
SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

IOG

SMARTRESOURCE PLATFORM FOR WEB SERVICE

INTERACTIONS’ SEMANTIC LOG

DELIVERABLE 3.3

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

University of Jyväskylä, Agora Center
October 2006

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Author: Industrial Ontologies Group

Contact Information: e-mail: vagan@it.jyu.fi

Title: SmartResource Platform for Web Service Interactions’ Semantic Log

Work: Technical report

Number of Pages: 18

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log
 I

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Abbreviations

SOAP - Simple Object Access Protocol

XML - eXtensible Markup Language

RDBMS - Relational Database Management System

OWL - Ontology Web Language

RDF – Resource Description Framework

AJAX - Asynchronous JavaScript and XML

HTTP - Hypertext Transfer Protocol

 II

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Contents

1 INTRODUCTION..4

2 PROBLEM DESCRIPTION...5

3 SOLUTION DESCRIPTION..6
3.1 ARCHITECTURE OF THE SYSTEM..6
3.2 DOMAIN ONTOLOGY..7
3.3 MESSAGE HANDLER ...8
3.4 PLATFORM ADAPTER ..9
3.5 MESSAGE BROWSER (A USER GUIDE FOR A GUI TOOL) ...10
3.6 MESSAGE BROWSER CLASS DIAGRAM ..12
3.7 DYNAMIC QUERY GENERATION...13
3.8 INTEGRATION WITH SMARTRESOURCE AGENT PLATFORM....................................14
3.9 SYSTEM CONFIGURABILITY ..15
3.10 PERFORMANCE AND SCALABILITY ..16

4 CONCLUSIONS AND FUTURE WORK...17

5 REFERENCES...18

 III

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

1 Introduction
In a heavily computerized industrial environment a lot of information flows contain data,
which is not stored anywhere and is just passed from one node to another. After the
information was processed by the receiving node it, may be deleted. However, industry
nowadays is seeking for storage mechanisms, which would allow flexible analytical
processing of such history data. The reason for storing this data is rather trivial – companies
tend to receive more analytical data and increase the level of maintenance processes
automation by applying learning algorithms and running intelligent decision support services.
But this is not the only reason why companies are looking for more flexible data storage
mechanisms than just file-based storages or even relational databases. Another add-value,
which companies expect from new storages, is extensibility and integral view on the data.
Linking the contents of the storage with all possibly needed relationships, gives industries an
ability to extract data from different perspectives and thus optimize their actions and
optimize expenses.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

4

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

2 Problem description
METSO Automation [METSO] provides maintenance and technical support services to its
clients all over the world. There is a VPN connection established between customer sites and
METSO Automation maintenance center. Customers send fault messages in a SOAP/XML
format to the maintenance center, where message data is analyzed by experts and may or may
not be stored in a file system. Fault messages contain data which is potentially useful for
fault analysis and predictive maintenance. To make it easily and flexibly processable, the
maintenance center has to install a storage system of a new generation, which is easy to
maintain, extend and query.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

5

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

3 Solution Description
Based on the problem description, we have selected a semantic web-based approach to
storage and retrieval of log data. Metso Automation is a big enterprise which may require a
more complex integration solution in the future. Having a lot of customers and providing a
large variety of services, METSO Automation will benefit from an integral (pseudo-
)centralized storage of its business data including but not limited to maintenance activities.
We have selected a Semantic Web technology for implementation because it has a set of
distinctive features which enforce data representation. Here we can name at least graph-based
data representation, simple, but effective class-subclass and property-subproperty
relationships, bringing add values, which are hard to implement using RDBMS [RDBMS].
These features are naturally supported by most of the semantic storages and may be extended
using third-party inference engines.

3.1 Architecture of the system

The system presented here comprises a set of components, which serve as an interface for
SOAP messages handling and transformation, interaction with semantic storage and storage
browser (see Figure 1).

Figure 1 – System Architecture

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

6

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

The system can be divided into two main subcomponents – Message Handler and Message
Browser. Message Handler receives and processes SOAP messages from different customers.
Message Browser provides functionality for message browsing, filtering and annotation.
Both subcomponents run on a JBoss [JBOSS] application server and are independent from
each other.

