
JYVÄSKYLÄ STUDIES IN COMPUTING 130

Sergiy Nikitin

UNIVERSITY OF

JYVÄSKYLÄ 2011

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Villa Ranan Blomstedt-salissa

maaliskuun 25. päivänä 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Villa Rana, Blomstedt hall, on March 25, 2011 at 12 o'clock noon.

JYVÄSKYLÄ

Middleware Architectures
Dynamic Aspects of Industrial

Dynamic Aspects of Industrial
Middleware Architectures

JYVÄSKYLÄ STUDIES IN COMPUTING 130

JYVÄSKYLÄ 2011

Dynamic Aspects of Industrial

UNIVERSITY OF JYVÄSKYLÄ

Sergiy Nikitin

Middleware Architectures

Copyright © , by University of Jyväskylä

ISBN 978-951-39-4230-4
ISSN 1456-5390

2011

Jyväskylä University Printing House, Jyväskylä 2011

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Nikitin, Sergiy
Dynamic Aspects of Industrial Middleware Architectures
Jyväskylä: University of Jyväskylä, 2011, 52 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 130)
ISBN 978-951-39-4230-4
Finnish Summary
Diss.

Design and development of industrial ICT systems is becoming more and more
demanding and complex task. Business requirements call for optimization of
the IT-expenses seeking at the same time for long-lasting, extensible and robust
solutions that would be working during the whole product lifecycle.

The continuous growth of information volumes and interdependency of
systems invites the IT-practitioners to look for innovative approaches to IT-
systems design and development.

The information technology will undergo drastic changes when trying to
resolve the new challenges put by businesses. We have chosen the visions of
Global Understanding Environment (GUN) and Autonomic Computing as key
paradigms for the change and look for enabling technologies of these.

More specifically, through analysis of several industrial use cases we have
identified several aspects that we deem critical for future industrial ICT systems.
The key aspects are adaptation (of heterogeneous resources present in the in-
dustrial ecosystem), servicing (use of services in an open environment) and
domain model sharing between different application areas. It is essential that all
these aspects are tackled in a dynamic setting as unpredictable changes in the
environment are characteristic for long living industrial systems. To meet the
requirements of the industrial cases, we combine three separate technologies –
Semantic Web, Agent Technology and Web Services as a unified engine or
middleware. The developed innovative middleware platform called UBIWARE
offers a language called S-APL that incorporates semantic reasoning, agent
messaging and thus, servicing. In particular we introduce semantic componen-
tization of the functionality possessed by agents and planning on top of the se-
mantic components. With several potential industry-driven use case scenarios
of the platform we demonstrate both implementability and extendibility of the
approach up to augmenting the emerging cloud computing stack with semantic
agent-driven middleware.

Keywords: Semantic Web, Agent Technology, Web Service, Ontology,
Middleware, Adaptation, Industrial Applications, Dynamics, Cloud Computing

Author’s address Sergiy Nikitin
 Dept. of Mathematical Information Technology
 University of Jyväskylä
 P.O. Box 35
 FIN-40014 Jyväskylä, Finland
 sergiy.nikitin@jyu.fi

Supervisors Prof. Dr. Vagan Terziyan
 Dept. of Mathematical Information Technology
 University of Jyväskylä, Finland

 Prof. Dr. Timo Tiihonen
 Dept. of Mathematical Information Technology
 University of Jyväskylä, Finland

 Prof. Dr. Pekka Neittaanmäki
 Dept. of Mathematical Information Technology
 University of Jyväskylä, Finland

Reviewers Prof. Tatiana Gavrilova
 Graduate School of Management
 St.Petersburg State University
 Russia

 Dr. Valérie Monfort
 Maître de conférences
 Université de Paris1 Panthéon Sorbonne, France
 ISIG Kairouan, Tunisia

Opponent Dr. Evgeny Osipov

 Department of Computer Science, Electrical and Space
 Engineering

 Luleå University of Technology
 Sweden

ACKNOWLEDGEMENTS

I would like to start this section with words of gratefulness to Prof. Vagan Ter-
ziyan. Without his supervision and patience this thesis would not have existed.
Next I would like to thank to Dr. Olena Kaykova for her outstanding efforts in
organizing the exchange program between Kharkiv National University of Ra-
dioelectronics and University of Jyväskylä and then being a supervisor and a
colleague for all this time. I am grateful to Prof. Timo Tiihonen for his care and
support in all means, up to the last line of this thesis.

I am also thankful to Prof. Pekka Neittaanmäki and Dr. Päivi Fadjukoff for
building a great working environment and a creative atmosphere in Agora Cen-
ter. I would like to thank to the department of the Mathematical Information
Technology of the University of Jyväskylä as well as to the Intelligent Decision
Support Systems department of the Kharkiv National University of Radioelec-
tronics for great inspiration to study and to enjoy science.

Next I would like to thank all the “industry people” who have been our
partners in various research projects, in particular Dr. Jouni Pyötsiä (Metso Au-
tomation), Dr. Henry Palonen (Inno-W oy), Veli-Jukka Pyötsiä (Fingrid Oyj)
and others. Without the industrial input, this research would have never existed.
I am also thankful to Dr. Oleksiy Khriyenko, for being a colleague and a friend
for all this time. Someone said that “Truth is born in an argument”, so with
Oleksiy we have produced a lot of “truths” during these years�.

I would like to thank to all the members of the Industrial Ontologies
Group, and in particular, to Dr. Anton Naumenko and Yaroslav Tsaruk, for
great scientific discussions and interesting work. I am also thankful to Dr. Ar-
tem Katasonov, Michal Nagy, Michael Cochez and Joonas Kesäniemi for their
team spirit and great motivation to innovate and create something new.

I would like to express my words of gratefulness to Helen Vershinina,
head of the XOBFIZIT Kharkiv charity fund for her invaluable support and care
in my hardest times.

Jyväskylä-Kharkiv
February 2011

Sergiy Nikitin

LIST OF FIGURES

FIGURE 1 Alarm message integration tool .. 18
FIGURE 2 Data integration using Ontonuts .. 19
FIGURE 3 SOFIA platform architecture ... 21
FIGURE 4 Ubiware Agent architecture .. 22
FIGURE 5 UBIWARE platform architecture .. 23
FIGURE 6 Aspects of the abstract system architecture .. 26
FIGURE 7 Abstract architecture of Semantic Web Service Platform 28
FIGURE 8 Service delivery process (adopted from (ASG, 2004)) 29
FIGURE 9 Foundation Models for Semantic Web Services 30
FIGURE 10 Mathematical function as a capability ... 31
FIGURE 11 Dynamics as a component control channel .. 32

LIST OF TABLES

TABLE 1 Amount of alarm messages processed .. 18

CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

CONTENTS

LIST OF ORIGINAL ARTICLES

1 INTRODUCTION .. 11
1.1 Semantic Web .. 13
1.2 Agent Technology ... 13
1.3 Service-Oriented Architectures ... 13
1.4 Research objectives and research approach .. 14
1.5 Thesis outline ... 16

2 INDUSTRIAL PROTOTYPING .. 17
2.1 Metso case study ... 17

2.1.1 A Tool for Alarm Messages Integration 17
2.1.2 Ontonuts: Dynamic data integration for Metso 19

2.2 A case study for Forest Industry .. 20
2.3 A middleware platform ... 21
2.4 A middleware for cloud computing .. 23
2.5 Chapter Summary... 24

3 DYNAMIC ASPECTS OF INDUSTRIAL MIDDLEWARE
ARCHITECTURES ... 25
3.1 Dynamic Adaptation Aspect ... 26
3.2 Dynamic Servicing Aspect .. 27
3.3 Dynamic Model Sharing Aspect ... 30
3.4 Dynamics in Common ... 31
3.5 Summary .. 32

4 RELEVANCE TO OTHER RESEARCH .. 34

5 OVERVIEW OF THE ORIGINAL ARTICLES ... 37
5.1 Article 1: Querying Dynamic and Context-Sensitive Metadata in

Semantic Web .. 37
5.2 Article 2: Service Matching in Agent Systems 38
5.3 Article 3: Data Integration Solution for Paper Industry - A Semantic

Storing, Browsing and Annotation Mechanism for Online Fault Data
 ... 39

5.4 Article 4: Ontonuts: Reusable Semantic Components for Multi-Agent
Systems ... 39

5.5 Article 5: SOFIA: Agent Scenario for Forest Industry 40

5.6 Article 6: Mastering Intelligent Clouds: Engineering Intelligent Data
Processing Services in the Cloud .. 41

6 CONCLUSIONS ... 42
6.1 Answers to the research questions ... 43
6.2 Concerns ... 44
6.3 Further Research ... 45

YHTEENVETO (FINNISH SUMMARY) .. 46

REFERENCES ... 47

LIST OF ORIGINAL ARTICLES

I. Nikitin S., Terziyan V., Tsaruk Y., Zharko A., Querying Dynamic and
Context-Sensitive Metadata in Semantic Web, In: V. Gorodetsky, J. Liu,
and V.A. Skormin (Eds.): Autonomous Intelligent Systems: Agents and
Data Mining, Proceedings of the AIS-ADM-05, June 6-8, 2005, St. Peters-
burg, Russia, Springer, LNAI 3505, pp. 200-214.

II. Naumenko A., Nikitin S., Terziyan V., Service Matching in Agent Sys-
tems, In: International Journal of Applied Intelligence, In: M.S. Kwang
(Ed.), Special Issue on Agent-Based Grid Computing, Vol. 25, No. 2, 2006,
ISSN: 0924-669X, pp. 223-237.

III. Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper In-
dustry - A Semantic Storing, Browsing and Annotation Mechanism for
Online Fault Data, In: Proceedings of the 4th International Conference on
Informatics in Control, Automation and Robotics (ICINCO), May 9-12,
2007, Angers, France, INSTICC Press, ISBN: 978-972-8865-87-0, pp. 191-
194.

IV. Nikitin S., Katasonov A., Terziyan V., Ontonuts: Reusable Semantic
Components for Multi-Agent Systems, In: R. Calinescu et al. (Eds.), Pro-
ceedings of the Fifth International Conference on Autonomic and Au-
tonomous Systems (ICAS 2009), April 21-25, 2009, Valencia, Spain, IEEE
CS Press, pp. 200-207.

V. Nikitin S., Terziyan V., Lappalainen M., SOFIA: Agent Scenario for For-
est Industry, In: Proceedings of the 12th International Conference on En-
terprise Information Systems (ICEIS-2010), Funchal, Madeira, Portugal,
8-12 June, 2010, pp. 15-22.

VI. Nikitin S., Terziyan V., Nagy M., Mastering Intelligent Clouds: Engineer-
ing Intelligent Data Processing Services in the Cloud, In: Proceedings of
the 7th International Conference on Informatics in Control, Automation
and Robotics (ICINCO-2010), Funchal, Madeira, Portugal, 15-18 June,
2010, pp. 174-181.

1 INTRODUCTION

It would seem that perfection is attained not when no more can be added, but when
no more can be removed.1

The informatization of the society has been going at a high pace for several dec-
ades. The Moore’s law, stated in 60’s, still holds true, despite of the technologi-
cal challenges faced by the research community. We experience an unprece-
dented growth of the amounts of information held and processed by individu-
als. The volumes of the information transmitted over the internet as well as per-
sistent storage devices owned by individuals nowadays pose new challenges to
the information science. The traditional informational boundaries are vanishing
being substituted by Ubiquitous Computing (Weiser, 1993) trends. Efficient and
exhaustive information search in the internet is getting more and more compli-
cated every year. Even the domain of intra-organizational information man-
agement already calls for novel solutions that improve information search, shar-
ing and reuse.

The challenge of information management is complemented by another
challenge: growth of complexity of information systems. The software systems
being designed nowadays have become very complex and hence very expen-
sive to maintain (Kephart and Chess, 2003). This economical factor drives the
research towards new software design and development paradigms, which
would tackle the above mentioned challenges. One of such paradigms is Auto-
nomic Computing (Kephart and Chess, 2003) envisaged by IBM. The paradigm
states that the complexity of information systems management can be de-
creased by introducing autonomy (i.e. a certain degree of freedom and self-
awareness) to system components. When a component becomes autonomous, it
can observe its own state and act to maintain it or take actions to change it. Such
components would take the burden off the software developers by solving the
routine tasks themselves. Furthermore, such components, when orchestrated
into complex processes, would keep those processes running in a more robust
way because of the self-awareness, and, hence self-management capabilities.

1 Antoine de Saint-Exupery, Wind, Sand and Stars, 1939

12

At the same time, the Information Technology infrastructure of the indus-
trial sector is experiencing regular changes, modifications and updates. The
scale of the changes may vary from maintenance and support of the existing
applications, up to the revolutionary transfer to a completely new infrastructure.
Industrial businesses make significant investments into the IT-tools and solu-
tions, and expect those tools to be long-lasting and reliable. Surprisingly, the
solutions they get can fulfill their expectations. However, the technological pro-
gress of both the IT-sector and the industrial sector brings new competitive pos-
sibilities and advantages. To keep the leading market position, the industrial
company simply must offer an up-to-date innovative IT-infrastructure and
support. In other words, the company should invest into the subsequent chang-
es in the IT-solutions that have already been developed. Nevertheless, market
economy dictates its own rules – in order to be competitive, any company must
offer a competitive price. IT-solutions, therefore, should not be a price burden
for industrial products, but at the same time, should be modern and reliable.
When choosing an IT-solutions provider company, an industrial enterprise will
consider the integral price of the required solution with respect to the expected
updates in the product lifecycle. The architecture of such IT solution should be
robust and scalable, yet easy to configure, update and even extend. The natural
question here is – how to architect systems in order to meet the expectations of
customers by keeping the reasonable price? In other words, what will be the
optimal IT-architecture for industrial solutions in the future?

In order to design an optimal architecture we need to have an insight into
the industrial problems and then draw a hypothetic system that would meet
these problems. In this work we rely on the vision of Global Understanding En-
vironment (GUN) (Terziyan, 2003) that contemplates the future information
medium in three key aspects: Adaptation, Proactivity and Networking. The vi-
sion postulates that future information systems, networks and other resources
in order to achieve a highest degree of interoperability will utilize a unified ap-
proach to information and knowledge exchange. At the same time, the re-
sources being heterogeneous by nature, will be equipped with the software
adapters to bridge the resource-specific conceptualization with the shared con-
ceptualization of the environment. Next to the adapter, each resource is sup-
plied with an intelligent agent - a software representative that acts on behalf of
the resource in the environment. GUN is an abstraction beyond the Autonomic
Computing vision that already puts requirements, restrictions and design prin-
ciples for the medium as well as its components. GUN environment is an Auto-
nomic Computing environment that follows the design pattern of GUN.

However, any vision requires the implementation ground to become true,
as well as any theory becomes a good theory, when it has passed the experi-
mental validation. When a theory needs to be practically tested, the first ques-
tion we need to answer is: “Do we have a technology to support this theory?”
We believe that the ambitious challenges stated by the Autonomic Computing
and GUN visions could be fulfilled with the wise combination of already exist-
ing technologies. We list those technologies below.

