
o setup() m getHomeService(): AdapterinnServiceHome
< setup()

Figure 6 — General view of the DeviceAgent and ExpertAgent classes

6

3.1 Platform launch

In order to succeed with the interaction of the agents on the platform, we have to start all the
platform components in a predefined order. First the Joseki server must be started because every
agent initializes an appropriate adapter, and requests for ontology from joseki storage. Next we
start JADE platform as such without agents on it. As far as resource adapters are implemented
mainly as EJB’s, we start the JBoss server with adapters. During the JBoss initialization, an
ExpertAdapterAgent (helper agent, which is a part of expert adapter, see subchapter 3.4 for
details) is created and deployed to JADE. Then we deploy Service and Expert agents, which are
ready to accept incoming request messages. Now the AgentDeviceGenerator and DeviceAgent
can be started. These two agents constitute the initial point of the platform operation, as far as
they originally generate messages, which go to expert and service agents. When all the agents are

running, the configuration of JADE is the following:

F]RMAIZE.'Iarman:1095,.-"JADE - JADE Remote Agent Management GUI = |EI|£|
File Actions Tools Remote Platforms Help
a M & e =3 !
e defasld @@ BE S L &8 Jooc
¢ 00 AgentPlatforms :|_narme |addresses| state | owner
¢ B0 "arman: 1095/ADE" 3

kain-Container
RMa@arman: 1095/A0E
amsi@arman: 1095/ JADE
df@arman: 1085/JADE
& sniffert@arman: 1098/JADE
¢ @3 Container-1
Expertddapterdgentizarman: 1095JADE
shiffer1-on-Container- 1@arman: 1095/ADE
¢ @3 Container-2
hachineg@arman: 10985/JA0E
DeviceAdent@arman: 1025/)A0E
sniffer1-on-Container-2@arman: 1095/JA0E
¢ @8 Container-3
ExpertAgent@arman: 1095/ JADE
servicedgentZarman: 10950A0DE
& sniffer1-on-Container-3i@arman: 1095/JA0DE

Figure 7 — General view of the JADE platform

The number of containers shows that agents are started from different places such as Java code

in a servlet of the JBoss server or a command line.

3.2 AgentDeviceGenerator (Machine)

This agent simulates industrial device generating states of the industrial device in XML format.
The frequency of generation is stable with a period of 10 seconds, thus every 10 seconds the
agent sends INFORM ACL message to DeviceAgent with the XML state in its content.

See Figure 7 that illustrates the message flow between agents. The monitoring of the messages

was performed using SnifferAgent of JADE.

:';':._-':5snifferl]lil‘larn‘lan:1095,.-"JADE - &Sniffer Agent o]

Actions About

[@d eem [

¢ B2 AgentPlatforms i

¢ £ "arman: 1095/ JADE"
7 @ Container-2

& ExpertAgentds Ij INFORM:D (ate |1
ServiceAgentd INFORMD tate . 3
¢ @ Main-Container |- 2 INFORM: (ate _ |}
RiAZEMman: 1 ? INFORM®D (ate)
snifferD@arman | 4

ams@arman: 10 -
B df@arman:109{ -
¢ @ Container-3
I Machme@armc

l snn‘rerD or- Cur

Figure 7 - Message flow from AgentDeviceGenerator to DeviceAgent

AgentDeviceGenerator instantiates the Device class of the org.smartresource.device.generator

package developed in a previous version of the prototype (see Figure 8).

Figure 8 — Generator package: inheritance, dependence and associataion UML diagram

@ Device

& airPreasure; float]]

o baseDate: Date oz
& d: Datef]

= index: int

& liquidLevel: in]]

& gilRange: float]]
& pilTemperature: int]]
& openStroke: int]]
& screwTurning: int[] — —
& workingPreasure: float]]

& Device()
@ getNextXML{): String

&

#BCCESSH

© Generator

. o device: Device
_simporty

QC Generator(in device: Device)
@ action(}

@ AgentDeviceGenerator

o device: Device

Ainstantiater | o statexML: String

» setup()
» takeDown()

@ NumberGenerator

é pickFloatMumberinRange(in aLowerLimit: float, in aUpperLimit: float): floal
é picklntMumberinRange(in aLowerLimit: int, in aUpperLimit: int): int