3.2 Domain ontology

The ontology plays a role of a schema for all data within the storage. The domain analysis,
which goes in parallel with requirements analysis, allows experts to distinguish main
concepts and link them with the needed relationships (properties in OWL [OWL] and RDF
[RDF] terminology). For ontological development we used a Protégé [Protégé] tool. The
ontology elaboration was mainly based on a SOAP messages content analysis. Together with
experts from our industrial partner we have made a thorough analysis: We have separated
main concepts and have defined allowed ranges for properties’ values.
The main concept of the ontology is Message (see Figure 2).

Figure 2 – Message concept of the domain ontology

The Message class describes such message properties as message sender and receiver,
message reception time, etc. and refers to Alarm class (see Figure 3), which contains
information about the reason of message generation in a form of fault data like measurements
of sensors, status data and exact module of the production line, where the alarm happened.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

7

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Figure 3 – Alarm class of the domain ontology

We will not go through all the classes of the ontology, because most of them are obvious and
do not require explicit explanation. The last class we will mention here is ExpertAnnotation
class (see Figure 4), which describes the annotation made by expert in a message browsing
and annotation tool.

Figure 4 – ExpertAnnotattion and Expert classes of the domain ontology

MadeByExpert and hasAnnotation are inverse properties. It means that if an expert refers to
some ExpertAnnoatation, then appropriate property madeByExpert is generated.

3.3 Message Handler

Message Handler (MSGHANDLER module on an application server) is a component which
incorporates message receiving and adaptation functionality. The main entry point of the

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

8

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

component is a MessageReceiver class wrapped as a web service with name MessageService
and method process(). The service has message style, which is stated in a service deployment
descriptor file server-config.wsdd.

<service name="MessageService" style="message">

<parameter name="className"

value="org.smartresource.app.metsocase.impl.MessageReceiver" />

 <parameter name="allowedMethods" value="process" />

</service>
MessageReceiver class acts as a wrapper and redirects all calls directly to MessageProcessor
class (see Figure 5). This wrapping is done to simplify the integration with the agent platform.

Figure 5 – Class diagram of a Message Handler

In MessageProcessor the process() method instantiates the Adapter via AdapterFactory and
invokes adapter methods for transformation and storage of the incoming SOAP/XML
messages.

3.4 Platform Adapter

Adapter is a key enabling element of the platform. It transforms data from one format to
another and usually stores transformed data to the ontology storage. In Message Handler
component the adaptation is done from two XML fragments, which are extracted from SOAP
Header and SOAP Body elements, to an RDF graph, compliant with the ontology. The class
diagram of the Message Handler adapter is shown on Figure 6.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

9

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Figure 6 –Adapter class diagram

MessageGraphComposer class produces an RDF graph data from given XML elements. In
this implementation method transform() of the AdapterImpl class sequentially passes XML
elements to the MessageGraphComposer, which in turn adds statements to an RDF graph.
When all messages are processed, Adapter calls getGraph() method and receives a Graph
reference, which is passed to the object which has instantiated the Adapter and called
transform() method. After a Graph reference is obtained, the Graph data can be passed to the
storeTransformedData() method of the Adapter, and consequently will be stored to the
storage.

3.5 Message Browser (a user guide for a GUI tool)

The start window of the application is shown in Figure 7. The user selects parameters for
filtering by checking the appropriate checkbox. To execute a filtering query, user presses
button “Query” and receives a table of messages. The user has a possibility to see the original
SOAP/XML message by clicking the link in a last column of the table.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

10

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Figure 7 – a Message Filtering Window

When user decides to annotate a set of messages, he/she marks relevant message strings in a
checkboxes in a previous to last column of the message table and presses “Annotate selected
messages” button. A message annotation interface appears in a new window with messages
selected on a previous step (see Figure 8).

Figure 8 – Message Annotation window

The user is prompted to type name and description of a new annotation. Next, he/she fills
Expert ID field with his/her unique ID and presses the button “Send Annotation”. The
information that annotation was stored/not stored appears right next to the button.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

11

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

User can also browse annotations by clicking on the link on the top of the Message
Annotation window described above, or by typing in a browser
“http://host:port/METSOBROWSER/browseannotations.jsp“.
By pressing button “Query” in Annotation Browser window (see Figure 9) user receives a list
of annotations in a table form. The filtering functionality is planned but not yet implemented.