13

1.1 Semantic Web

By the Semantic Web (Berners-Lee et al., 2001) we understand development
towards semantic machine-processable information on the web. The Semantic
Web comprises a set of formal specifications, such as RDF (Resource Descrip-
tion Framework) and its notations – RDF/XML, N3, N-triples, etc. for unified
information representation. At the same time, Semantic Web uses RDF-Schema
and OWL to formalize the knowledge domain with concepts, terms and rela-
tionships. The expressiveness of Semantic Web specifications when combined
with shared domain ontologies (conceptualizations) constitutes the ground for
automated machine-to-machine communication and information exchange.
Within the vision of GUN, the role of Semantic Web is to guarantee the disam-
biguation and expressivity (explicitness) of knowledge and information.

1.2 Agent Technology

We understand Agent technology (Jennings & Wooldridge, 1998, Odell, 2000)
as a set of tools, methods and techniques used for design and development of
Software Agents (Jennings, 1996) and Agent Systems (Genesereth, 1994, Nwana,
1996). The Agent Technology is a subset of Software Technology, where soft-
ware design and development utilizes the notion of Software Agent as a key
building block of the Software Architecture. The Software Agent possesses a
subset of following properties: Autonomous, Interactive, Adaptive, Proactive,
Intelligent, Rational, Coordinative, Cooperative, Competitive, etc. Agent as a
software component differs from the traditional software object by the addi-
tional abstraction level – called self-awareness, i.e. Software Agent is able to
observe itself and act to a certain degree autonomously. Being still a software
entity, agent can be understood as a software pattern with autonomy as a re-
quired characteristic. We consider Agent Technology as an engine for the Auto-
nomic Computing vision. At the same time, we believe that true potential of
Agent Technology lies in intelligence (Wooldridge, 1995).

1.3 Service-Oriented Architectures

Service-Oriented architecture (SOA) is a set of software design principles, pat-
terns and tools used to support the development of reusable distributed soft-
ware components that are loosely coupled and web-accessible via well-defined
interfaces. We understand well-defined interface as a specification, sufficient
enough to provide the required input and receive the expected output from the
component. The specification may include the list of functions with their inputs
and outputs as well as service choreography description. The terminology used

14

in the specification may refer to standards and schemas which makes it more
precise. SOA brings the interoperability to the Autonomic Computing, i.e.
makes the components universally accessible.

1.4 Research objectives and research approach

In short, the aim of this research is to demonstrate the applicability of the GUN
vision (Terziyan, 2003) to the industrial problems via construction of industrial
tools and methods that follow this vision. Within the construction we combine
existing technologies (Semantic Web, Agent Technology and Service-Oriented
Architectures) to prove the viability of those within the industrial settings as
well as to see their limitations. Next we analyze the outcomes of the design and
development and try to generalize the common principles that should be ad-
dressed in the construction of industrial applications.

 The following research questions have emerged during the studies per-
formed within various industry-driven research projects:

Q1: Does GUN vision apply for future industrial ICT-architectures?

Q2: Do the candidate enabling technologies meet the needs of industrial appli-
cations in the nearest future?

Q3: What are the key architectural features of tools for construction of industrial
applications?

As we aimed to tackle questions addressing both long time visions and
technical feasibility in the near future, we used a combination of the exploratory
and the constructive research approaches that correspond to the natural and
design sciences respectively. Within the research framework described in
(March and Smith, 1995) the authors distinguish between the research outputs
and research activities and claim that both the natural and design research ac-
tivities should be applied to the IT research. The research framework presented
in (Hevner et al., 2004) has elaborated a more rigor approach towards the un-
derstanding, description and evaluation of the research in IT. We align our out-
come with the framework, however, in addition we refer to the notion of a vi-
sion (we may also consider it as a hypothesis), which was not included into the
original framework guidelines, yet affected this research drastically.

The initial work on this thesis has already started within the scope of the
GUN vision. At that time it was introduced as a concept, however, the abstrac-
tion level of it corresponds to the “vision” term. The vision was based on, and
derived from the industrial problems by generalizing and specifying an “ideal”
environment, where components of “different nature” can easily interact to
achieve their goals. Within the research framework (Hevner et al., 2004) the vi-
sion was a design artifact with the problem relevance in the area of web services

15

and industrial applications. However, the evaluation of the vision was difficult
as, the instantiation (application) of the vision was not yet addressed. Neverthe-
less, the vision had a research contribution in a set of design artifacts that were
based on such emerging, yet already viability-proven instruments as web ser-
vices and software agents, and, therefore could have been considered as rigor-
ous. The research communication of the vision was rather clear, as it did not
target a narrow expert group, but covered a domain of service- and agent-
enabled industrial systems.

The next phase (iteration) of the research has aimed at the development of
models and methods as design artifacts that would further conceptualize the
GUN vision through the instantiation of models, methods and subsequent soft-
ware prototypes. The SmartResource (Terziyan, 2007), Adaptive Services Grid
(ASG, 2004) and SCOMA (SCOMA, 2005) projects were a testbed for software
implementation and testing of different aspects of the GUN. Whereas the Smar-
tResoruce was a mainstream project of GUN-related development, the ASG has
allowed us to investigate deeper the semantic servicing and SCOMA helped to
explore the semantic domain modeling problems. As a result, the GUN vision
has populated into a set of frameworks, one of which is GAF (General Adapta-
tion Framework) that constitutes a crucial basis for this work. Another instanti-
ation of the vision was a SmartResource platform that within its development
cycle has undergone three iterations and has provided an experimental basis for
further models’ and methods’ development.

Within the SmartResource project the results of the Articles I, II and III of
this thesis were achieved. As design artifacts, all of them have provided both
methods and their practical validation via prototype implementations.

The next qualitatively new iteration of the research has started with the
UBIWARE project (Katasonov, 2008) – the project has set an ambitious goal – to
develop a middleware platform for industrial applications. The work presented
in this thesis derives from, and contributes to the UBIWARE platform devel-
opment. The artifacts presented in this thesis (Articles IV, V, and VI) are based
on the UBIWARE platform implementations and extensions. The validity of the
methods presented in Article IV has been tested and implemented in the indus-
trial prototypes based on the industrial data- and system samples. The UBI-
WARE platform itself as an artifact has undergone 3 iterative cycles of design
and development. The viability of the platform has been tested in a set of indus-
trial implementations from different problem domains.

When considering the contribution of the Articles V and VI, the design ar-
tifacts provided are based on a well-grounded problem domain exploration.
The models presented in the articles were not implemented in prototypes, yet
the prototyping of those would become a natural continuation of this research.

When considering this thesis as a whole within the guidelines addressed
in the framework (Hevner et al., 2004), the problem relevance of this work is sup-
ported by the amount of relevant topics in industrial IT as well as project-driven
case studies and industry-driven implementation tasks. The research rigor can be
justified by aligning the work with the theoretical foundations of Semantic Web,

16

Agent Systems as well as standards referred to and used. The design as a search
process has covered a wide area of semantic web services, business processes,
agent systems and the semantic approaches to integration of different resources.
In this work we address the design as an artifact not only by tools implemented,
but also by a key set of interweaving aspects, that were decoupled and identi-
fied from the implementation and then generalized into guidelines for design of
industrial architectures. The design evaluation seems to be hard to perform, at
least in quantitative sense, since no equivalent platform tools that would com-
bine all the characteristics, exist at the moment. On the other hand the ability to
produce unique outcomes is a strong qualitative indicator of the design. The
lack of practical application within the long industrial lifecycle is another issue
that hinders the evaluation. As we have utilized and extended an innovative
prototype middleware platform, the evaluation has been performed from the
point of view of the usability. We have also identified limitations of our plat-
form and tools but due to the limitations we have better realized the scope and
the position of these tools in the industrial applications design.

The research contribution of this thesis is addressed by the combination of
the innovative design principles and the application of those in the prototype
implementation of tools (e.g. Ontonuts engine). The aspects derived from the
applications design may be considered as a hypothesis for future work on de-
velopment of industrial architectures. The research communication is supported
by technical articles published in refereed journals and conference proceedings
that target the technical audience. The business and managerial audience is
more addressed by the introductory part of this manuscript, as it describes the
broad problem area and presents the essence, or features that future industrial
middleware architecture would need to have.

1.5 Thesis outline

This work is organized as follows: in the next Chapter we present the industrial
prototype tools and case studies we have performed. We highlight the key
points of the design and implementation that are challenging, yet common for
different problem domains. In Chapter 3 we derive the common aspects that
should be addressed by the software architectures to meet the industrial prob-
lems. Chapter 4 presents the related work on the relevant research topics. A
brief overview of the articles included in this thesis is provided in Chapter 5.
We conclude and discuss future work in Chapter 6.

17

2 INDUSTRIAL PROTOTYPING

In this chapter we present practical outcomes of the research activities conduct-
ed within the projects inspired by the GUN vision. We show how different ar-
chitectural solutions have incrementally led us to the identification of key archi-
tectural aspects within the industrial problem domain.

2.1 Metso case study

Metso Automation is a provider of IT-solutions for paper production lines and
factories. The cooperation with Metso Automation has been mostly related to
data integration solutions utilizing different tools and technologies.

2.1.1 A Tool for Alarm Messages Integration

The first industrial application we refer to in this thesis, was a web service-
based alarm message integration tool (see Figure 1). The alarms, coming from
the paper machine are processed by the adapter component with the web ser-
vice interface that transforms the alarm SOAP-messages into the RDF-format in
accordance with the ontology elaborated for the paper industry alarms domain.
It also provides a web-based interface for the dynamic alarm data management
where a user defines an RDF-query via simple web interface that does not re-
quire any special semantics-related knowledge from the user except the paper
industry domain.

The tool has been launched as a test pilot in the year 2006 and it has been
successfully running for full four years already. At the moment of writing this
thesis the real data flow from one of the partner factories of Metso Automation
is still being forwarded to the university server and the tool successfully per-
forms the tasks that were set. The amount of data we have collected is given in
Table 1. Although the amount of data is quite modest, still the stable utilization

18

of Semantic Web and Web Service technologies and tools has brought a confi-
dence in the potential of the technologies and their combinations.

TABLE 1 Amount of alarm messages processed

Year Amount of messages
2006 2083
2007 1770
2008 1977
2009 2646
2010 (up to 01.10) 320
Total: 8796

Each incoming SOAP-message is transformed into a set of RDF-statements that
are put into the RDFS-reasoning enabled Sesame storage (www.openrdf.org).
The storage is then accessed by the MessageBrowser component via adapters.

FIGURE 1 Alarm message integration tool

The performance of the whole system has proven to be stable and responsive.
We have experienced the delays in query answering only when a database-
backend was used for the Sesame. After shifting to the in-memory repository
mode, the problem was resolved. More details about the implementation can be
found in the Article III of this thesis.

19

2.1.2 Ontonuts: Dynamic data integration for Metso

The reality of industrial IT-infrastructure has inspired us to develop a new inte-
gration solution that would be capable to retrieve data from different data
sources at the same time being dynamic. We have generalized the problem and
have designed a tool and an engine that allows us to develop and reconfigure
adapters to different resources through the web interface (at the moment the
relational databases support is implemented). The engine incorporates a dy-
namic planning mechanism that resolves arbitrary goal-based requests that
arise in the runtime. We named such type of adapters and the underlying tech-
nology as Ontonuts – reusable semantic components for multi-agent systems.
The technology utilizes several principles that simplify the understanding and
the implementation of Ontonuts. First of all any operation with the resource can
be performed via capability that is defined for it. Even a database is represented
by a capability (or a set of capabilities) that act as data services (see Figure 2), i.e.
a user of the capability may discover it by specifying a goal request. If the goal
is matched against the capability (or a set of capabilities) then the appropriate
engine-supported invocation takes place.

FIGURE 2 Data integration using Ontonuts

The capability specification is fairly simple and is defined in terms of inputs
and outputs, e.g. database engine may perform queries and provide query re-
sults based on the request received, a service may book a flight ticket and pro-
vide a confirmation with the booking reference as an output, or software com-
ponent may calculate certain mathematical function value and return it based
on the input data provided. We approach all types of sources from the same
perspective: what is the input required to address the source and what is the
output produced by the source. We define inputs and outputs semantically,
using domain ontology as a reference data model and specifying the patterns of
the input/output data. The unified approach to component annotation allows

20

us to abstract from source types and concentrate on agent-driven component
matchmaking and composition. The resource-specific extension to the capabil-
ity allows declarative adapter specification that can be reconfigured later on the
fly. When such a capability is published, it becomes a service.

With respect to the architectural requirements discussed in the Introduc-
tion of this thesis, we have developed a gluing technology that lays the ground
for dynamic planning and component matching. At the same time, Ontonuts
address the adaptation to external sources – which may be superseded by
agent-driven adaptation services in the future. Nevertheless the General Adap-
tation Framework (GAF) (Kaykova et al., 2005) principles and techniques are
adopted in the technology and design of the agent middleware-supported ad-
aptation.

2.2 A case study for Forest Industry

This case study has been inspired by the economic situation in Finnish forest
industry that desperately calls for higher degree of efficiency in all stages of the
production chain. Recent research conducted in 2005-2008 has shown an ex-
tremely high degree of inefficiency in logistic operations amongst logging and
transportation companies. Some of them have already realized the need for co-
operative optimization, which calls for cross-company integration of existing
information and control systems; but at the same time privacy and trust issues
prohibit those companies from taking the open environment solutions. In
(Vesterinen, 2005, Väätäinen et al., 2008, Lappalainen, 2009) new mediator-
based business models were suggested that leverage the utilization and pre-
serve current state of affairs at the same time.

We have performed a feasibility study and have designed an architecture
of the IT-platform (called SOFIA) for logging and transportation subcontractors
that would serve as an integrator of information systems provided from differ-
ent order makers (wood buyers and forest owner associations), the orders com-
ing from different systems would be gathered into one integrated view allow-
ing the contractors to apply logistics optimization tools and decrease useless
overheads in operation (see Figure 3).

The platform has not been implemented as a prototype; however the re-
quirements to the architecture, that were detected in this case study, are similar
to the paper industry ones: adaptation, servicing and domain modeling in dy-
namics. For details of this study we refer to Article V of this thesis.

21

FIGURE 3 SOFIA platform architecture

2.3 A middleware platform

The GUN vision, supported by the industrial studies, has resulted in under-
standing of a need for such a middleware solution that would facilitate the im-
plementation of industrial distributed systems. The research towards a mid-
dleware platform has started in 2003 and resulted in a SmartResource agent
platform that was mostly utilizing a combination of existing tools and libraries.
The lessons learned from the SmartResource platform have led to the complete
rethinking of the platform architecture and specification of new requirements.
In 2007 started the UBIWARE project (Katasonov, 2008) that aimed at the new
generation middleware platform that would possess the required characteristics
regardless of the limitations in the existing tools and applications. The platform
architecture consists of two main parts: the architecture of a UbiwareAgent (see
Figure 4), and the architecture of the platform itself.