@ Measurements © state
© measureTags: Amraylist <E> 4 date: Date
o parameterMeasureTag: Collection <E> & e M lrera s
BD Measurements(in p1:int, in p2: int, in p&: int, in p7: int, in p3: float, in p4: float, in p5: float) o::pf: !nt -5
@ addParameterMeasureTag(in element. ParameterMeasureTag). boolean DpEsint i
© dearParameterMeasureTag() e PR P Toat J—
@ containsAllParameterMeasureTag(in elements: Collection <E>): boolean e _uimports | © p4:float e — _pr.-: —r
; L3
@ containsParameterMeasureTag(in element: ParameterMeasureTag): boolean P r]uat e _mmports.._-
@ isParameterMeasureTagEmpty(): boclean ° ph: !"t
@ parameterMeasureTaglterator(): terator @ piint .
@ parameterMeasureTagSize(): int o meHe-ad. String
@ parameterMeasureTagToAmray(): ParameierMeasureTag(] o xmiTail: String
® removePamameterideasureTag(in element PammelereasursTag): bodlean o Statafin pt: int, in p2: int, in p3: fioat, in p4: fioat, in ps: fioat, in p6: int, i pT: int, in date: Date
@ setParameterMeasureTag(in value: Collection <E=) @ getState(): String
I «impaorts | «imports
: | & generator: Random
| +
——————————3 @ ParameterMeasureTag

measurel. String
measuraR: String
paramTypa: String
paramTypal: String
paramTypeR: String
sensor: String
sensorlD: String
sensorl: String
sensorR: Siring
tag: String

units: String

unitsL: String
unitsR: String
value: String
valuel: String
valueR: String

B T - TR R S Y

JP I

@ ThermoLiguidLevel @ OpenCloseStroke

@ ScrewTurningSpeed

© oilTankRange

pr:int p2:int

a pl:int

o p5: float

@ AirPresure

@ OilTankTemperature

® WorkingModulePresure

o pd: float

o p6:int

o p3: float

o ThermoLiquidLevel(in p7: int) o OpenCloseStroke(in p2: int)

0‘ SerawTurningSpeed(in p1: int)

o OilTankRange(in p5: float)

o AirPresure(in pa: fioat)

o OilTankTemperature(in p&: int)

o WorkingModulePrasure(in p3: float)

Below is a sample of the XML message that is sent.

<?xml version="1.0" encoding="UTF-38" =
- wstState xrmins: st="http:f fwww.metso.comfAlarm"” xmins: xsi="http:f f
xsischemalocation="http:/ fwww.metso.comfAlarm file:fC: fMYTEMP
07T10:23:41.701"=
- =Measurement:>
<ParamType=Screw turning speed-</FaramType=
<Units =rpm=/nits =
=<Malug=FF=/Value=
<5Sensar sensorlD="K523-5"=Rotation speed sensor</Sensar=
</Measurement>
- =Measurement>
<ParamType>0pen-close stroke</ParamType >
=Units =mm=/Units =
<Valug=81</value=
<5ensar sensorID="II112-D7¥"=Gap sensor</Sensor=
</Measurermentz>
- =Measurement:>
<ParamType=0il tank temperature=/FaramType =
<Unitzs =celsious=Units =
<Malug=67F </ Value=
<5Sensar sensorlD="KX2834-5">Temperature sensor</Sensor>
</Measurement>
- =Measurement>
<ParamType=Thermo liquid level</ParamType =
=Units =mm=/Units =
<Valug=d48</ value=
<5Sensar sensorlD="LIQ-23M1">Level sensor</Sensor=
</Measurermentz>
- =Measurement:>
<ParamType>=Working module preasure</FaramType =
<Units=kgfom2</Units =
=<Valug=8.790907 < Malue =
<Sensar sensorlD="PI01-1">Preasure sensor</Sensar=
</Measurement>
- =Measurement>
<ParamType=A&ir preasure</FaramType=
<Units =kgfom2</Units =
<Valug=4.014332=<alue=
<5ensar sensorlD="PI01-2"=Preasure sensor</Sensor=
</Measurermentz>
- =Measurement:>
<ParamType=0il tank range</ParamType=
<Unitz =liter</Units =
=Value=237.50896="Yalue=
<5Sensar sensorlD="¥4-8"=¥olume measurement sensor</Sensar>
</Measurement>
</stiState =

The functionality of the AgentDeviceGenerator is implemented as a TickerBehaviour of JADE.
In the fragment of the corresponding code below we can see that frequency of “ticking” is set to
10000 milliseconds. Device class is used inside the implementation of this behavior for

generation of the XML messages.

10

protected void setup() |
TickerBehaviour b = new TickerBehaviour (this, 100007 {

protected void onTick(){
statelML = device.getMNextXML ()
ACLMezzage inform = new ACLMesszage (ACLMessage. INFORM) :
inform.setLanguage ("XHL™) ;
inform.addReceiver (new AID ("Devicelgent™, AID.ITSLOCALNAME)) ;
inform.setContent (stateXML) ;
inform.setConversationlId("Deviceitate™) ;
myligent.zendiinform) ;

r:
addBehaviour (b) 2

Execution of the behavior by the agent was monitored by the Introspector utility agent in JADE
(see Figure 9). Additionally the Introspector agent allows for monitoring incoming and outgoing
messages for agents hosted by the JADE platform.