Figure 9 – Annotation Browser window

By clicking on a “show messages” link in the rightmost column of the table of annotations in
Annotation Browser, a window with a set of messages of the selected annotation appears (see
Figure 10).

Figure 10 – Messages of the selected annotation

3.6 Message Browser Class diagram

The class diagram on Figure 11 depicts main classes of the METSOBROWSER component.
ActionController is a main control servlet of the application. On a browser side a JavaScript
[JS] AJAX [AJAX] function sends HTTP [HTTP] requests to the ActionController servlet.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

12

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

The request contains XML string which is parsed and depending on a root element, is further
processed by different handlers in a doPost() servlet method.

Figure 11 – Class diagram of the METSOBROWSER

There are two query generators which dynamically compose a SeRQL query [SeRQL] based
on an XML query received from the browser. QueryGenerator class produces a SeRQL
query for messages extraction based on the XML query received from a user.
AnnotationQueryGenerator class generates two types of queries – first one is produced by
generateQuery() method and provides query for extraction of all available expert (user)
annotations. Second query is produced by msgIdsOfAnnotation_Query() method and
provides a query for extracting messages of one particular annotation. ActionController class
also instantiates an AdapterImpl class which is used for transformation of the annotation
received from the browser interface in an XML format to the RDF graph using
AnnotationGraphComposer class. KBConnector class is used to obtain a connection to the
storage instance and execute queries.

3.7 Dynamic query generation

When a user selects filtering parameters and presses “Query” button in a message browser,
the script in a browser generates an XML document of a format like:

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

13

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

<query>

 <messageSender>value1</messageSender>

 <status>value2</status>

 …

</query>
The document is then passed as a parameter of the HTTP request to ActionController servlet,
where the XML document is processed depending on a root node. All <query> nodes are
meant to be filtering queries for fault messages. The node is passed to a QueryGenereator,
which processes child nodes of the document and combines a query from a predefined header,
a dynamic part and an enclosing tail. The header part is static and looks like:

SELECT time, messengername, maintcentername, msgtypeid, recgroupname,
productionlinename, tag, failuredesc, statusname, value, lowlimit,
highlimit, message
FROM
{message} ns:time {time}
{message} ns:hasMsgType {} ns:msgId {msgtypeid},
{message} ns:messageSender {} ns:messengerName {messengername},
{message} ns:messageReceiver {} ns:maintCenterName {maintcentername},
{message} ns:receiverGroup {} ns:receiverGroupName {recgroupname},
{message} ns:hasAlarm {alarm},
{alarm} ns:failureDescription {failuredesc};
 ns:value {value};
 [ns:tag {tag}];
 [ns:lowLimit {lowlimit}];
 [ns:highLimit {highlimit}];
 ns:productionLine {} ns:productionLineName {productionlinename},
{alarm} ns:status {} ns:statusName {statusname}

The dynamic part has an algorithm of a composition depending on the XML document
content. Referring to the XML, given above, a SeRQL query part would look like:

WHERE messengername LIKE “value1*” AND statusname LIKE “value2”

The star (*) sign in a query means that a search criterion for a given variable must start with
the given string (value1) but the end of the string may vary.
The query string is appended by the enclosing tail which contains definition of the
namespace:

USING NAMESPACE
ns=<http://org.smartresource.app.metsocase#>

3.8 Integration with SmartResource Agent platform

Agent-based extension of the system introduces new possibilities in communication with the
human. In the example shown on Figure 12, the expert has a real-time monitoring tool which
is updated by the Metso Expert Agent and provides an online fault data bound to
geographical location.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

14

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

Figure 12 – Architecture of the system enhanced with the SmartResource Agent platform

The main architectural change is that SOAP message from the customer goes via web service
to METSO Storage Agent and the transformation is performed on the Agent side. Further, the
agent executes the same operations as Message Handler but in addition, sends a message to
METSO Expert Agent with the fault information. METSO Expert Agent dynamically updates
the situation on the Real-Time monitoring tool by adding a new object on the map. An expert
can view the fault message by clicking on the link provided in a context menu of the newly
created object. The link opens a message browser in a new window with the particular
message selected.