The UbiwareAgent is a main component and a building block of the plat-
form whereas the platform is a self-sufficient middleware, ready to run user-
defined applications.

22

FIGURE 4 Ubiware Agent architecture

The uniqueness of the platform is grounded on the three-tier architecture of the
UbiwareAgent. The topmost layer is a Live – behavior of the agent – it imple-
ments an endless cycle of agent’s live activities. The lowest layer of the agent
provides a set of reusable hardcoded Java-components, so called Reusable
Atomic Behaviors (RABs) that an agent can use to sense and affect the environ-
ment. The middle layer is a scripting layer – where all “brain activities” of an
agent take place. The script is defined using S-APL language (Katasonov, 2007,
Katasonov and Terziyan, 2008), which is a unique finding of the UBIWARE pro-
ject. The language is semantic and rule-based. Thus combining the features of
descriptive languages like RDF (we use N3 notation as well) and programming
capabilities of rule-based languages where if-then constructs can be specified.
The script layer can call the layer of hardcoded components and thus interact
with the “real world”, e.g. another agent, web service or a device driver. How-
ever, the most interesting feature of the S-APL language with respect to the in-
dustrial challenges discussed above is the ability to produce script out of script
and modify the behavior of an agent on the fly.

From the micro-world of an agent we will go to the macro-world of the
platform itself. The platform architecture (see Figure 5) introduces a self-
sufficient runtime environment which is supported by a set of so-called “Infra-

23

structure Agents” – platform agents that have a high priority and act to keep
the platform running.

FIGURE 5 UBIWARE platform architecture

The infrastructure provides facilities for applications which are in turn driven
by application agents (more details at (Terziyan, Nikitin et al, 2010)).

The key platform elements that refer to the issues of domain model shar-
ing and servicing are the Ontology agent and the DirectoryFacilitator agent.
Whereas the former takes care of the common platform-wide shared ontology
of concepts and roles, the latter keeps the registry of agent-to-role bindings.

We include this section into the description of case studies because UBI-
WARE platform itself is an example of a complex dynamic ecosystem of simple
applications that is managed by software entities (infrastructure agents) that are
designed using the same principles and approaches as industrial applications
being run on it.

2.4 A middleware for cloud computing

IT-world is experiencing high demand for so-called cloud computing platforms
and cloud-based solutions. The cloud infrastructure is becoming more and
more advanced and tailored to different user groups. The management of such
infrastructure at some point will require an automated solution that would in-
teroperate with the client applications and optimize or automatically manage
the configuration of the cloud stack. In Article VI of this thesis we present an
architecture that extends the cloud services stack with intelligent platform ser-

24

vices, at the same time providing middleware-based cloud management infra-
structure. The key principles of the architecture however stay the same – the
adaptation is provided as a platform service. The domain model sharing is used
to guarantee successful interoperability of the in-cloud components and ser-
vices, whereas the dynamics is handled by agent-enabled middleware, which
provides means for the cloud stack management taking into account the user
applications within it.
This case study has been important for positioning the middleware platform
within the cloud computing trend and understanding the needs of cloud-based
middleware solutions.

2.5 Chapter Summary

In this chapter we have presented a set of industrial prototype implementations
as well as conceptual architectural solutions that aim to resolve present-day
problems of industry and give an insight to potential industrial architectures of
the future respectively. We utilize an innovative UBIWARE platform in imple-
mentation of test prototypes and at the same time enrich the platform itself with
the generic tools that we derive and generalize from the case studies. It is im-
portant to highlight that the architecture of the platform, and especially the lan-
guage used, have given us a possibility to achieve the highest degree of reusa-
bility in implementation. We develop generic hardcoded components that be-
come a part of the platform and, therefore, incrementally enrich and speed-up
the applications development. The applications, that were already developed,
can address future changes caused by industrial needs by reconfiguring the
flexible S-APL script layer. Moreover, the current version of UBIWARE plat-
form lives as it preaches – an essential part of its inner functionality is provided
by agents via semantically described services.

Although the UBIWARE platform has undergone three iterative develop-
ment cycles and has been tested and practically used in industrial settings for 2
years already we still realize that other solutions and platforms from influential
software vendors will populate the industrial software market. We can already
see this tendency in the Cloud Computing area, where competitive cloud facili-
ty providers offer a rich PaaS (Platform-as-a-Service) layer to their customers.
We believe that new emerging industry-oriented solutions and platforms will
possess common characteristics. In the following chapter we generalize the de-
sign issues of the UBIWARE-driven development and derive key common fea-
tures that will pervasively cross-cut future middleware architectures.

25

3 DYNAMIC ASPECTS OF INDUSTRIAL MIDDLE-
WARE ARCHITECTURES

When we consider the industrial IT-infrastructure, several architectural re-
quirements take place. First of all, the architecture should offer easy connectivi-
ty to the existing systems through different API’s and provide flexible mecha-
nisms for data model mappings. Next, it should support sharing of component
functionalities through well-defined, easily accessible and standardized inter-
faces. And at last it should provide a common ground for all system compo-
nents by specifying the shared vocabulary of terms and definitions of the prob-
lem domain. All the features mentioned above, should also be considered as
dynamic or, in other words, the architecture should take into account the evolu-
tionary aspect of the system, when changes are inevitably expected but can
hardly be predicted at the moment of the system startup.

We identify following aspects of the architecture in question, that need to
be fulfilled in order to meet the requirements stated above:

- Dynamic adaptation
- Dynamic servicing
- Dynamic domain model sharing

All three aspects cross-cut the architecture and have one feature in common –
they all are dynamic (see Figure 6). By “dynamic” we mean the capability to
change the component or system characteristics not by reprogramming, but
rather by reconfiguring them through a well-defined interface. At the same time,
the component itself may initiate changes, e.g. triggered by changes in other
components or the system environment.

By harnessing the above mentioned architectural principles, we can build
system components that would seamlessly integrate with already existing tools
and solutions, at the same time being ready to change their behavior in the fu-
ture. The interoperability amongst those components is guaranteed by a well-
defined shared domain model that may also grow upon the need of the envi-
ronment, where the system operates.

26

FIGURE 6 Aspects of the abstract system architecture

3.1 Dynamic Adaptation Aspect

The problem of adaptation arises from a variety of models and/or implementa-
tions constructed for the same problem domain. The models may differ in struc-
ture or in syntax. Domain models may introduce standards, or just internal sys-
tem-specific data models, but nevertheless, they are described using certain
metamodel. In (Naumenko, Nikitin, 2005) we discuss the advantages of the se-
mantic metamodels compared to XML-oriented ones applied to the paper in-
dustry standardization effort.

Already existing applications and components may adapt their internal
models to a shared domain model. Common binding to a shared model allows
easy inclusion of the components into new interoperability scenarios.

General Adaptation Framework (GAF) (Kaykova et al., 2005) introduces
several principles and concepts that are common for semantic adaptation pro-
cess – the notion of the semantic adapter, the differentiation between syntactic
and semantic transformation, canonical data forms, pattern-based mapping, etc.
The authors differentiate three major classes of resources for adaptation, those
are: humans, devices and services.

In Article I of this work we introduce a pattern-based approach to data
querying, which is a particular case of data source adaptation. We build an
adapter that uses query patterns to extract data from context-reach RDF graph.
The idea is similar to the XSLT sheets for extracting the data from XML docu-
ments and producing the arbitrary document from the XML input given.

To simplify the adaptation, GAF introduces a two-stage transformation
approach, where a notion of canonical native form is used. A canonical form
can be defined, for example as XML schema. The semantic adapter develop-
ment in this case can be as simple as XML-to-XML transformation, whereas the
semantic transformation from the canonical XML to RDF or other semantic
format may be predefined beforehand and done by domain experts. Thus the
adaptation from other XML-formats would require only transforming an arbi-
trary XML to an XML canonical form.

27

Next, GAF introduces adaptation ontology – a model for semantic specifi-
cation of the transformation logic. The ontology may refer to transformation
patterns, their variables and thus allow dynamic configuration of the adapter.

From the industrial perspective the importance to have dynamic adaptation
aspect in the architecture also arises from the need to tweak the systems and
components during their lifecycle. Such tweaking of the components may,
however, affect the business process chains, therefore building a proper dynam-
ically adjustable adapter to the component may decrease the effort towards the
process chain rearrangement, or even preserve the existing process chain by
hiding the internal component changes behind the adapter.

3.2 Dynamic Servicing Aspect

Nowadays industry is actively using web services technology in distributed
scenarios. Web services have brought several important advantages to the in-
dustrial world – they have decoupled the implementation of the components
from their usage. The standardized method to access advertised component
functionality through a message-based interface has become extremely popular
in recent years as it provides common “glue” for different programming lan-
guage worlds and communities. Service-oriented architecture targets the prob-
lem of interoperability amongst distributed applications and introduces stand-
ard languages for information exchange and interfaces’ specification. Ease of
the interoperability amongst services reduces the efforts needed for service
composition and integration. However, the de-facto standards for service speci-
fication (WSDL, SOAP, etc.) are still far away from automated service discovery,
composition and enactment. They rather solve the problem on the syntactic lev-
el, thus allowing everyone to speak to each other, but not to understand.

The simplicity of service creation does not imply the simplicity and ease of
service consumption. On the API level “poor usability” means non-
understandable interface, which may arise from poor interface specification
(implicit or no description) or language incompatibility (different standard is
used). The web services world have stumbled in the automated service match-
ing challenge. We need to construct adapters in order to make external service
API compliant with the shared domain model of an industrial environment,
where an automated service matching and discovery would become possible. In
terms of Semantic Web Services we need to provide an explicit semantic service
annotation and, if needed, perform certain transformations.

As far as the majority of web service interfaces is defined using XML mes-
saging, all the principles and techniques of GAF can be applied to construct
adapters to web services.

Semantic Web Services have appeared as a technology which is expected
to provide a new level of automation to the web services world. The automated
composition of services has been discussed for several years already and a
number of research projects were completed aiming at the development of a

28

sufficient infrastructure and algorithms for automated service discovery, com-
position and even creation (ASG, 2004, DIP, 2004, Abhijit, 2004). The idea of dy-
namic linking of services in order to achieve complex functionality is inspired
by fast growth of the web service infrastructure, which tends to provide new
flexible solutions for customers.

Below we present an abstract architecture of a software platform for se-
mantic web services provisioning, which is aimed at fulfilling a user-defined
goal. The architecture contains user interface elements and APIs for user agents
(Terziyan, 2005, Veijalainen, Nikitin, 2006). The abstract platform incorporates
the functionality sufficient for: discovery of services, their composition and in-
vocation (see Figure 7). This architecture is important as it addresses the generic
problem of dynamic composition starting from the goal specification, up to the
process re-planning in the runtime.

Here, Goal specification assistant – an ontology-driven GUI-tool that helps
the user to specify his/her goal explicitly. The goal is then passed to the Seman-
tic Web service Platform.

Semantic Web Service Platform –provides dynamic automated goal-driven
search, composition and invocation of web services. It embodies a Dynamic
Composition component.

Dynamic composition – Performs semantic service composition; requires
reasoning functionality.

FIGURE 7 Abstract architecture of Semantic Web Service Platform

Workflow enactment –a “service player” component. This component exe-
cutes composed services and achieves actual service output.

29

Platform Registry - A persistent storage of semantic and other service-
related data

According to (ASG, 2004) the process of the service delivery consists of
three main steps (see Figure 8). After user has defined his/her goal in a form of
a semantic service request, the platform launches the first sub-cycle (Planning).
The aim of planning is to discover suitable service(s) that reach user’s goal, or to
compose available services into the complex process which can fulfill the goal
(the platform deals only with abstract semantic service descriptions at this
point). On the second sub-cycle (Binding), the platform starts contracting and
negotiation process with the service provider(s) in order to fit user preferences
stated in the goal. The negotiation is done concerning QoS parameters and re-
sults in a Service-Level Agreements (SLA). The third sub-cycle (Enactment)
handles the invocation of services which have signed the SLAs. It also monitors
the execution process and resolves errors and failures which may occur in exe-
cution time.

In order not to run all the cycles every time a service is requested, the plat-
form stores service compositions. Changes in service’s annotation, will force the
platform to reconsider all the compositions once again which might be time
consuming due to renegotiation of the contracts already signed.

FIGURE 8 Service delivery process (adopted from (ASG, 2004))

To make a service delivery process work, we need to have:
- A semantic web service platform
- A domain ontology
- A set of services
- A set of user-defined goals

30

In terms of the model-driven approach, the Semantic Web Service con-
struction requires a Service Metamodel (Service Ontology) and an Application
Domain Ontology that models the domain of the discourse. The Application
Domain Ontology, in turn, is a formalization of the Domain of Discourse given
with the Formal Ontology Language (Jones, 1998, Rector, 2003). The Service
Metamodel formalizes a Service Concept by means of Formal Ontology Lan-
guage (Figure 9).

Application
Domain
Ontology

Domain of
discourse

Formal
Ontology
Language

Service
Concept

Service
Ontology
(service

metamodel)
Semantic

Web Service

FIGURE 9 Foundation Models for Semantic Web Services

Article II of this work presents an approach for semantic service matching in
agent systems and provides several hands-on methods for practical usage in
matchmaking of service descriptions. Agent-driven dynamic service matching
and subsequent planning are key enabling agent autonomy mechanisms. We
believe that planning is a most important capability of an autonomous goal-
driven component, as it allows the component to dynamically search and re-
solve means to achieve its goal. Following the semantic web services approach,
we have developed a Ontonuts technology (Article IV of this thesis) that ex-
tends the UBIWARE platform with semantic components which are more spe-
cific compared to the semantic web services. Ontonuts combine both the inter-
nal (possessed by the agent) as well as the external (provided by other sources)
capabilities and allow the agent to dynamically define goals and build execu-
tion plans to achieve these goals. In the idealistic case the reprogramming of an
agent should be narrowed to changing the agent goal.

3.3 Dynamic Model Sharing Aspect

The aspect of a shared model within the abstract architecture plays a crucial
role for the performance of the industrial system as a whole. The model should
possess following characteristics as expressivity (ability to express domain
knowledge without losses), explicitness (ability to define knowledge unambig-
uously) and granularity (ability to reuse knowledge definitions and exclude
redundant or repeated knowledge).

A shared model should respond to the needs of the application domain.
For example, to specify a semantic capability description, we may need to in-
troduce concepts and domain-specific constructs that affect the model as a

31

whole. Let us consider a trivial example of a simplified capability model which
implements simple mathematical function (see Figure 10).

y=f(x)X input Youtput

FIGURE 10 Mathematical function as a capability

Where ��X and ��Y . The Y as such doesn’t say anything about its prove-
nance. We only know that it is a real number. Now, if we look from the process
modeler perspective, we definitely take into account the function that has pro-
duced this number. We treat Y as a resulting value of the service function. So, in
order to annotate a capability or a web service, which calculates some mathe-
matical function in terms of Inputs and Outputs, we have to define an ontologi-
cal class to specify that Y was produced by some function. Otherwise we won’t
be able to discover such service automatically on the planning stage. This trivial
example gives a hint of what the explicit domain modeling is. The industrial
domain model should be precise enough, to interpret the states and operations
uniquely. The model should guarantee the possibility to formally reason and
match capability inputs and outputs. In the long run, the model should allow
extensions and introduction of new concepts and definitions yet keeping the
whole model consistent.