= Introspector2@arman:1098/JADE J anish | @
File About

: x|

¢ B3 AgentPlatforms
¢ B0 "arman: 1098/4ADE"
¢ B main-Container

Al 51 Machine@arman:1098/JADE °
‘A View State Debug

e

Current State—

Pending | Received | W|
= amsi@arman:i ° Rt Incoming Messages — Pending Cutgoing Messages - Sent
DeviceAgent@arman: 1098/A0E | - (- B [INFORM
RhdAgarman: 109341408 Q- 5] INFORM
dig@rarman: 1098/JADE :
Introspector2-on-Main-Containeng :

4] i [Dk

AgentPlatforms "arman:1 0980JADE" Main-Container.Machin BB DU LB T D B aul |
M rcrange stater | - =3 Behaviours Name %
O e il Hclass device.generatorAgentDeviceGen
pend i
“{Kind: TickerBehaviour
O Wai + i
o Wake Up '
G Hill

<] Il D

Figure 8 - Monitoring behavior of AgentDeviceGenerator in JADE

3.3 DeviceAgent

This agent receives messages with states in XML format from AgentDeviceGenerator, uses
DeviceAdapter implemented earlier for transformation of the XML message into RscDF
representation. The state in the RscDF format is stored in the local history of the agent and

further every minute the DeviceAgent generates alarm message to ExpertAgent.

The messages sent from DeviceAgent to ExpertAgent (ACL REQUEST) can be shown using
SnifferAgent in JADE (see Figure 10).

11

o snlfferl:llmarman 1095, JADE - Sniffer Agent _|EI|5|
Actluns About

ILNERCRCOCN | o

22 AgentF‘Iathrms

Come | N
¢ Em CDntainer—?

@ DeviceAgent@ ¢ ORMAO (ate
@ Machine@arms ! INFORM:D (ate :)
snifferd-on-Car| || * INFORMD (ate . |3
¢ @3 Container-3 o REQUESTH (est [)
1. >
B ExpertAgent@s . INFORMD cate |1
EAD INFORMO Gate L |3
@ sniffer0-on-Caor| | ° INF ORMD (ate . |)
¢ BaMain-Container || 7 INFORMD cate)
RrsEarman: 1] i) # »
INFORM:D (ate _|)
@ snifferDigarma 5 N INFORM:D Gate)
@ ams@arman: 10| 1° 7
- o REQUEST:1 {est
@ ci@arman:109{; " INFORMD (ate |3 =
¢ B3 Container-1 i 12 . »
i INFORM:D (ate |2
& ExpertAdapters | 13 v

@ snifferd-on-Car|

1] il | DE

Figure 9 - Monitoring of the messages from DeviceAgent to ExpertAgent

Details of the message can be viewed directly from the SnifferAgent by two clicks (see Figure
12). The message is a request for diagnostics in RscDF format. It contains all the history

collected by DeviceAgent so far with the AlarmRequest composed from a template.

The behavior of the DeviceAgent is not such simple as the behavior of the
AgentDeviceGenerator. It consists of the composition of three behaviors: CyclicBehavior,
OneShotBehavior and TickerBehavior (you can find them in Figure 4). They are composed in

the following way (Figure 11):

| CyclicBehavior (meShotBehavior

i
W

TickerBehavior

—
W
W

Figure 10 - Behaviors that compose the logics of the DeviceAgent

12

There are two threads of behavior of the agent: communication with AgentDeviceGenerator and

communication with Expert and Service agents.

5
(ACLMessage | Envelope |
Sender: View | viceAgent@arman:1098JADE
e Experthgent@arman: 1098 /JADE
Rephy-to:

Communicative act: | i
Content:

=rscdfsunit rdf resource="httphwaeey Co oyl fif-alkhrives

=rscdfsvalue=7 864827 </rscdfsvalue=

=rdftype rdf resource="http: e ooyl fif-olkhrivesrsc
4] Il | |]

Language: RECDFS

Encoding:

Ontolomy:
Protocol:

Comversation-id: DiagnosticRegquest
In-rephs-to;
Rephy-with:
Rephy-ins Yiew

- t turi
User Properties: i e

oK

Figure 11 - Message-request from DeviceAgent to ExpertAgent

The cyclic behavior listens to incoming messages from other agents. When it receives the
message with a state in XML format from the AgentDeviceGenerator, the agent invokes
transformation methods of the adapter and stores the state in the RscDF format to the local

history (see the code below).