3.9 System Configurability

The configurability element was introduced to the system on the later stage and continues to
evolve. The idea behind was to simplify deployment of the system and make system parts
adjustable (tunable) in a runtime. There is an interface named Configurable which must be
implemented by all components in order to allow runtime configuration of their parameters.
The interface has one method configure(Hashtable ht), which accepts a Hashtable object
with the configuration parameters and their values. The set of configurable parameters is
defined by every object. When object is instantiated, it inevitably calls configure() method
and passes either null as an argument, which means that object must be configured by default,
or a Hashtable with new configuration settings. An object can be configured later in runtime
as well. At this point we did not provide a security policy for configurability of objects yet
but the research towards different configurability aspects continues to evolve.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

15

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

3.10 Performance and Scalability

The software we have used in the implementation of the system has shown a stable and
predictive behaviour. The Sesame storage demonstrates very promising performance,
although we had to use in-memory storage mechanism instead of database backend because
of CPU-time consuming operations in between Sesame and MySQL database. Up to day the
storage contains over 350 messages and extraction time of all the messages in a table format
by sesame querying tool takes around 600 milliseconds. The hardware we use is pretty basic
– it is a Pentium III 800 MHz with 512 Mb of RAM. However, due to non-optimal server-
side implementation of the browsing tool, we have some delays, when the number of
extracted messages is big. But it is rather a problem of a particular pilot implementation, than
of architecture as such.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

16

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

4 Conclusions and Future Work
The system presented here demonstrates the applicability of Semantic Web technology on a
real industrial case. The system performs transformation from XML formats to RDF and
provides browsing and annotation facilities for stored data. The system development process
has shown that it is possible to combine different Semantic Web tools in a different modeling
and execution tasks such as ontology modeling in the Protégé tool and ontology insertion into
the Sesame storage. It is pretty simple to add new classes or properties in a Protégé tool and
then just copy-paste the updated model in RDF format to Sesame without any restarts. The
model is updated in a couple of seconds while the system continues to run. We can say that
ontology-based approach is extensible, although we did not test what happens when we make
major changes to the ontological model such as changing domain and range of properties or
deleting classes. Adapters are the most sensitive components to changes in the structure of
the incoming formats, messages and ontology. In our opinion the adapter transformation
function should be tied together with the ontology and react immediately on changes which
lead to inconsistency of the data. We see one of the future research challenges in an
elaboration of a user interface development process for ontology-based applications. In the
implementation of a browsing tool we have extensively used AJAX technology and XML-
based messaging. We have realized a need for a script-based engine-like client side
visualization library for ontology based applications.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

17

SmartResource: Proactive self-maintained resources in Semantic Web Technical report.

5 References
[AJAX] AJAX technology http://en.wikipedia.org/wiki/AJAX

[HTTP] Hypertext Transfer Protocol http://www.w3.org/Protocols/

[JBOSS] A JBoss application server http://www.jboss.com/

[JS] JavaScript – a scripting programming language http://en.wikipedia.org/wiki/JavaScript

[METSO] Metso Automation – a leading provider of software and maintenance solutions in
paper industry

[OWL] Ontology Web Language, a W3C Recommendation on 10 February 2004,
http://www.w3.org/TR/owl-semantics/

[Protégé] Protégé – a free, open source ontology editor, http://protege.stanford.edu/

[RDBMS] Relational Database Management System
http://en.wikipedia.org/wiki/Relational_database_management_system

[RDF] Resource Description Framework, a W3C Recommendation on 10 February 2004,
http://www.w3.org/RDF/

[SOAP] Simple Object Access Protocol, W3C Recommendation 24 June 2003,
http://www.w3.org/TR/soap12/

[Sesame] Sesame – an open source RDF database with support for RDF Schema inferencing
and querying. http://www.openrdf.org/

[SW] Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The Semantic Web, Scientific
American, Vol. 284, No. 5, pp. 34-43.

Deliverable 3.3: SmartResource Platform for Web Service Interactions’ Semantic Log

18

	Introduction
	Problem description
	Solution Description
	3.1 Architecture of the system
	3.2 Domain ontology
	3.3 Message Handler
	3.4 Platform Adapter
	3.5 Message Browser (a user guide for a GUI tool)
	3.6 Message Browser Class diagram
	3.7 Dynamic query generation
	3.8 Integration with SmartResource Agent platform
	3.9 System Configurability
	Performance and Scalability

	Conclusions and Future Work
	References