3.4 Dynamics in Common

Although the industrial IT-systems in such domains as e.g. machinery, may be
designed to work for several decades, still the industrial environment is becom-
ing more and more agile and the appearance of new business processes within
it can hardly be predicted for a long term. The required changes in the compo-
nents are, therefore hard to predict as well. The easiest way to keep the compo-
nent change-tolerant is to preprogram a dynamic behavior. Dynamics of a com-
ponent can be introduced not as a characteristic of the component itself, but ra-
ther as a control channel over it (see Figure 11). The dynamic configuration of a
component in a runtime may be performed by a controlling entity that is capa-
ble of using component interfaces, restarting it, or reversing to the previous
state. This approach is opposed to the configuration through the component’s
own interface. Using the controlling entity to configure a component is more
robust. If the configuration change affects heavily further operation of the com-
ponent (for example the component becomes inaccessible), then the reverse
changes may not be possible through the component interface. However, when
defining an abstract control entity on top of the component, we may always
observe the state of the component even if it is not functioning properly. A con-
trolling entity may have a right to restart the component if needed.

32

FIGURE 11 Dynamics as a component control channel

We consider software agents as a most suitable technology to implement the
dynamic control channel over three main types of components – adapters, ser-
vices and domain models. We derive the component types from the aspects we
have defined above; however, the components may include all three aspects at
the same time. As an example, there can be a semantic adapter to the social
network that acts as a service within the system. The adapter uses web service
interface to provide the functionality to other system components, at the same
time, it uses the domain model to annotate the interface, and it also works as
configurable adapter to the social network – i.e. it may modify the ontology-
driven adaptation logic on the fly if the social network API changes.

3.5 Summary

IT-world is experiencing constant changes through the appearance of new tech-
nologies, approaches and visions. The amount of different programming plat-
forms and languages has grown drastically in recent decade. If to seek for a rea-
son of the appearance of new languages, mostly these languages and platforms
are designed to simplify the construction of domain-specific applications.

In this chapter we briefly described three key aspects of abstract software
architecture for industry – adaptation, servicing and domain model sharing. When
these aspects are considered within a long timeframe, the fourth cross-cutting
common aspect of dynamics is discussed. The aspects were derived from the
prototyping and implementation work and repeated the theoretical foundations
declared in the early age of agent technology establishment. The aspects, how-
ever, have undergone substantial reconsideration from the industrial applicabil-
ity perspective – we enriched the understanding of these through the prism of
new technological cycle, when a web service technology is widely accepted in
the industrial architectures and real Semantic Web tools have become mature
and their pros’ and contras’ are well studied. The adaptation has become a nat-
ural concept of enterprise-level architectures (e.g. Java Connector Architecture).

33

We believe that a next technological loop will tie these aspects together in-
to a unified architectural model that will address industrial problems in a uni-
form way, offering complex solutions for development of enterprise industrial
systems. In this work we offer one possible form of such integrated approach –
a middleware-driven architecture that combines the above mentioned aspects
in one technological platform. We have come to the conclusion that such a mid-
dleware platform will become an enabling technology, when qualitatively new
tools and even supporting languages will be developed. We believe that S-APL
language, despite of its immaturity is one of the hands-on examples of future
programming paradigm shift towards semantics-enabled dynamic goal-driven
programming.

34

4 RELEVANCE TO OTHER RESEARCH

This work intersects with a variety of techniques, methods and frameworks that
are being actively discussed in the IT-community. The attempts to introduce
new flexible approaches to the software design and development vary from
using ontologies as a supporting instrument for the development (Akerman
and Tyree, 2006), up to the composition of the adaptive software (McKinley et
al, 2004a). In this chapter we will dedicate our attention to the mainstream ap-
proaches that address similar issues and challenges. The key research dimen-
sions we will discuss below correspond to the key aspects we have presented,
therefore we will address work on adaptation, servicing and shared domain model-
ing within the dynamic frame.

The adaptation aspect may refer to a large field of research work from top-
ics of software product customization and configuration (Clements and
Northrop, 2002), up to the runtime configuration of running software, e.g.
(Keeney at al., 2003, Oreizy et al., 1999), generative programming (Czarnecki
and Eisenecker, 1999) and compositional adaptation (McKinley et al., 2004a,
McKinley et al., 2004b). In (McKinley et al., 2004a) the authors identify the main
technologies that would enable the compositional adaptation, those are: separa-
tion of concerns, computational reflection and component-based design. The
authors state the need for a middleware support (and we fully agree with this!)
of the compositional adaptation. The research on the software adaptation is
mainly built around the notion of Meta-Object Protocols (Kiczales et al., 1991)
that enable reflection, Aspect-Oriented Programming (Kiczales et al., 1997,
Walker et al., 1999), that allows the separation of concerns and Component-
based software engineering (Heineman and Councill, 2001, Aksit, 2001). Our
approach reuses similar principles, but rather addresses semantic component
introspection through the well-defined component descriptions, i.e. we bring
same problems to the unified layer of a script-like language (S-APL) but operate
with semantic language constructs.

In this work, however, we mainly address the topics of semantic adapta-
tion of external resources, which are indirectly discussed e.g. in (Canal et al.,
2006). We consider resource adaptation from the perspective of the interface to

35

the environment, i.e. we adapt only what is needed from the resource, we do
not dare (or have access) to analyze the internal resource structure, as we deal
with the functional interface of the resource, and, hence the automatic interpre-
tation of the resource logic may never be reliable.

Within the servicing aspect we address the related work in Semantic Web
Services domain. In August, 2007 the working group of W3C consortium pub-
lished as a recommendation the SAWSDL specification (Semantic Annotations
for WSDL and XML Schema) (SAWSDL, 2007). The working group had been
considering four candidate specification submissions – (WSMO, 2005), (OWL-S,
2004), (WSDL-S, 2005) and (SWSF, 2005). All the proposed approaches aimed at
the semantic annotation which would simplify discovery and composition of
services. SAWSDL specification is based on the WSDL-S approach (Verma, 2007,
Abhijit, 2004) and has become an incremental step on top of the existing web
services standard (WSDL, 2007) by providing an extension mechanism on top of
it. SAWSDL enriches the web service component descriptions with references to
semantic annotations. Those annotations can be specified using a suitable for-
mal language, i.e. SAWSDL itself does not determine the languages for seman-
tic specification, but rather bridges service descriptions with the formal model.
For example, (Martin et al, 2007) align OWL-S with the SAWSDL specification.
The candidate models that were submitted rather deeply address the semantic
service specification and mainly consider Semantic Web Services within the
business process context, which is absolutely reasonable assumption with re-
spect to the aim of Semantic Web Services technology as such – to enable auto-
mated services discovery, enactment and composition. Our work does not
compete in any manner with the above mentioned approaches; it rather com-
plements the web service technology with the extensions, e.g. smart service
managers (agents) that operate the service. We also consider services under the
assumption of the common middleware, i.e. we exclude P2P service mappings
from our scope because any external resource needs to be adapted only once
within the environment. A lot of theoretical research has been conducted about
the composition of the services, yet the models, tools and prototypes did not
receive much of industry support, most probably due to complexity of model-
ing. We address similar problem of composition in Ontonuts approach (Article
IV of this work), where we use backward chaining algorithm for internal agent
plan composition. We keep the component annotation as simple as possible.
The plan refers to components that represent external sources – databases, ser-
vices, etc.

In (Clements, 1994) the author discusses how domain model affects sys-
tem architecture, thus showing the tight dependency between the domain and
the system. Within the Semantic Web wave, the domain model sharing aspect is
deeply questioned in (Shadbolt et al, 2006) from the applied perspective of the
Semantic Web. The authors state that a new ways for semantic data querying
and sharing are needed, that corresponds to our vision of understanding the
data source as a service, thus unifying the approach to composition in general

36

and applying the unified planning scheme to different problems (and distribut-
ed querying in particular).

An approach to configurable domain-specific service development and
composition is presented in (Marin & Lalanda, 2007). The authors take into ac-
count the importance of the domain modeling and propose a model-driven de-
velopment environment for service compositions. The approach is somewhat
similar to our middleware-based solution, as we address the low-level devel-
opment by platform tools and decouple the application logic into the S-APL
level, which gives higher flexibility.

Regarding the dynamics aspect, the area of discourse is really broad and
has been partly addressed in the adaptation-related works mentioned above in
this section. The dynamic web services adaptability using AOP-based approach
is discussed in (Baligand and Monfort, 2004, Ben Hmida et al., 2006). A combi-
nation of the Web Services, AOP and Agent Programming is dicussed in (Balbo
and Monfort, 2009). These approaches are based on the existing SOA-tools and
standards and provide practical hands-on hints on the implementation of the
dynamic service behavior. In the approaches mostly non-functional aspects
such as security are addressed. Our work rather complements the work men-
tioned by targeting the functional part of the servicing components and address-
ing the dynamics in goal-oriented fashion. The Gaia methodology (Wooldridge,
2000) for agent-oriented systems design, although giving a rigorous foundation
for development of agent systems, still provides certain assumptions, that in
our opinion, limit the applicability of agent up to such extent, that role of an
agent is diminished and agent as a software design pattern becomes unneces-
sary. In our opinion, the true autonomy of an agent can be reached only by in-
troducing intelligence to the agent behavior. The agent as an entity becomes
valuable, when it has a unique instance-specific configuration that may be e.g. a
result of learning through the experiences collected, or a goal-driven dynamic
plan construction and validation (dynamic composition), in other words, an
agent should obtain unique characteristics that qualitatively raises it above the
understanding of being just a software component.

37

5 OVERVIEW OF THE ORIGINAL ARTICLES

This chapter provides a short overview of the articles included in this thesis.
One of the articles was published in a journal, other five where published and
presented on the international conferences.

5.1 Article 1: Querying Dynamic and Context-Sensitive Metadata
in Semantic Web

Nikitin S., Terziyan V., Tsaruk Y., Zharko A., Querying Dynamic and Context-
Sensitive Metadata in Semantic Web, In: V. Gorodetsky, J. Liu, and V.A. Skor-
min (Eds.): Autonomous Intelligent Systems: Agents and Data Mining, Proceed-
ings of the AIS-ADM-05, June 6-8, 2005, St. Petersburg, Russia, Springer, LNAI
3505, pp. 200-214.

This article describes an approach to construction of complex semantic context-
rich structures. The approach can be beneficial in fast development of semantic
adapters to various resources. The patterns allow rich, yet simple transfor-
mation from the original data format, to the extensive semantic description,
which is further utilized in various agent-driven scenarios. The reference im-
plementation utilizes the RDF language as an output semantic format. The RDF
being generated utilizes a state-condition extension to the standard model, i.e.
the structure of the output document is not readable for a human, therefore
mapping the structures of input and output format would become a challenge.
The application of patterns has allowed us to concentrate on the functional part
of the adapter and has appeared to be a most viable solution in the long run,
with relatively simple support and easiness of processing.

From the industrial perspective, the approach offers a simple solution to
the developers of semantic adapters and follows an adapt-on-demand philoso-
phy in application design and development. The article mainly targets the adap-
tation and model sharing aspects, whereas the dynamics aspect can be addressed

38

by managing a configuration of the patterns and transformation logic of the
adapters.

This article was written by the SmartResource project team (Industrial On-
tologies Group). Yaroslav Tsaruk has contributed to the Sections 2.1, 2.2 and 3.1
(Joseki RDF storage). Andriy Zharko and Vagan Terziyan have contributed to
the introduction and the editing of the final draft. The Sections 2.3 (RDQL lan-
guage), 3.2 (Applying RDQL to RscDF querying), 3.3 (Querying patterns) where
written by the author of this thesis.

5.2 Article 2: Service Matching in Agent Systems

Naumenko A., Nikitin S., Terziyan V., Service Matching in Agent Systems, In:
International Journal of Applied Intelligence, In: M.S. Kwang (Ed.), Special Is-
sue on Agent-Based Grid Computing, Vol. 25, No. 2, 2006, ISSN: 0924-669X, pp.
223-237.

This work addresses several issues of the service matching problem. We ana-
lyze the service matching algorithm of a JADE agent system and prove that it
does not work adequately. Next we target the problem of uncertain service
matching as users of agent system may not always specify precisely the goal
they would like to achieve. We demonstrate several approaches to the matching
of semantic definitions that employ distance measure in finding a closest ser-
vice to the goal specified. The approaches address hierarchy-based and facet-
based distance measure methods and show hands-on examples of distance cal-
culation.

This work refers to the aspects of servicing and domain model sharing. We
also address dynamics by means of agent-driven service search and invocation.
Within the scope of this thesis, this article explores practical aspects of search,
advertisement and matching of capabilities possessed by an autonomous entity.

The article was written within the SmartResource project. Anton Nau-
menko has contributed to the Sections 2 and 3 – the analysis of the FIPA
matchmaking algorithm and the taxonomy-based distance measure. Vagan Ter-
ziyan has contributed to the classification of the semantic distance measure
functions. Section 4 (distance measure for ontology with facets) was written
solely by the author of this thesis. A minor contribution to the ontology design
for Section 3 as well as the final editing of the article as a whole was also done.

39

5.3 Article 3: Data Integration Solution for Paper Industry - A

Semantic Storing, Browsing and Annotation Mechanism for
Online Fault Data

Nikitin S., Terziyan V., Pyotsia J., Data Integration Solution for Paper Industry -
A Semantic Storing, Browsing and Annotation Mechanism for Online Fault Da-
ta, In: Proceedings of the 4th International Conference on Informatics in Control,
Automation and Robotics (ICINCO), May 9-12, 2007, Angers, France, INSTICC
Press, ISBN: 978-972-8865-87-0, pp. 191-194.

The article presents architecture and a pilot solution that utilizes semantic web,
web services and agent technology to build a web-based application for paper
machine experts that deal with online alarm and fault data. The system we have
built, decouples the data collection and management mechanism apart of the
expert GUI-based tool. The importance of this contribution is in practical utili-
zation of Semantic Web tools in the construction of close-to-production proto-
types. The utilization of new technology and decoupling of the semantic infor-
mation storing from the user-oriented application has significantly changed our
understanding of the semantics and the utilization of semantic content in gen-
eral. The possibility to incrementally enrich and extend the semantic content
provides a huge potential to the modification and improvement of the applica-
tions in the long run.

This work addresses all three aspects (adaptation, servicing and domain mod-
el sharing) as well as dynamics in the full scale.

The article was written within the SmartResource project. Prof. Vagan
Terziyan and Dr. Jouni Pyötsiä have supervised the writing from the scientific
and industrial perspectives respectively. The author of this thesis is a principal
contributor to this article.