13

OnelfhotBehaviour tr = new OnelfhotBehawviour (this) |

i

try {

public void action() 1
Svstem.oud.printlni("Teving Lo create bean.™):
AdapterEF330 myBeanh = getHomeDewvice (] .createl(]:
Systew. out.println("EBean created.™):
String output = myBean.transform|ZMLstate, counter):
Iystew. out.println("Device Adapter: transformed.™);
counter = 3tring. valuelf|(Integer.parselnt(counter) + range);

Model addDlata= ModelFactory. creztelefaul tModel () :

EvtelrrayvInputitream instr =new bEytelrravInputicresto(output.getBytes()) ;!

addDbata.read(instr,"")
states.add (addData) ;!
resourceHistory=resourceHistory. add (addData) ;

+ catch (Exception e]

CyclicBehaviour b = new CyclicBehaviour (this) {

Overall in cyclic behaviour there are 3 processing cases which process incoming messages:

public void action(){
HessageTemplate mt = MessageTemplate.Maéchfender inew AID["Machine™,

ATD. ISLOCALNAME)) :

ACLMessage msg = mWyLdgenht.receiwve (mt)

(fmag '= nuall) {

XMLstate = msg.getlontenti();

ATID sender = msg.getlender();

String conversationld = msg.getlomversationIdi);
myigent . addEehaviour (tr)

one

mentioned above, and two procedures for processing messages from ExpertAgent and

ServiceAgent respectively. In case of message from Expert Agent the logic is the following:

mt = MessageTemplate.MatchSender inew AID ("Expertigent™, AID.ISLOCALNAME)) :
msy = wylgent.receiwve (mt) !

if

(g '=null) {

ATD sender = msg.getlender():;

S3tring conversationld = msg.getConversationIdi):
S3tring in = msg.getContent () ;

EyteldrrayInput3tream instr =new BytelrrayInput3treami(in.getBytesi()):
Model addData=ModelFactory.createlefaultModel () :;
addData.read(instr, ™) ;

currentDiag.add (addbata) ;

resourceHistory.add (addData) ;

expertreplycounter++;

if (expertreplycounter==learningset=size) {
myhogent . addEehaviour [learnservice) ;

The agent stores the response from expert to the local storage and increments the counter of the

expert replies. After increment it checks whether it is enough learning exaples (i.e. expert

replies) for learning a service by comparing the current number of expert replies with the

predefined variable learningsetsize. If the amount is sufficient for learning, it launches the

behavior “learnservice”.

14

In case of receiving the message from ServiceAgent, the procedure determines the type of the
message received from the ServiceAgent by checking the User Defined Parameter
“service_resp_type”. If the value equals “learned”, the procedure sets the trigger
is_service_ready to true. Else if the value equals “diagnosis”, it stores the diagnosis to the local
history. See the code fragment below:

wt = HMessageTemplate.MatchSenderinew LID("ZServicelgent™,AID,. ITSLOCALNAME))
w3y = wylgent.receiwve (mt) !
if (wsg !'= null){
Jtring service resp type=msg.getUserDefinedParameter ("service resp type™);
if (service resp type.equals("learned™])
iz service ready = true;
if (service resp type.equals("diagnosis™)){

3tring in = msg.getContent ()

EvtelrrayInputitream instr =new BytelrrayInput3tream(in.getBytes()):
Model addData=ModelFactory.createlefaul tModel ()
addlata.read(instr,"") ;

resourceHistory.add (addbata)

Ticker behavior implements periodical (once per 60 seconds) requests for diagnostics sent to
ExpertAgent or ServiceAgent. It checks for a trigger is_service_ready value. While the value is
false, all the diagnostic requests are sent to an ExpertAgent, but as soon as service has learned
(DeviceAgent has received a confirmation message with the UserDefinedParameter
service_resp_type=""learned”), the trigger value is switched to true and since that moment all
the diagnostic requests are sent to the ServiceAgent. The request generation logic includes
downloading a template of the request from a server and then filling it by the elements parsed

from the local history.

3.4 ExpertAgent

The behavior of the ExpertAgent comprises the receiving message with request for diagnostics
from DeviceAgent, then transforming this message to HTML using ExpertAdapter, getting
expert’s response, transforming to RscDF and sending it back to DeviceAgent. As it was
implemented previously, the ExpertAgent sends a request for diagnostics to human expert via e-
mail service, which contains link to a diagnostics page. This page is generated on the fly and is
published on a web server. When expert opens the diagnostic page and makes a diagnosis, the
data of the form is sent to a servlet, which in turn invokes an ExpertAdapterAgent’s method to

send a message to an ExpertAgent. When ExpertAgent receives a diagnosis from

15

ExpertAdapterAgent, it transforms it into RscDF using the ExpertAdapter and sends the RscDF
to a DeviceAgent

The behavioral implementation of the ExpertAgent is simpler than the DeviceAgents’s one. That
is, CyclicBehaviour class is used for receiving a request for diagnostics from DeviceAgent, or a
message with a diagnosis from ExpertAdapterAgent. After receiving the expected message, the
logics inside the CyclicBehavior invoke OneShotBehavior to perform data transformation from

RscDF representation to HTML or sending a reply to DeviceAgent.

Figures 13 and 14 show the incoming ACL messages, received from DeviceAgent. When a
message from device is received, the OneShotBehaviour is added.