5.4 Article 4: Ontonuts: Reusable Semantic Components for Mul-
ti-Agent Systems

Nikitin S., Katasonov A., Terziyan V., Ontonuts: Reusable Semantic Compo-
nents for Multi-Agent Systems, In: R. Calinescu et al. (Eds.), Proceedings of the
Fifth International Conference on Autonomic and Autonomous Systems (ICAS
2009), April 21-25, 2009, Valencia, Spain, IEEE CS Press, pp. 200-207.

In this paper we introduce an engine that extends the UBIWARE platform with
the possibility to define semantic components in a declarative way. Due to the
specifics of the platform the focus and the engine support is put on the compo-
nents that connect to data sources. The declarative definition of a component
allows us to define new components on the fly as well as reconfigure the exist-

40

ing ones. In the example given we show how a distributed query can be dynam-
ically planned using the semantic capability definitions of data sources. The
engine developed for the platform uses backward chaining reasoning algorithm
and builds execution plans out of available components taking into account the
specifics of the platform language – S-APL. The language extensively uses the
notion of containers that makes matchmaking process more complicated. This
work also uses pattern-based definition of the component inputs and outputs,
thus allowing free-form triple-based semantic constructs.

The paper contributes to all the aspects discussed in this thesis. In particu-
lar, the adaptation aspect is addressed by engine-supported declarative compo-
nent definition; the servicing aspect is addressed by the possibility to externalize
a component, i.e. to make an agent service, the domain model sharing is intrinsic
to this work as all component definitions are semantic, as well as the ontology
of the engine itself. The dynamics is the most prominent aspect as the compo-
nents can be easily created and/or modified on the fly either through web-
based GUI, or even generated by the agent itself.

The approach presented in this paper offers a key functionality for the de-
velopment of middleware-supported autonomic components – a possibility to
dynamically plan goal-driven agent activities.

The article was written within the UBIWARE project. Prof. Vagan Terzi-
yan has provided a scientific supervision. Dr. Artem Katasonov has contributed
to the Section 3 (UBIWARE platform). The author of this thesis is a principal
contributor to this article.

5.5 Article 5: SOFIA: Agent Scenario for Forest Industry

Nikitin S., Terziyan V., Lappalainen M., SOFIA: Agent Scenario for For-est In-
dustry, In: Proceedings of the 12th International Conference on Enterprise In-
formation Systems (ICEIS-2010), Funchal, Madeira, Portugal, 8-12 June, 2010, pp.
15-22.

This work presents a case study and an agent scenario for the Finnish Forrest
Industry. The motivation of this research has originated from the in-depth
business analysis and a simulation that has proven high inefficiency of logistics
operations in Finnish forestry sector. We have performed a technical analysis of
the current ICT-infrastructure of harvesting and transportation subcontractors
and have suggested architecture of the IT-platform called SOFIA that would
address the needs of the forestry SMEs in their planning and order manage-
ment. The main targets identified by this study are – integration of the existing
IT-systems (adaptation and domain model sharing aspects), provision of a central-
ized web-based platform (servicing aspect) and a dynamic inclusion of new
stakeholders and new software into the platform support (aspect of dynamics
within the adaptation).

41

The article was written within the UBIWARE project. Prof. Vagan Terzi-
yan has provided a scientific supervision and Dr. Minna Lappalainen has con-
tributed to the business model analysis. The author of this thesis is a principal
contributor to this article.

5.6 Article 6: Mastering Intelligent Clouds: Engineering Intelli-
gent Data Processing Services in the Cloud

Nikitin S., Terziyan V., Nagy M., Mastering Intelligent Clouds: Engineering In-
telligent Data Processing Services in the Cloud, In: Proceedings of the 7th Inter-
national Conference on Informatics in Control, Automation and Robotics
(ICINCO-2010), Funchal, Madeira, Portugal, 15-18 June, 2010, pp. 174-181.

This paper offers an innovative architecture of the cloud platforms. The agent
middleware-supported adaptation and autonomy of components can be offered
as platform-level services of the cloud infrastructure. The paper also demon-
strates how new type of mathematical computational services may support a
declarative service definition and even configuration.

The work addresses the aspect of servicing within the cloud infrastructure,
at the same time the aspect of adaptation and domain model sharing is addressed
by offering agent-driven adapters as platform services. The domain model sharing
aspect is also used in the declarative mathematical service model specification
that unambiguously defines the logic of the service, not only its inputs and out-
puts. The dynamics aspect is used within the whole architecture, as all the exten-
sions suggested are agent-enabled and therefore proactive.

This paper ties together the ideas and efforts presented in the previous ar-
ticles and offers middleware-enabled extensible cloud architecture.

The article was written within the UBIWARE project. Prof. Vagan Terzi-
yan has provided a scientific supervision. Michal Nagy has contributed to the
Section 2 (State of the Art). The author of this thesis is a principal contributor to
this article.

42

6 CONCLUSIONS

The main contribution of this work is alignment of practical industry-driven
problems with theoretical foundations declared in visions of Autonomic Com-
puting, Global Understanding Environment and Agent Technology. We start
this work with implementation of pilot industrial applications and finalize it
with the derivation of abstract architectural aspects that conform to the visions
mentioned. This work provides an architectural and technological prism for an
idea–to-practice transformation. We address industrial applications develop-
ment using Semantic Web and Agent technologies within the scope of the Web
Services and Cloud Computing trends.

As generalization of the design outcomes we derive three key aspects: ad-
aptation, servicing and domain model sharing. We crosscut these three aspects with
the fourth common aspect of dynamics. In our opinion, future industrial archi-
tectures will incorporate various combinations of those. The most convenient
form to support aspect-oriented software design and development will be mid-
dleware platform solutions. The crucial role in the middleware implementation
will play a programming language as it will determine the foundations of the
platform as a whole. We believe that S-APL language used in the implementa-
tion part of this thesis is a good sample to consider for instrumentation of en-
terprise-level middleware platforms and languages of the future.

As a summary, we offer an innovative architecture that combines the
technological solution (a middleware platform) with the cloud infrastructure to
enable a qualitatively new class of cloud software applications. These applica-
tions are tied by the common environment, where the guaranteed level of in-
teroperability can be reached, at the same time the tools and means for such
applications development are offered by the cloud provider infrastructure on
different layers. In such cloud eco-system we also address the importance of
component autonomy through the goal-driven behavior which can be enabled
when the environment provides a consistent playground for safe (error-prone)
implementation of semantic planning and composition.

43

6.1 Answers to the research questions

Below we provide the answers to the research questions stated in Section 1.4.

Q1: Does GUN vision apply for future industrial ICT-architectures?

The future industrial applications will address the challenges of interoperability,
complex systems management and servicing in a dynamic setting. The GUN
vision suggests a set of high-level architectural design patterns to meet these
challenges. In order to prove the viability of the vision, we have constructed a
set of proof-of-concept prototypes that utilize various technologies in the im-
plementation of the GUN-inspired architectural blocks – adapters, resource
agents and agent services. When we compare GUN with other visionary ap-
proaches, it is hard to judge which particular vision suits better for industry, as
most of the visions discussed nowadays cover complementary parts of the
problem domain (e.g. a new Smarter Planet2 initiative from IBM stating that
intelligence is being infused into the various systems and processes that make
the world work). In the nutshell these visions lead to the same aspects to be tak-
en into account when designing the applications. These aspects we discuss in
answer to the Q3. We can conclude that GUN vision as such applies well to the
industrial problems, yet it does not give a prescriptive methodology of how to
resolve them. It rather tells from which perspective to approach the problem
domain in a future-proof way.

Q2: Do the candidate enabling technologies meet the needs of industrial appli-
cations in the nearest future?

Amongst technologies and tools available on the market at present, SOA, Agent
Technology and Semantic Web independently from each other have proven to
be applicable to industrial problems. . Although only SOA is truly in the current
mainstream of the industrial ICT development, still both the Agent Technology
and Semantic Web have taken their niche on the ICT market. The amount of
well-supported and stable tools (both commercial and open source) for all of
the above mentioned technologies is available and is growing.
In this thesis we state that a wise combination of these technologies will bring a
synergetic add-value to the industrial ICT. We also think that the technologies
chosen are the most viable ones as they provide rigorously explored and ana-
lyzed contributions to the topics of dynamics, self-awareness, intelligence, servic-
ing and domain modeling. Yet we believe that these technologies will become
more beneficial when they are put to a common ground, e.g. a middleware and
a language that combines these technologies, thus enabling their simultaneous
use. In our case studies we use a sample of such language called S-APL. We also
extend the platform and utilize S-APL language to combine domain modeling,

2 ibm.com/smarterplanet

44

servicing and dynamic adaptation in development of agent-driven semantic
components (Ontonuts) that provide a ground for planning functionality and,
hence, a basis for development of true dynamic goal-driven agent behavior.

Q3: What are the key architectural features of tools for construction of industrial
applications?

The key architectural features of future industrial applications are discussed as
an outcome of case studies conducted. Based on the pilot implementations and
industrial applications design studies, we derive common aspects that should
be addressed by both the enterprise level architectural principles as well as
within the internal component design. Those are: adaptation, servicing and do-
main model sharing. All three are cross-cut by the fourth aspect of dynamics. We
claim that these aspects can be addressed in a best way by a middleware plat-
form tool and a respective platform language that supports the implementation
of platform-driven components and applications. The aspects are also consid-
ered in the context of cloud computing trend that poses additional architectural
enhancements for the middleware platform.

6.2 Concerns

We propose to apply several technologies beyond their current domain of ap-
plication and moreover, to combine them in new types of scenarios. Hence sev-
eral concerns about the feasibility of the approach arise. So we have to address
both the limits of performance of the individual technologies as well as the per-
formance of the complex scenarios.

In the agent world the criticism mostly raises the problems of agent intel-
ligence and then arguably small benefit of software agents compared to other
software development paradigms and principles. We think that a pragmatic
utilization of a goal-driven behavior is possible within the industrial scope
where the “universe” is limited to the union of a finite set of domain models.

The Semantic Web has been criticized in the direction of utopia of having
a common vocabulary for everybody. The concept has evolved into the new
notion of Linked Data, at the same time trying to address the problems of mod-
el-to-model adaptation, thus putting the focus on the environment-specific do-
main models that are realistic to apply even nowadays (see Article III of this
thesis). Semantic Web usage raises the problem of in-depth alignment of all sys-
tem tools to a one common model, which can be considered as a programming
technique or pattern that is similar to the usage of domain-specific standards.

The practical implementation of all types of scenarios may not be efficient
and sometimes not even feasible using the Agent Technology and Semantic
Web only, especially when high computational performance is needed. There-
fore we put the application scope of the technology to be rather a cost efficient
gluing solution to manage the great diversity of interoperability challenges, but

45

not a panacea from all IT-problems. We address the problems of service-level
integration, adaptation and business process management that correspond to
the aspects derived.

6.3 Further Research

Within the research framework (Hevner et al, 2004) this work is mainly based
on the instantiation of design artifacts and practical testing of the technologies
driven by the industrial problems. Yet, the generalization of the common archi-
tectural aspects highlights the key issues that need to be addressed more deeply
in the future development of the middleware architecture, in particular those
are:

- Inter-middleware adaptation and management. This issue addresses
the incorporation of several domain-specific middleware solutions into
the industrial architectures, e.g. RFID-middleware, VoIP-middleware,
etc. We will direct our future research efforts towards an inter-
middleware management, especially in the context of cloud computing.

- Addressing the ontology evolution within the organization. This issue
needs to be researched to ensure that an Ontology as an instrument can
safely evolve and incorporate changes during the organization’s life
cycle, at the same time keeping the consistency and enabling the auto-
mated goal-driven behavior of software components
- Intelligence-as-a-Service: This issue will address the automated
learning and proactive goal-driven planning in the context of middle-
ware-supported semantic agent environment of an organization, or in-
dustry-specific cross-organizational eco-system

The purpose of this work and future research that will derive from it is to direct
the industrial-IT development towards the practical and feasible aspects of the
innovative IT-visions that bring industrial IT-systems to the qualitatively new
level.

46

YHTEENVETO (FINNISH SUMMARY)

Dynaamiset piirteet teollisuuden väliohjelmistoarkkitehtuureissa

Teolliseen käyttöön tarkoitettujen tietojärjestelmien suunnittelu ja kehittäminen
on yhä haastavampaa ja monimutkaisempaa. Liiketoiminnallisesti kestävin
kustannuksin tulisi rakentaa pitkäkestoisia, varmatoimisia ja laajennettavia
järjestelmiä, jotka säilyttävät toimintakykynsä tuotteen koko elinkaaren ajan.

Käsiteltävien tietojen määrän kasvu ja osajärjestelmien yhä tiiviimpi
vuorovaikutus haastavat järjestelmäkehittäjiä innovatiivisiin suunnittelu- ja
toteutusmenetelmiin.

Voidakseen vastata liiketoiminnasta nouseviin haasteisiin
tietojenkäsittelyteknologian on uudistuttava laadullisesti. Tässä työssä tutkitaan
uusia globaalisti ymmärtävän ympäristön ja autonomisen laskennan
paradigmoja ja niiden teknologista kypsyyttä mahdollisina ratkaisuina
teollisuuden tulevaisuuden haasteisiin.

Useita konkreettisia käyttötapauksia analysoimalla olemme tunnistaneet
useita piirteitä, jotka ovat mielestämme kriittisiä tulevissa teollisuuden
tietojärjestelmissä. Näitä ovat teollisessa toimintaympäristössä olevien
heterogeenisten resurssien adaptaatio, palveluorientoituneet ohjelmistot
avoimessa toimintaympäristössä ja paikallisten tietomallien jakaminen ja
yhteensovittaminen eri sovellusalueiden kesken. Kaikkia näitä piirteitä on
käsiteltävä dynaamisina, koska teollisilla sovelluksilla on pitkä elinkaari, jonka
aikana ympäristö väistämättä muuttuu ennakoimattomalla tavalla.

Vastataksemme teollisuuden vaateisiin olemme yhdistäneet kolme erillistä
teknologiaa, semanttisen verkon, agenttiteknologian ja verkkopalvelut
yhtenäiseksi väliohjelmistoksi. Kehitetty innovatiivinen alusta, UBIWARE,
tukee S-APL kieltä, joka yhdistää semanttisen päättelyn, agenttien
kommunikaation ja palveluarkkitehtuurin (SOA). Erityisesti agenttien
toiminnalliset kyvykkyydet on kapseloitu semanttisiksi komponenteiksi, joiden
avulla agenttiyhteisö voi suunnitella ja koordinoida toimintaansa.

Valitun lähestymistavan toteutettavuutta ja laajennettavuutta on testattu
kehitetyn alustan avulla usealle teollisuuden motivoimalle
käyttötapausskenaariolle aina semanttisesti tuettuun pilvilaskenta-
arkkitehtuuriin saakka.

47

REFERENCES

Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, Kunal Verma, Meteor-s
web service annotation framework, Proceedings of the 13th international
conference on World Wide Web, May 17-20, 2004, New York, NY, USA
doi:10.1145/988672.988747

Aksit, M. (ed.), Software Architectures and Component Technology: The State

of the Art in Research and Practice, Kluwer Academic Publishers, 2001.

Akerman, A., Tyree, J., Using ontology to support development of software

architectures. IBM Systems Journal 45(4), 813–825 (2006)

ASG - Adaptive Services Grid, 6th Framework Programme project funded by

the European Commission, 2004-2007, http://asg-platform.org/

Balbo, F., Monfort, V., Improving Web Services Adaptability Thanks to a

Synergy between Aspect Programming and a Multi-agent Middleware, In:
IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology, vol. 1, pp. 422-425, 2009.

Baligand, F., Monfort, V., A Concrete Solution for Web Services Adaptability

using Policies and Aspects, In Proc. of the International Conference on
Service-oriented Computing, 2004.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The Semantic Web, Scientific

American, Vol. 284, No. 5, pp. 34-43.

Ben Hmida, M., Tomaz Feraz, R. and Monfort, V., Applying AOP concepts to

increase Web Service Flexibility, in JDIM journal, ISSN 0972-7272, Vol.4
Iss.1 (2006).

Canal, C., Murillo, J. M. and Poizat, P., Software Adaptation, L’Objet., 12(1):9–31,
2006. Special Issue on Software Adaptation.

Clements, P., From Domain Models to Architectures, USC Center for

Engineering, Focused Workshop on Software Architectures, June 1994.

Clements, P., Northrop, L., Software Product Lines - Practices and Patterns,

Addison-Wesley, 2002.

Czarnecki, K. and Eisenecker, U., Generative Programming: Methods,

Techniques and Applications, Addison-Wesley, 1999.

48

DIP-Data, Information, and Process Integration with Semantic Web Services,

Integrated FP6 Project, EU's IST programme, 2004-2006,
http://dip.semanticweb.org/

Genesereth, M.R., Ketchpel, S.P., Software Agents, Communications of the

ACM 37(7), pp. 48-53., 1994.

Heineman, G., and Councill, W., Component-based Software Engineering,

Putting the Pieces Together. Addison Wesley, 2001

Jennings, N., Wooldridge, M., Software agents, IEE Review , vol.42, no.1, pp.17-

20, 18 Jan 1996, doi: 10.1049/ir:19960101

Jennings, N.R., Wooldridge, M., (Eds.), Agent Technology: Foundations,

Applications and Markets, Springer, Berlin, 1998.

Jones, D. M., Bench-Capon, T. J. M., Visser, P. R. S., Methodologies for Ontology

Development., Proceedings IT&KNOWs, Budapest, 1998.

Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A., Terziyan, V., Zharko,

A., General Adaption Framework: Enabling Interoperability for Industrial
Web Resources, In: International Journal on Semantic Web and
Information Systems, Idea Group, ISSN: 1552-6283, Vol. 1, No. 3, July-
September 2005, pp.31-63.

Katasonov, A., Terziyan, V., SmartResource Platform and Semantic Agent

Programming Language (S-APL), In: P. Petta et al. (Eds.), Proceedings of
the 5-th German Conference on Multi-Agent System Technologies
(MATES’07), 24-26 September, 2007, Leipzig, Germany, Springer, LNAI
4687 pp. 25-36.

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., Terziyan, V., Smart

Semantic Middleware for the Internet of Things, In: Proceedings of the 5-
th International Conference on Informatics in Control, Automation and
Robotics, 11-15 May, 2008, Funchal, Madeira, Portugal, ISBN: 978-989-
8111-30-2, Volume ICSO, pp. 169-178.

Katasonov, A., Terziyan, V., Semantic Agent Programming Language (S-APL):

A Middleware Platform for the Semantic Web, In: Proceedings of the
Second IEEE International Conference on Semantic Computing (ICSC-
2008) / International Workshop on Middleware for the Semantic Web,
August 4-7, 2008, Santa Clara, CA, USA, IEEE CS Press, pp. 504-511.
doi:10.1109/ICSC.2008.82

49

Keeney, J. and Cahill, V., Chisel: A policy-driven, context-aware, dynamic

adaptation framework, in Proceedings of IEEE 4th International
Workshop on Policies for Distributed Systems and Networks, (Lake Como,
Italy), p. 3, June 2003.

Kephart, J. O. and Chess, D. M. (2003) The vision of autonomic computing, IEEE

Computer, Vol. 36, No. 1, pp. 41-50

Kiczales, G., des Rivi`eres, J. and Bobrow, D.G., The Art of Metaobject Protocols,

MIT Press, 1991.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira, C., Lopes, J.,

Loingtier, M. and Irwin, J., Aspect-oriented programming, in Proceedings
of the European Conference on Object-Oriented Programming (ECOOP),
Springer-Verlag LNCS 1241, June 1997.

Lappalainen, M. (2009) Kotimaisen puunhankinnan tulevaisuuden

liiketoimintamallit –tutkimushanke. Loppuraportti., University of
Jyväskylä, School of Business and Economics., Working paper No.
355/2009.

March, S. and Smith, G., Design and Natural Science Research on Information

Technology, Decision Support Systems, 15 (1995), 251–266.

Marin, C., Lalanda, P., Docosoc - domain configurable service-oriented

computing, In: Proceedings of 5th IEEE International Conference on
Services (SCC'07), July 2007, pp. 52–59

Martin, D., Paolucci, M., and Wagner, M., Towards Semantic Annotations of

Web Services: OWL-S from the SAWSDL Perspective. In OWL-S
Experiences and Future Developments Workshop at ESWC 2007, June
2007, Innsbruck, Austria

McKinley, P. K., Sadjadi, S.M., Kasten, E. P., and Cheng, B. H. C., Composing

adaptive software, IEEE Computer, vol. 37, no. 7, pp. 56-64, 2004.

McKinley, P., Sadjadi, S., Kasten, E., Cheng, B., A Taxonomy of Compositional

Adaptation, Technical Report, MSU-CSE-04-17, Department of Computer
Science and Engineering, Michigan State University, East Lansing,
Michigan, 2004.

Naumenko, A., Nikitin, S., Terziyan, V., Zharko, A., Strategic Industrial

Alliances in Paper Industry: XML- vs. Ontology-Based Integration
Platforms, In: The Learning Organization, Special Issue on: Semantic and

50

Social Aspects of Learning in Organizations, Emerald Publishers, ISSN:
0969-6474, 2005, Vol. 12, No. 5, pp. 492-514.

Nwana, H. S., Software Agents: An Overview, Knowledge Engineering Review,

11(3), 1996.

Odell, J. ed., Agent Technology, OMG, green paper produced by the OMG

Agent Working Group, 2000

Oreizy, P., Gorlick, M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,

N., Quilici, A., Rosenblum, D.S., Wolf, A.L., An Architecture-Based
Approach to Self-Adaptive Software, IEEE Intelligent Systems, v.14 n.3,
p.54-62, May 1999, doi:10.1109/5254.769885

OWL-S: Semantic Markup for Web Services, W3C Member Submission, 22

November 2004, http://www.w3.org/Submission/OWL-S/

Rector, A., Modularisation of Domain Ontologies Implemented in Description

Logics and related formalisms including OWL, Proc. K-CAP (Knowledge
Capture), 2003

SAWSDL – Semantic Annotations for WSDL and XML Schema, W3C

Recommendation, 28 August 2007, http://www.w3.org/TR/sawsdl/

SCOMA – Scientific Computing and Optimization in Multidisciplinary

Applications , Tekes project, 2005-2009, http://www.mit.jyu.fi/scoma/

Shadbolt, N., Hall, W. and Berners-Lee, T., The Semantic Web revisited, IEEE

Intelligent Systems, pp. 96–101, May-June 2006.

SWSF: Semantic Web Services Framework Overview, W3C Member Submission

9 September 2005, http://www.w3.org/Submission/SWSF/

Terziyan, V., Semantic Web Services for Smart Devices in a Global

Understanding Environment, In: R. Meersman and Z. Tari (eds.), On the
Move to Meaningful Internet Systems 2003: OTM 2003 Workshops,
Lecture Notes in Computer Science, Vol. 2889, Springer-Verlag, 2003,
pp.279-291.

Terziyan, V., Semantic Web Services for Smart Devices Based on Mobile Agents,

In: International Journal of Intelligent Information Technologies, Vol. 1,
No. 2, Idea Group, pp. 43-55, 2005.

51

 Terziyan, V. (Ed.), SmartResource Project Final Report, Technical Report (final

report), SmartResource Tekes Project, Agora Center, University of
Jyvaskyla, 2007.

Terziyan, V., Nikitin, S., Nagy, M., Khriyenko, O., Kesämiemi, J., Cochez, M.,

Pulkkis, A., UBIWARE Platform Prototype v. 3.0, Technical Report
(Deliverable D3.3), UBIWARE Tekes Project, Agora Center, University of
Jyvaskyla, August 2010, 45 pp.

Veijalainen, J., Nikitin, S., Tormala, V., Ontology-based Semantic Web Service

platform in Mobile Environments, pp. 83, 7th International Conference on
Mobile Data Management (MDM'06), 2006
DOI: http://doi.ieeecomputersociety.org/10.1109/MDM.2006.119

Verma, K. and Sheth, A., Semantically Annotating a Web Service, IEEE Internet

Computing 11, 2 (Mar. 2007), 83-85.
DOI=http://dx.doi.org/10.1109/MIC.2007.48

Vesterinen, M., Kotimaisen puunhankinnan tulevaisuuden liiketoimintamallit.

In edition Niemelä, T. et al. Puheenvuoroja yrittäjyydestä maaseudulla.,
University of Jyväskylä, School of Business and Economics, Publications
No: 152/2005, pp. 84-100, 2005.

Väätäinen, K., Lappalainen, M., Asikainen, A. and Anttila, P., 2008, Kohti

kustannustehokkaampaa puunkorjuuta – puunkorjuuyrittäjän uusien
toimintamallien simulointi., Finnish Forest Research Institute. Working
Papers No 73.

Walker, R. J., Baniassad, E. L. A. and Murphy, G. C., An initial assessment of

aspect-oriented programming, in International Conference on Software
Engineering, pp. 120–130, 1999.

Weiser, M., Ubiquitous computing, IEEE Computer, vol. 26, pp. 71–72, October

1993.

Wooldridge, M., Jennings, N. R., 1995, Intelligent agents: theory and practice.

The Knowledge Engineering Review, 10, pp 115-152
doi:10.1017/S0269888900008122

Wooldridge, M., Jennings, N. R. and Kinny, D., 2000, The Gaia Methodology for

Agent-Oriented Analysis and Design. Autonomous Agents and Multi-
Agent Systems 3, 3 (Sep. 2000), 285-312.
DOI=http://dx.doi.org/10.1023/A:1010071910869

52

WSDL - Web Services Description Language, Version 2.0 Part 0: Primer, W3C

Recommendation, 26 June 2007, http://www.w3.org/TR/wsdl20-primer

WSDL-S - Web Service Semantics, W3C Member Submission, 7 November 2005,

http://www.w3.org/Submission/WSDL-S/

WSMO - Web Service Modeling Ontology Primer, W3C Member Submission 3

June 2005, http://www.w3.org/Submission/WSMO-primer/

ORIGINAL ARTICLES

I

QUERYING DYNAMIC AND CONTEXT-SENSITIVE
METADATA IN SEMANTIC WEB

by

Sergiy Nikitin, Vagan Terziyan, Yaroslav Tsaruk and Andriy Zharko 2005

V. Gorodetsky, J. Liu, and V.A. Skormin (Eds.): Autonomous Intelligent
Systems: Agents and Data Mining, Proceedings of the AIS-ADM-05, June 6-8,

2005, St. Petersburg, Russia, Springer, LNAI 3505, pp. 200-214.

© 2005 Springer-Verlag London Limited. With kind permission of Spring-
er Science and Business Media

V. Gorodetsky, J. Liu, and V.A. Skormin (Eds.): AIS-ADM 2005, LNAI 3505, pp. 200 – 214, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Querying Dynamic and Context-Sensitive
Metadata in Semantic Web

Sergiy Nikitin, Vagan Terziyan, Yaroslav Tsaruk, and Andriy Zharko

Industrial Ontologies Group, Agora Center, University of Jyväskylä,
P.O. Box 35, FIN-40014 Jyväskylä, Finland

senikiti@cc.jyu.fi

Abstract. RDF (core Semantic Web standard) is not originally appropriate for
context representation, because of its initial focus on the ordinary Web re-
sources, such as web pages, files, databases, services, etc., which structure and
content are more or less stable. However, on the other hand, emerging industrial
applications consider e.g. machines, processes, personnel, services for condition
monitoring, remote diagnostics and maintenance, etc. to be specific classes of
Web resources and thus a subject for semantic annotation. Such resources are
naturally dynamic, not only from the point of view of changing values for some
attributes (state of resource), but also from the point of view of changing
“status-labels” (condition of the resource). Thus, context-awareness and dyna-
mism appear to be new requirements to the existing RDF. This paper discusses
the issues of representing the contexts in RDF and constructions coming with
context representation. We discover certain representation patterns and their
classification towards development of the general approach of querying dy-
namic and context-sensitive metadata in Semantic Web by autonomous agents.

1 Introduction

Emerging Semantic Web technology offers a Resource Description Framework
(RDF) as a standard for semantic annotation of Web resources. It is expected that
Web content with RDF-based metadata layer and ontological basis for it will be
enough to enable interoperable and automated processing of Web data by various ap-
plications. RDF-based tools, e.g. Hewlett-Packard’s Jena [14] and Stanford’s Protégé
[15] provide a base for reasoning about metadata and about situated data (entities
situated in time and space) that is superior to alternatives such as relational databases
or object-oriented databases. However, according e.g. to [10] essential representa-
tional ability is missing from the current generation of Semantic Web tools and lan-
guages. When that ability is added, the resulting capabilities offer a combination of
novelty and flexibility that may usher in a wave of commercial Semantic Web tool-
based applications. Evidently the existing RDF tools should be extended to support
contexts to enable querying a set of RDF statements having common temporal, spatial
or other metadata attributes. In [10] it was concluded that the “clear winners” for
possible solution can be quads (i.e. adding a fourth field of type ‘context’ to each
RDF triple) and a context mechanism that references individuals instead of state-

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 201

ments. Another attempt has been made recently to add C-OWL (Context OWL), an
extended language with an enriched semantics which allows us to contextualize on-
tologies, namely, to localize their contents (and, therefore, to make them not visible to
the outside) and to allow for explicit mappings (bridge rules). The core open issue is
the tension between how much knowledge should be shared and globalized (via on-
tologies) and how much should be localized with limited and controlled forms of
globalization (via contexts) [11]. In [12] the usage of context- and content-based trust
mechanisms have been proposed and the cRDF trust architecture was presented which
allows the formulation of subjective and task-specific trust policies as a combination
of reputation-, context- and content-based trust mechanisms. There exist different
ways how to understand and use context information for RDF data. In [13] these dif-
ferent ways have been summarized and the RDF-Source related Storage System
(RDF-S3) has been proposed. RDF-S3 aimed to keep track of the source information
for each stored RDF triple. On top the RDF-S3 has an extended version of easy RQL
(eRQL) that makes use of the source information supported by RDF-S3. Therefore
queries can be restricted to trusted sources and results can be viewed inside their RDF
graph context. Two main arguments are stated in [13] for using context nodes instead
of quads. First, quads are not compatible with the RDF model and second, the distinc-
tion between the given RDF information and information that is given in addition,
like external context information, is much more complicated when using quads,
whereas additional context nodes can be easily distinct from RDF triples. Therefore
context nodes were used instead of context parts (quads).