= Introspector0@arman:1098,JADE

File About

¢ 03 AgentPlatforms
¢ B2 "arman: 1098/ ADE"
¢ @0 Main-Container

Nl] Expertagent@arman:1008/JADE
View State Debug

] Machine@arman: 1098/JADE Corrent State - Incommgf Messages - Outgoing Messages
B Introspector0@arman: 1098/4ADE | o Received Pending | Sent |
& ams@arman: 1098/A0DE : e Incorming Messages -- Received Qutgoing Messages -- Pending

man: 1 JADE]
& DeviceAgent@arman: 1098/JADE
B RMa@arman: 1098/JADE
B di@arman: 1098.ADE :
& IntrospectorD-on-Main-Containerd -

© soeenaea |||l REQUEST
Q. [-<] REQUEST
o Wad ting
Q@ ving
o Dead

Change State| | @[] Eehaviours

AgentPlatforms."arman:1098/JADE" Main-Container Expe 5 O Suspend 1 expent ExpertAgents?
(D wair 4 OneShotBehaviaur
O Wake Up
G Eill

Figure 12 - Monitoring messages and a behavior of the ExpertAgent

Figure 13 shows the moment when OneShotBehavior is active, which means that the message is
being transformed by the ExpertAdapter. As you may notice, the message in Figure 14 is the

same as the one in Figure 12 that proves the correctness of the implementation.

16

ACL Message x|

| ACLMessage [Envelope |

Sender: wiceAgent@arman:10980ADE

Expertigentfarman: 1098/ JADE

Recefers:

Rephy-to:

Communicative act:
Content:

T o T T T - rrece i e e
=rscdfstruelnContext rdfresource="http:fohcejohka.adl—
=ridftype rdfresource="http i oo jyu fif~alkhrivelrsc
=irdf:.Description=

r|’r1f'|"|n crintinn rrif'::ulhnlﬁ—"th'l’l’nhr“ninhka =Ta 1] ﬁ"?lﬂ’?
1 I 4

Language: RSCDFS

Encoding:

Ontology:

Protocol: |

Conversation-id: DiagnosticRequest

In-rephy-to:

Rephy-with:

Reply-w: View
expertrequesturi

User Properties:

Figure 13 - Details of the ACL message received by ExpertAgent

The code which implements processing logic of the diagnostic request from DeviceAgent is
distributed among cyclic and one shot behaviors of the ExpertAgent. The part of the cyclic

behaviour is given below.

public void actioni()] §
MeszageTemplate wt = MessageTewmplate.MatchSenderinew ALID("Devicelgent™, AID.IST)
LACLNessage msyg = mylgent.receive (mt);

if (wsg '= null) {
ALID sender = mwsd.getlender():
String conversationId = msg.getConversationIdi)
uri = wsg.gectUserbefinedParameter ("expertregquesturi™) ;
String in = msg.getContent (]!

EvteldrravInput3tresmw instr =new BvtCelrravInputitreswmiin.getBytes()):

resourcelHistory.read (instr, "™ ;

System. out.princln(™ (" + mylgent.getlLocallWamwei)] + ") [" + conversationId +
" is received from "™ + sender.getLocallName ()] + ™] ":I,:I

myldgent . addEehaviour (tr)

The last line of the code above adds a new behavior to an ExpertAgent. It is a one shot behavior,

which invokes an adapter for transformation from RscDF to HTML.

17

OneihotBehaviour tr = new OnedhotBehaviour (this) |
public void actioni() {

3tring in:

3tringWriter sw = new StringlWriter():

resourceHistory.write (sw, null) ;

in = aw.toltring() :

try
AdapterWebUI myBean = getHomeExpert () .create():
wyBean. transformiuri, in, UL TEMPLATE, HOST URL) ;
tcatch [(Exception e) {
e.print3itackTrace (3ystem. oud) ;

b

Below there is an HTML that is a result of the transformation performed by ExpertAdapter.

<html>

<pr<center>ANNOTATICH</centers

<brDiagnostics for <b»>123456XZ24
The manufacture of machine is EKUN FONG Machinery Co., LTD<br/»

The Contact person is Mr. Chan Tong

Device EKF-330 blow molding machine<hr/>

Mail address of manufacture is 14, LAWE 108, YU-MEN ROAD, TAICTUNG CITY, TAIWAN<hr/:>

The manufacture's phone and fax §56-4-24610589, 886-4-24631205<br/ >

<ING SRC="http://www.kunfong.ru/pic/prodd 1 1.jpg">

COfficial WEE page iz <& HREF="http://www.kunfong.ru">http://www, kunfong. rua/ Ax<br/ >

Device WEB page is <A HREF="http://www.kunfong.ru/eng/prodd 1.htw"rhttp://wow. kunfong.ru/engs/ prod4 1.htm</ L><br/ >
E-mail of manufacture is <4 HREF="mailto:kunfongIfms42.hinet.net">kunfong9ims49.hinet.net </ Ax
</p>