There is not yet clear vision, which way is better (triples or quads) for representing
contextual metadata in RDF. Another issue is for what kind of resources such descrip-
tions will be required. On one hand the ordinary Web resources, such as web pages,
files, databases, services, etc., which structure and content are more or less stable,
probably do not need a specific way of context representation. However, on the other
hand, emerging industrial applications consider e.g. machines, processes, personnel,
services for condition monitoring, remote diagnostics and maintenance, etc. represent
specific classes of Web resources and thus a subject for semantic annotation. Such re-
sources are naturally dynamic, not only from the point of view of changing values for
some attributes (state of resource) but also from the point of view of changing “status-
labels” (condition of the resource). In our former effort within SmartResource project
[16] we presented Resource State/Condition Description Framework (RscDF), as an
extension to RDF, which introduces upper-ontology for describing such characteris-
tics of resources as states and corresponding conditions, dynamics of state changes,
target conditions and historical data about previous states. These descriptions are sup-
posed to be used by external Web-services (e.g. condition monitoring, remote diag-
nostics and predictive maintenance of the resources). We presented RscDF as tempo-
ral and contextual extensions of RDF and discussed a State-Symptom-Diagnosis-
Decision-Maintenance model as the basis for RscDF schema.

RSCDF is a unified representation format for resource state and condition descrip-
tion (encoding). RscDF-language formalizes context definition structure. RscDF-
Schema defines main concepts and structure of the language. The structure is highly
flexible, thus allowing definition of different complex constructions over the basic
statements. Different definitions being used for resource description must refer to or
define instances of classes from Industrial Maintenance Ontology. Detailed descrip-

202 S. Nikitin et al.

tion of RscDF-language is not in a scope of this paper, so we refer to [17]. Figure 1
shows the key element of RscDF – “SR_Statement”.

Fig. 1. SR_Statement structure

The SR_Statement defines the basic structure of statements being used in RscDF.
The combinations of statements and references to statements and statement containers
may form highly structured semantic description. The important semantics are repre-
sented by SR_Property class and its subproperties. The property in the
rscdfs:predicate container defines the type and structure of rdf:object of current
SR_Statement. However, the property specification defines only domain and range.
So to know the structure of the statement, we have to attach some pattern description
to SR_Property.

Fig. 2. GUN concept illustrated (adopted from [1])

The RscDF language was designed to serve the concept of a Global Understanding
Environment [1]. GUN concept utilises Semantic Web approach for resource annota-

rdf:objectrdf:subject

SR_Statement

SR_Property

rscdfs:predicate

rscdfs:trueInContext

Context_SR_Container

SR_Statement

.

.

.

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 203

tion and ontology-based semantic representation and describes communities of inter-
acting Smart Resources. GUN provides a framework for making resources smart, for
interaction, collaboration, coordination of these resources and resource discovery
support. Types of resources are not restricted to traditional web content, but can be
physical resources from real world, such as humans and devices (see Figure 2).

GUN paradigm provides every participant with common structured data represen-
tation format, allowing explicit and unambiguous knowledge sharing. In order to
become GUN participant certain steps of adaptation should be taken. In GUN devel-
opment our research group focuses on industrial case study that is concerned with
large-scale platforms for automated management of industrial objects. The adaptation
process to GUN environment is described in General Adaptation Framework [18].
“General adaptation” assumes a design of a sufficient framework for an integration of
different (by structure and nature) resources into the GUN environment. This envi-
ronment will provide a mutual interaction between heterogeneous resources. Adapta-
tion assumes elaboration of a common mechanism for new resource integration, and
its provision with a unified way of interaction. The main idea of adaptation is based
on a concept of “adapter”, which plays role of a bridge between an internal represen-
tation of resource and a unified environment.

Adapter is a software component, which provides a bidirectional link between a re-
source interface and an interface of the environment. GUN assumes interoperability
of Smart Resources. Smart Resource is a conjunction of Real World Resource
(RWR), Adapter and Agent. By extending RWR within Adapter and Agent we make
it GUN compatible. General Adaptation includes development of Adapter for RWR.
Adaptation to GUN is not just syntactical transformation from one representation
format to another. The key element of adaptation is mapping of concepts being used
by “Real-World-Resource” to Industrial Maintenance Ontology (IMO) elements. The
role of IMO lies in unification and structuring of data being represented in such way
that every resource description taking part in GUN must refer to it.

Fig. 3. SmartResource as a Multi-Agent System

204 S. Nikitin et al.

Semantic Web standards are not yet supporting semantic descriptions of resources
with proactive behavior. However, as the research within the SmartResource project
shows [16], to enable effective and predictive maintenance of an industrial device in
distributed and open environment, it will be necessary to have autonomous agent
based monitoring over device state and condition and also support from remote diag-
nostics Web-Services (see Figure 3).

This means that the description of a device as a resource will require also the de-
scription of proactive behavior of autonomous condition monitoring applications
(agents, services) towards effective and predictive maintenance of the device. For that
we plan to develop in 2005 another extension of RDF, which is Resource
Goal/Behavior Description Framework (RGBDF) to enable explicit specification of
maintenance goals and possible actions towards faults monitoring, diagnostics and
maintenance. Based on RSCDF and RGBDF and appropriate ontological support, we
also plan to design RSCDF/RGBDF platforms for smart resources (devices, Web-
services and human experts) equipped by adapters and agents for proactivity, and then
to apply several scenarios of communication between the platforms towards learning
Web-services based on device data and expert diagnostics to enable automated remote
diagnostics of devices by Web-services.

In this paper we present our solution how to manage (according to the structure of
the paper Section 2 describes about storing and Section 3 is dedicated to querying) the
context-sensitive metadata for applications compatible with Semantic Web and GUN
concepts by utilising existing technologies and tools. Some examples with industrial
metadata are also provided.

2 Storing RDF-Based Metadata

Nowadays there are a lot of proposals related to storing RDF data in RDF databases,
each with different client-server protocols and different client APIs. For our purposes
we surveyed a number of most popular RDF-storages (Kowari1, Sesame2, Joseki3) and
selected Joseki storage as most suitable allowing access to RDF-data through HTTP.

2.1 Joseki

Joseki has been proposed and maintained by Semantic Web group at HP Labs. Joseki
is a web application for publishing RDF models on the web and realized useful access
to models through HTTP protocol. This allows getting easy access to model from
anywhere you want. It is built on Jena and, via its flexible configuration, allows a
Model to be made available on a specified URL and queried using a number of lan-
guages. Results can be returned as RDF/XML, RDF/N3, or NTriples. The query lan-
guages, result formats, and model sources can be extended to produce new alterna-
tives tailored to the user's needs.

1 http://www.kowari.org/
2 http://www.openrdf.org/
3 http://www.joseki.org/

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 205

2.2 Storing and Extracting Data in Joseki

Information stored in Joseki are presented in a format of models. The client applica-
tion has an access to a specified model and executes operation on this model. Opera-
tions that can be done upon the remote model:

• add new model or statement
• remove model or statement
• extract data from storage

New model can be appended to already existing model on the Joseki server. This
operation also allows appending new statement to the predefined model. Each model
or statement can be removed from the storage by using the remove operation.

Data extraction from Joseki storage can be implemented by using different mecha-
nisms:

• fetch the whole model
• SPO query (single triple match language)
• RDQL query

Information from the storage can be extracted partly or as a whole model. To ex-
tract the whole model the fetch mechanism is used. For extracting just specified in-
formation, SPO and RDQL queries are available. SPO (also known as "Triples") is an
experimental minimal query language. An SPO query is a single triple pattern, with
optional subject (parameter "s"), predicate (parameter "p"), and object (parameter "o",
if an URIref or parameter "v" for a string literal). Absence of the parameter implies
"any" for matching that slot of the triple pattern.

RDQL is a query language, which is similar to SQL (Structured Query Language)
and allows specifying the set of conditions, which should suite the extracted set of
statements.

The architecture of Joseki is presented in Figure 4.

RDBMS

Add module

Joseki

Remove module

Fetch module Query module Name of
model

RDQL
query

HTTP
request

Model or
Statement

HTTP
request

HTTP
request

Model or
Statement

HTTP
request

Fig. 4. Architecture of Joseki storage

206 S. Nikitin et al.

File System RDBMS

MySQL PostgreSQL

Models

Fig. 5. Types of storing models in Joseki

It consists of the core module and modules, which execute specialized functions on
the remote model (fetching, adding, removing, querying). Interaction between the cli-
ent and the Joseki server is implemented through HTTP query. The type of the query
depends on the length of the query. It could be GET if query is not longer then 200
characters, otherwise POST method is used. Each model in Joseki server has a prede-
fined set of operations, which could be executed upon it. When server gets query to
one of the defined models, it checks the list of operations which could be executed
and if the operation is not specified it responds by a fail message. Each operation is
executed by a specified module. As an input each module requires special parameters.
For example, Addition and Remove modules need as an input model or statement,
which have to be added or removed. As a response Joseki sends empty model, if the
operation was successful.

One more optional component is RDBMS assigned for storing models in a persis-
tent storage. The models in Joseki can be saved in two ways (See Figure 5):

− to a file
− to a RDBMS.

The target RDBMS is specified in the configuration file joseki-db.n3.

2.3 RDQL

Resource Description Query Language (RDQL) is a query language for RDF. RDQL
is an implementation of the SquishQL RDF query language and is similar to SQL. It
borrows basic set of words for specifying the set of data, which should be returned
(e.g. SELECT, WHERE, FROM, etc). As a condition for extracting, RDQL provides,
the “WHERE” clause followed by a list of triples (subject, predicate, object). These
triples define the pattern for a search. RDQL has one more key word for defining a
space of URI identifiers. It allows avoiding long names.

In the sample query presented below (SELECT-query), as a result, two values will
be returned: Matthew and Jones. At the beginning of query we specify the values,
which should be returned: “?family” and “?given”. The first condition deter-
mines a statement, which has vcard:FN property value “Matt Jones”. Then we ex-
tract data from property vcard:N to the variable “name”. Basing on this informa-
tion, we extract values of the property vcard:Family and vcard:Given.

SELECT ?family, ?given
WHERE (?vcard vcard:FN “Matt Jones”)

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 207

 (?vcard vcard:N ?name)
 (?name vcard:Family ?family)
 (?name vcard:Given ?given)
USING vcard FOR <http://www.w3.org/2001/vcard-rdf/3.0#>

Scheme on Figure 6 shows the steps of the query execution. The names of nodes
are presented as names of variables to make picture clearer. The values of variables
“vcard” and “name” are used as an input to the next condition statements.

Fig. 6. Query description scheme

3 RscDF Data Management in GUN

The capabilities GUN provides rely on the common data representation format
(RSCDF) and the common understanding of domain (Industrial Maintenance Ontol-
ogy). As far as RSCDF is RDF-compatible, we reuse already existing RDF-databases
to store RSCDF data.
.

Fig. 7. Presentation scenario

Learning Service
Adapter

Joseki

Resource
Adapter

Resource Browser
(Expert Adapter) RscDF

Web Service

RDQL

Device

XML
document

RscDF

Monitoring Service
AdapterSet of data

XML/SOAP
WSDL

RscDF
document with

expert
description

Set of data

Web Service

XML/SOAP WSDL

RDQL

?vcard

?name “Matt Jones”

“Matthew” “Jones”

vcard:Family

vcard:FNvcard:N

vcard:Given

208 S. Nikitin et al.

Fig. 8. Class diagram showing classes needed for interaction with the Joseki server

3.1 Applying RDQL to RscDF Querying

When querying RscDF data we deal with Statement objects that has the additional
property rscdfs:trueInContext. When selecting a Statement about an object
having certain property, we have to consequently apply queries, specifying the
rdf:object, rscdfs:predicate or rdf:subject property values, so the query may look like:

SELECT ?stmts
WHERE
(?stmts,<rdf:subject>,<papmDescr:123456XZ24>),
(?stmts,<rscdfs:predicate>,<measureOnt:surfacelevel>)
USING
papmDescr FOR
<http://www.cc.jyu.fi/~olkhriye/rscdfs/resource/resourc
eInstanceDescription#>,
rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>,
rscdfs FOR
<http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/rscdfs#>,
measureOnt FOR
<http://www.cc.jyu.fi/~olkhriye/rscdfs/0.3/ontologies/m
easurementOntology#>

The resulting variable stmts will contain the set of Statements, whose subject and
predicate properties satisfy the condition presented in Figure 9 in a form of a graph.

However, when the query contains context-related parts, we meet a problem of rep-
resenting it in the RDQL language. The query becomes difficult to read, because of
additional constructions. For example, when the statements describing different object
properties at the certain moment of time, should be selected, we have to specify the
value of time-statement lying in the context container.

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 209

Fig. 9. Visual query representation

3.2 Querying Patterns

RscDF language provides a facility to select Statements by a certain template. The
template Statement is put to the context container of Statement, wrapping the State-
ments selected according to the template. Figure 10 shows the structure of Statement,
being created as a result of data collection according to a certain template.

Fig. 10. Data Collection Statement selecting data according to a template

Fig. 11. Statement with time context

rdf:subject

SR_Statement

ResourceID

Property

rscdfs:predicate
rdf:object

rscdfs:trueInContex
Context_SR_Container

Time
SR_Statement

Value

WorldEnvironment

rscdfs:sysTime

ontoTempTempMark

rscdfs:value=2004-
09-28T 23:50:12.578
rscdfs:unit=
XMLSchemaDateTime

rdf:subject
rscdfs:predicate

rdf:object

rdf:object
rdf:subject

?stmts

papmDescr:123456XZ24

measureOnt:surfacelevel

rscdfs:predicate

rscdfs:trueInContext

rdf:object
rdf:subject

Wrapping
SR_Statement

ResourceID

SR_Property

rscdfs:predicate

rscdfs:trueInContext

Context_SR_Container

SR_Container of
Statements, matching the
template

Template
SR_Statement

210 S. Nikitin et al.

The most vivid example of the template context-dependent data collection is State-
template data collection. For example, we have a certain resource, logging a track of
its states. Different Statements about resource states are marked with time. So, the
Statements will contain Statement about time in context container (Figure 11).

Figure 12 shows the data collection (subhistory) statement. The rdf:object
property contains reference to container with Statements, matching the data collection
template. The data collection template Statement is placed to the Con-
text_SR_Container of the State Statement.