<imgy sro=".% im0, jpg™>

<imgy sre=".%img 1. ipogts

<imgy sre=".%imgh 2. ipgts

<imy sre=".%\imgh 3. jpg"s

<imy sre=".%imgh4.jpg">

<imy sre=".%imgh 5. ipgT>

<img sro=".%imoh 6. JpgTs

<form action="http://localhost:5080/Privet/Privet™ method="post">

<zelect name="diagnoses">

<option value="http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/diagnosisOntology#levicebiagnosis_4">Passages plu
<option value="http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/diagnosisontology#levicebiagnosis_2">Leakage of o:
<option value="http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/diagnosisontology#levicebiagnosis_1">01il tank thel
<option value="http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/diagnosisOntology#levicebiagnosis 3">Dishalansing
<option value="http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/diagnosisOntology#leviceliagnosis S"+Kinks in the
<option value="http://www.cc.jvu.fi/~olkhriye/rscdfs/0.3/ontologies/diagnosisontology#levicePhysicalliagnosis"»Devicel
faelectxachr />

[<input type="hidden" name="expertregquesturi® J
value="hoop://ohcejohka.ad. jyu. £1:2020/ 3martResourceflessage for Diagnosisisl™/s

<input type="submit” nawe="useraction” walue="Make diagnosis"/>

</ form:>

</ html>

However ExpertAdapter produces not only an HTML page, it generates the pictures of the
parameter values. An important element of the generated HTML page is a hidden field,
containing the unique URI of the diagnostic request statement (see the highlighted code above).
This unique URI allows for completely asynchronous interaction with expert. An expert can
process requests in a random order, because the diagnosis statement is unambiguously associated
with the diagnostic request by the URI. The interface provided to human expert for carrying out

a diagnostics is given on Figure 15.

18

a C:\MyTemp' Zharko' Work \HTML_to_expert.html - Microsoft Internet Explorer

J File Edit ‘Wiew Favorites Tools Help

ANNOTATION
Diagnostics for 123456X224
The manufacture of machine is KUUN FONG Machinery Co., LTD
The Coniact person is Mr. Chan Tong
Device EF-330 hlow molding machine
Mail address of manufaciure is 14, LANE 108, YU-MEN ROAD, TAICUNG CITY, TATWAN
The manufaciure s phone and fax 886-4-24610589, 886-4-24631205

Official WEB page is hiip:/www.lunfong.ru
Device WEB page is hiip:iwww. Junfong ruwlengprodd_1.him
E-mail of manufacture is kunfongd@ms49. hinet. net

A S i R) 5 L
o i a8 kY) Ty :

Leakag
Oil tank thermometer probe breakage
Disbalansing of the drive shaft of the gear e BN SH S S
Kinks in the main drive engine e) e i
DevicePhysicalDiagnosis

Fassages plugging of the lubricating system j

MakeDiagnosis

Figure 145 — Interface generated by ExpertAdapter

After an expert has selected an appropriate diagnosis, the data is sent to a processing servlet,
which logically is a part of the adapter. The servlet processes the HTTP request and invokes
method sendDiagnosis of ExpertAdapterAgent. The role of ExpertAdapterAgent is to be the
bridging element between the servlet and ExpertAgent. Below is fragment of code with the
sendDiagnosis method:

public void sendliagnosis (3tring diagnosis, 3tring expertrequesturi) {
ACLMessage inform = new ACLMessage (ACLMessage. INFOLRM)
inform.setLanguage ("REICDF™)
inform.addReceiver (new ALID [("Expertigent”™,AID.ISLOCALNAME)) ;
infortm.addIzerbefinedParameter ("expertrequesturi®™, expertredquesturi) ;
inform.setContent (diagno=sis) ;
send(inform) :

19

The message from ExpertAdapterAgent is processed by ExpertAgent as follows:

mt = HMessageTemplate.MatchSenderinew AID("Expertidapterligent®™, AID, ISLOCALNAME)] :
m3g = mwylgent.receive (wt)
if (wsg '= null) |

Jtring diagnosis = msg.getContenti();

try {

LdapterWebUIl myBean = getHomeExpert () .create() !

String in:

StringWriter sw = new 3tringlriter():;

resourceHistory.write (sw,null) ;

in = sw.toltringi):

String expertredquesturi = meg.getUserDefinedParareter (Mexpertregquesturi™);

String output = mwyBean.transform(expertregquesturi, diagnosis, in,

hew OID() .to3tring(), HOST URL + "Privet,/ExXpertReapongetempl. rAL™)

AéBwstem.out.println(f-————————————- Start result—-——————————— "y

System. ort.println ("HTHL -> RICDF, Expertlidapter OE.™):
Af8ystem.out.println(f-—————————————— End result-—————————— SN
EvtelrrayInput3tream instr =new EvtelrravInput3tream(output.getBytes()):
resourceHistory.read{instr, ™™) ;

addBehaviour (tEZ] ;

The behavior added in the last line of code below is a OneShotBehaviour. It sends the message

with the diagnosis in RscDF format to a DeviceAgent:

OnefhotBEehaviour LriZ = new OnelhotBehawviour (this)
public void action() {

LCLMe=zage inform = new ACLMessage (LCLMessage . INFORM) :
inform.setLanguage ("RICDFI™) ;
inform.addReceiver (new LID("Devicelgent™, AID. ISLOCALNAME)) :
JtringWriter =w = new 3tringWriter():
regourceHistory.write (sw, null) ;
inform.setContent (sw.to3tring(l) ;
myvhgent.send (inform) ;

3.5 ServiceAgent

The ServiceAgent logic is quite simple. It implements one cyclic behavior for accepting
messages from device. The messages can be of two types — request for diagnostics or request for
learning. The messages are distinguished by UserDefinedParamter “learningrequesturi” and
“servicerequesturi”. In case of learning request, the adapter performs transformation and then the
behavior is added, which sends a confirmation to a DeviceAgent. When the diagnostic request is
received, it is processed in two transformation steps. On the first step the classification as such is
done, which retuns diagnosis URI. On the second stage, the diagnosis URI is wrapped into an

RscDF message using appropriate template. After the second transformation step, the

20

OneShotBehavior is added, which sends the response with diagnosis to a DeviceAgent. For

implementation details see the fragment of the code below:

public woid actioni) |
HMessageTemplate mt = MessageTemplate.MatchSender(new ALID ("Devicelgent™, AID.ISLOCALHAD
ACLMessage msg = mylgent.recelive (mt)
if (msg '= null) |
LAID sender = mag.getlender () :
String conversationld = msg.getComversationIdl):;
String in = msg.getContenti) ;
3tring learningredquesturi=msg.getUserbefinedParameter ("learningrequesturi®™)
3tring servicerequesturi=msg.getlUserlefinedParameter ("serviceregquesturi™) ;

try{

Adapterinniervice myBean = getHomeSerwvice().create() !

if (learningregquesturi '= null)

i
String res=myBean.transform(learningredquesturi,in);
System.out.println("LEAFNING REQUEST TRAMWNIFORMATION REIULT: "4res):
addEehaviour (learning ack) ;

i

if (serviceregquesturi '= null)

i
ffS3tore request for diagnostics in local storadge
BytelrrayInput3treaw instr =new ByteldrravInputStream|(in.getBytesi()):
resourceHistory.read(instr, "")
String res=swmyBean.transform(servicerequesturi, in) !
System. cut.println("Znd transformation ..."):
String r = myBean.transform(servicerequesturi, res, in, new UID() .toStrinc
BytelbrrayInputitresm outstr =new BytelrrayvInputStreamir.getBytesi()):
resourceHistory.read{outste, "")
System. cut.println("end of Znd transformation™):;
addBehaviour (diag resp):

3.6 Platform in Runtime

The platform in runtime performs in asynchronous mode. The messages flow can easily be
reconfigured if we want to change the logic of some of the components. In current
implementation, the request for diagnostics is sent to an expert until enough learning examples
for service are collected. After the service has learned, all the diagnostic requests are sent to
ServiceAgent. The logic can be changed e.g. that every second example goes to Expert. This
kind of configuration may be reasonable, when the service is not reliable enough. Another
possibility is to send the diagnostic request to both Expert and Service. This kind of logic can be
implemented for Service quality verification. Thanks to the fact, that the platform consists of
highly independent agent enitites and unified semantic interchange format, the modification of
logic becomes fairly simple and converges to modification of one java method in the
DeviceAgent. Figure 16 depicts the sequence of messages passed before the first request for
learning is sent. Figure 17 shows that from now the classification requests are passed from

DeviceAgent to ServiceAgent because a Service has learned.

21

sniffer0@arman:1095, JADE - Sniffer Agent

Actions About

¢ £ AgentPlatforms

CIOOTN |

¢ 0 "arman: 1095/ADE"

¢ B2 Container-4
DeviceAgent@
Machine@arm
@ sniffer0-on-Co

¢ B2 Container-3
ExpertAgentd

& sniffer0-on-Cao
¢ B2 Main-Container
RhAGarman:
shifferli@arms
& amsi@arman: 1

¢ B3 Container-1
Expertadapter.
@& sniffer0-on-Co

[T R R« S N R S R 8)

OFR:0 [ate

1

QR M0 [ate

1

QR0 (ate

)

ORM:0 (ate

'y
L
.
L
.
Ll

R

OUEST:1 (est

1

ORM:0 [ate

QR0 [ate

QR M0 [ate

1
1
1

Y'Yy Y¥Y%¥

OFR:0 [ate

o

QUEST:1 (est

QR0 [ate

QR M0 [ate

QR0 (ate

ORM:0 (ate

ORM:0 (ate

e

Yy ¥ Yy yyYvy

ORh:0 (ate

AF ORM:S0 [

|ﬂ;0m:49(

]

%
QOUEST:1 (est
»

)

v

)

Figure 156 — Message Sequence before ServiceLearningRequest

snifferD@arman:1095,;/JADE - Sniffer Agent
Actions About

¢ 0 AgentPlatforms
¢ B0 "arman: 1095/A0E"

¢ @3 Container-4

& Machine@arm
@ sniffer0-on-Co
¢ @ Container-3

& sniffer0-on-Co
¢ B3 Main-Container

& RMa@arman:
sniffer0@arma
& ams@arman: 1

¢ B3 Container-1
& Expertadapter,
sniffer0-on-Co

Figure 167 — Message Sequence up to ServiceLearningRequest

CRK:O fate |2
L
REQUEST:1 (est |)
CORW:0 ate |2 "
" REQUEST:S75 (3 N
ORM:O fate (1 "
ORM:0 (ate :)
ORM:0 [ate :)]
ORM:0 (ate : 1
QR hd:0 (ate :)
" » INFORM:E76 (3
N REQUEST:1 fest 1 .
>
CORM:O (ate |2
ORM:0 [ate :)]
ORM:0 (ate : 1
ORM:0 [ate :)]
ORM:0 (ate : 1
QR ;0 (ate :)
" REQUEST:1cest |3 o
- INFORM:278 3 i
ORM:O fate ;
L

22

[¥

Conclusions

The transformation of the prototype environment v1.0 to v2.0 was aimed at automating the
platform in terms of agent technology, which would act as a set of agents representing resources
behind them. Supplying every resource by its own agent, we have explored the implementation
specifics of the asynchronous message exchange applied to the use case of the knowledge
transfer from expert to service. The implementation has discovered a new type of interaction
with the resources which have undetermined response time and web-based interface. An expert
as the most complex resource for adaptation required a lot of efforts to be done towards weaving
different technologies into logically bundled component. The complex interoperation tasks
between JADE and application server included EJB invocation from an agent platform, on-the-
fly creation of the html data, dynamic processing of the expert response and artificial bridging
from the web server to an agent platform via creation and posting an agent from the servlet to the

running platform. We named this kind of interaction as resource choreography.

23

References

[1] Kaykova O., Khriyenko O., Terziyan V., Zharko A., General Proactivity Framework (Pro-
GAF) , Technical Report (Deliverable D 2.1), SmartResource Tekes Project, Agora Center,
University of Jyvaskyla, February-May, 2005.

[2] Official web-page of SmartResource TEKES project, http://www.cs.jyu.fi/ai/OntoGroup/

SmartResource_details.htm

[3] Khriyenko O., Proactivity Layer of the Smart Resource in Semantic Web, In: Proceedings of
the 3-rd European Semantic Web Conference ESWCO06, June 11-14, 2006, Budva, Montenegro,
Springer, LNAI, 14 pp. (submitted 18 November, 2005).

[4] Kaykova O., Khriyenko O., Kovtun D., Marttinen J., Naumenko A., Nikitin S., Terziyan V.,
Tsaruk Y., Zharko A., SmartResource Prototype Environment, Version 1.0, “Adaptation Stage”,
Technical Report (Deliverable D 1.3), SmartResource Tekes Project, Agora Center, University

of Jyvaskyla, July-December, 2004.

[5] Kaykova O., Khriyenko O., Terziyan V., Zharko A., RGBDF: Resource Goal and Behaviour
Description Framework, In: M. Bramer and V. Terziyan (Eds.): Industrial Applications of
Semantic Web, Proceedings of the 1-st International IFIP/WG12.5 Working Conference 1ASW-
2005, August 25-27, 2005, Jyvaskyla, Finland, Springer, IFIP, pp. 83-99.

[6] Kaykova O., Khriyenko O., Terziyan V., Zharko A., Design of the SmartResource Platform,
Technical Report (Deliverable D 2.2), SmartResource Tekes Project, Agora Center, University

of Jyvaskyla, June-October, 2005.

24

http://www.cs.jyu.fi/ai/OntoGroup/
http://www.cs.jyu.fi/ai/OntoGroup/IASW-2005/index.html
http://www.cs.jyu.fi/ai/OntoGroup/IASW-2005/index.html

	Introduction
	JADE – a platform for the SmartResource agent scenario
	Choice of a multi-agent system
	Access to adapters
	Behavior of agents in JADE

	Implementation of the scenario in JADE
	Platform launch
	AgentDeviceGenerator (Machine)
	DeviceAgent
	ExpertAgent
	ServiceAgent
	Platform in Runtime
	Conclusions
	References