Fig. 12. Collecting Statement of State template

All the names marked with (*) are not actually present in Industrial Maintenance
Ontology, but mean more generic classes or properties.

To apply the query, to data collection structures residing in RDF storage via RDQL
language we have to write a number of routine triple queries, so it is reasonable to
discover certain RDQL templates combining the operations into blocks and asking
only start input data for further query execution. In case of State template we have
discovered following routines:

− State RscDF-Statement To “attribute-value pairs” Routine:

Input Output
Pointer to State Statement Set of attribute-value pairs of one state

− Subhistory Statement to “Set of State Records”

Input Output
Pointer to Subhistory Statement Set of attribute-value pairs of correspon-

dent states

Context_SR_Container

rdf:object

rdf:subject

State
SR_Statement

ResourceID

contOnt:resourceState*

rscdfs:predicate

rscdfs:trueInContext

Container of SR_Statements,
matching the template

Template
SR Statement

ResourceID

rdf:subject

measOnt:resourceMeasurement*

rscdfs:predicate

Context_SR_Container

rscdfs:trueInContext

Time
SR_Statement

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 211

Further on we omit namespaces definition and USING clause. For the first case the
RDQL query looks like:

SELECT ?ValueStatements, ?NumUnits, ?NumValues
WHERE
(<StateStmtID>, <rdf:object>, ?StateContainer),
(?StateContainer, <rscdfs:member>, ?ValueStatements),
(?ValueStatements, <rdf:object>, ?NumValueInstances),
(?NumValueInstances, <rscdfs:value>,?NumValues),
(?NumValueInstances, <rscdfs:unit>, ?NumUnits)

The output of the query is a plain 3-column table with a set of rows. It is implied
that every record in the table belongs to State, hence here we have 3 output variables,
but in cases, when this routine is used as a subroutine, we have to return also the State
Statement identifiers in order to be able to identify then relationships of values to
states. Table 1 illustrates a possible output of the query:

Table 1. RDQL Query output

Statement ID Units Value
somens:valueStatementID_1 measureUnitsOnt:temperatureCelsius 70

somens:valueStatementID_2 measureUnitsOnt:roundsPerMinute 1500

Fig. 13. History Statement

We put Statement ID to query output, because it uniquely identifies the belonging
of values and units and allows further inference upon received results. As far as

Context_SR_Container

rdf:object

rdf:subject

History
SR_Statement

ResourceID

rscdfs:sr_StateHistory

rscdfs:predicate

rscdfs:trueInContext

Container of SR_Statements,
matching the template

Template
SR_Statement

ResourceID

rdf:subject

rscdfs:sr_State

rscdfs:predicate

State
SR_Statement 1

State
SR_Statement n

212 S. Nikitin et al.

RDQL query result is displayed in one non-normalized table, we store redundant data,
but save the semantics.

The routine logic can be wrapped as a method, whose input is the name of State-
ment and output - RDQL subroutine. Example in Figure 13 shows more complex
logic. It reuses previous example of State data selection, but provides a Set of States.

Below is the RDQL query:
SELECT?StateStmts,?ValueStatements,?NumUnits, ?NumVaues
WHERE
(<HistoryStmtID>, <rdf:object>, ?StatesCont),
(?StatesCont, <rscdfs:member>, ?StateStmts),
(?StateStmts, <rdf:object>, ?StateContainers),
(?StateContainers, <rscdfs:member>, ?ValueStatements),
(?ValueStatements, <rdf:object>, ?NumValueInsts),
(?NumValueInsts, <rscdfs:value>,?NumValues),
(?NumValueInsts, <rscdfs:unit>, ?NumUnits)

The five last strings of the query above are almost equivalent to the State query
template. The only difference is presence of variable ?StateStmts instead of static
given value StateStmtID. Query doesn’t contain any references to types of proper-
ties being used in statements because we know beforehand what kind of data we deal
with. In general, when the statement’s ID is not known, we should first look for it,
specifying as a search criteria Resource’s ID and property type, for example:

SELECT ?stmts
WHERE
(?stmts,<rdf:subject>,<resourceID>),
(?stmts,<rscdfs:predicate>,<rscdfs:sr_StateHistory>)

Basically, the SR_Property being pointed by rscdfs:predicate, specifies the
data template. So it makes sense to develop the ontology of data templates and associ-
ate it with SR_Properties.

4 Conclusions

In this paper we tried to analyze the problems of storing and managing context-
enabled data via RDF storages. Finally, Joseki RDF storage and querying engine has
been chosen as the most appropriate for integration to the prototype platform for ad-
aptation of industrial resources to Semantic Web – pilot system, result of the Adapta-
tion Stage of the SmartResource project. The approach based on the RDQL-patterns
has been applied in the logic of the part of General Semantic Adapter, responsible for
querying RscDF storages – dynamic and context-sensitive histories of industrial re-
sources (experts, web services and devices). The flexibility of the RDQL-patterns has
allowed to design a unified semantic adapter – a mediator between software agents
(which implement proactive goal-driven behavior of originally passive industrial re-
sources) and RDF-based storage of the history data of the corresponding industrial re-
sources.

Further, it is planned to apply the developed method based on the RDQL-patterns
in the design of querying mechanism for goal/behavior rule storages, which will util-
ize RGBDF – Resource Goal/Behavior Description Framework. The latter will be de-

 Querying Dynamic and Context-Sensitive Metadata in Semantic Web 213

signed during the Proactivity Stage of the SmartResource activities as a part of the
Pro-GAF – General Proactivity Framework.

Acknowledgements

This research has been performed as part of the SmartResource (“Proactive Self-
Maintained Resources in Semantic Web”) project in Agora Center (University of
Jyväskylä, Finland) and funded by TEKES and industrial consortium of following
companies: Metso Automation, TeliaSonera, TietoEnator and Science Park of
Jyväskylä.

References

1. Terziyan, V.: Semantic Web Services for Smart Devices in a “Global Understanding Envi-
ronment”, In: R. Meersman and Z. Tari (eds.), On the Move to Meaningful Internet Sys-
tems 2003: OTM 2003 Workshops, Lecture Notes in Computer Science, Vol. 2889,
Springer-Verlag (2003) 279–291

2. Online Jena API tutorial by B. McBride, “An Introduction to RDF and the Jena RDF API”,
August 2003, http://jena.sourceforge.net/tutorial/RDF_API/

3. Online Jena tutorial by A. Seaborne, Hewlett Packard, “Jena Tutorial. A Programmer's In-
troduction to RDQL”, April 2002, http://www.hpl.hp.com/semweb/doc/tutorial/RDQL/

4. Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds: Efficient RDF
Storage and Retrieval in Jena2, In: I. F. Cruz, V. Kashyap, S. Decker, R. Eckstein (Eds.):
Proceedings of SWDB'03, The first International Workshop on Semantic Web and Data-
bases, Co-located with VLDB 2003, Humboldt-Universität, Berlin, Germany, September
7–8 (2003) 131–150

5. Barnell, A.: RDF Objects, Technical Report, Semantic Web Applications Group, Hewlett
Packard Laboratories Bristol, Avon, England, November 2002

6. Webpage of Jena on the official website of B. McBride, Hewlett Packard, “Jena, An RDF
API in Java”, http://www.uk.hpl.hp.com/people/bwm/rdf/jena

7. Lee, R.: Scalability Report on Triple Store Applications, Technical Report, SIMILE pro-
ject (2004)

8. Beckett, D.: Semantic Web scalability and storage: survey of free software/open source
RDF storage systems, Deliverable 10.1 report, SWAD-Europe project (IST-2001-34732)
(2002)

9. B. McBride, Jena: Implementing the RDF Model and Syntax Specification, HP Labs in
proceedings of the Second International Workshop on the Semantic Web, WWW10, Hong
Kong, 1st May 2001

10. MacGregor, R.: In-Young Ko, Representing Contextualized Data using Semantic Web
Tools, In Proceedings of the 1st International Workshop on Practical and Scalable Seman-
tic Systems, ISWC 2003, October 2003, Sanibal Island, Florida, USA

11. Bouquet, P., Giunchiglia, F., Harmelen, F., Serafini, L. and Stuckenschmidt, H.:
Contextualizing Ontologies, Journal of Web Semantics 26 (2004) 1–19

12. Bizer, C., Oldakowski, R.: Using Context- and Content-Based Trust Policies on the Se-
mantic Web. In 13th World Wide Web Conference, WWW2004 (Poster) (2004)

13. Official website of RDF-S3 — RDF Source related Storage System,
http://www.dbis.informatik.uni-frankfurt.de/~tolle/RDF/RDFS3/

214 S. Nikitin et al.

14. Official website of JENA – a Semantic Web Framework for Java, http://jena.source-
forge.net/

15. Official website of the Protégé ontology management tool, http://protege.stanford.edu/
16. Webpage of the SmartResource project, http://www.cs.jyu.fi/ai/OntoGroup/SmartRe-

source_details.htm
17. Kaykova, O., Khriyenko, O., Naumenko, A., Terziyan, V., Zharko, A.: “RSCDF: Resource

State/Condition Description Framework”, Deliverable 1.1 report, September 2004, Smar-
tResource project, (http://www.cs.jyu.fi/ai/IJWGS-2004_v2.doc)

18. Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A., Terziyan, V., Zharko, A.: “GAF:
General Adaptation Framework”, Deliverable 1.2 report, October 2004, SmartResource
project (http://www.cs.jyu.fi/ai/SJIS-2005.doc)

II

SERVICE MATCHING IN AGENT SYSTEMS

by

Anton Naumenko, Sergiy Nikitin and Vagan Terziyan 2006

International Journal of Applied Intelligence, Special Issue on Agent-
Based Grid Computing, Vol. 25, No. 2, 2006, ISSN: 0924-669X, pp. 223-237.

© 2006 Springer-Verlag London Limited. With kind permission of Spring-
er Science and Business Media

Appl Intell (2006) 25:223–237
DOI 10.1007/s10489-006-9655-4

Service matching in agent systems
Anton Naumenko · Sergiy Nikitin · Vagan Terziyan

C© Springer Science + Business Media, LLC 2006

Abstract The problem of service and resource matching is
being actively discussed currently as a new challenging task
for the next generation of semantic discovery approaches
for Web services and Web agents. A significant advantage
is expected when using an ontological approach to semanti-
cally describe and query services. A matchmaking problem
arises when a service is being queried and it includes the
distance measure between the required service description
and the one from the service registry. We realized the need to
analyze the applicability of different matchmaking methods
to agent development tools when implemented according to
agent technology specifications such as FIPA. We consider
three main groups of cases: matchmaking between classes of
service profiles in pure taxonomies, matchmaking between
classes in faceted taxonomies, and matchmaking between
instances of faceted taxonomies.

Keywords Agent technology . Ontology . Service
matching . Similarity

1. Introduction

The problem of service and resource matching is being hotly
discussed now as a new challenging task for the next genera-

A. Naumenko . S. Nikitin (�) . V. Terziyan
Industrial Ontologies Group, MIT Department,
University of Jyvaskyla, P.O. Box 35 (Agora),
FIN-40014 Jyvaskyla, Finland
e-mail: senikiti@cc.jyu.fi

A. Naumenko
e-mail: annaumen@cc.jyu.fi

V. Terziyan
e-mail: vagan@it.jyu.fi

tion of annotation approaches to Web services and resources.
The most significant outcome in matching was reached using
an ontological approach to the description of a domain. The
ontologies and ontology description languages are currently
being developed by different standardization organizations
such as W3C consortium.

We have met the problem of resource (device, expert,
service) matchmaking in the SmartResource project [1, 2].
The SmartResource project, led by the Industrial Ontologies
Group, is aimed at developing a framework for the adapta-
tion of different heterogeneous resources to the common so-
called Global Understanding Environment (GUN) and provi-
sioning, based on this framework, a higher level agent-based
interoperability and resource description management.

A similar problem was met in the Adaptive Services Grid
project [3], which concentrated on the integration of two IT
worlds such as Semantic Web Services and Grid Computing
by an open generic software platform for adaptive services
discovery, creation, composition, and enactment to offer new
applications on Grid Services providing a well-defined range
of quality of service. The matchmaking of resources and ser-
vices is one of the most challenging tasks of the project. The
matchmaking problem addresses the question of the distance
measure between objects and because the SmartResource
project raised the task of enforcing the GUN platform with
agents, we realized the need to analyze the applicability of
different matchmaking methods to agent development tools
that are compliant to agent technology specifications such as
FIPA [4].

There are many approaches to defining distance between
any two entities (attributes, terms) based on their numerical
or semantic closeness. For example, Tailor and Tudhope [5]
have presented a hypermedia architecture that is supported by
a classification schema. Semantic closeness measures have
been developed to measure the closeness of terms in a schema

Springer

224 Appl Intell (2006) 25:223–237

which provides a platform for high-level navigation tools and
which can provide flexible access tools to a collection of
material. Two higher level navigation tools, navigation via
media similarity and best-fit generalization, also have been
developed. The similarity coefficients are extended in that
similarity is judged on the “semantic closeness” of the sets of
classification terms that are attached to the media nodes. The
similarity coefficient therefore needs to be able to handle sets
of classification terms with varying lengths, with non-exact
matches of terms, and where the pairing of terms between
media nodes may not be immediately obvious.

Brooks reports two experiments that investigated the se-
mantic distance model (SDM) of relevance assessment [6].
In the first experiment, graduate students of mathematics
and economics assessed the relevance relationships between
bibliographic records and hierarchies of terms composed of
classification headings and help-menu terms. The relevance
assessments of the classification headings, but not the help-
menu terms, exhibited both a semantic distance effect and a
semantic direction effect as predicted by the SDM. Topical
subject expertise enhanced both these effects. The second ex-
periment investigated whether the poor performance of the
help-menu terms was an experimental design artifact reflect-
ing the comparison of terse help terms with verbose classi-
fication headings. In the second experiment, the help menu
terms were compared to a hierarchy of single-word terms
where they exhibited both a semantic distance and semantic
direction effect.

Foo et al. [7] propose and define a modification of Sowa’s
metric on conceptual graphs. The metric is computed by lo-
cating the least subtype which subsumes the two given types,
and then adding the distance from each given type to the sub-
suming type.

The distance metric used by Rada et al. [8] represents the
conceptual distance between concepts. Rada et al. use only
the path length to determine this conceptual distance, with
no consideration of node or link characteristics. Distance is
measured as the length of the path representing the traversal
from the first classification term to the second. The closeness
of terms ranges from 1 (identical terms) to 0 (which repre-
sents that terms are not semantically close, although it does
not mean that they are disjoint in the classification schema).

Instance-based learning techniques typically handle con-
tinuous and linear input values well, but often do not handle
nominal input attributes appropriately. The Value Difference
Metric (VDM) was designed by Wilson and Martinez [9]
to find reasonable distance values between nominal attribute
values, but it largely ignores continuous attributes, requiring
discretization to map continuous values into nominal values.
Wilson and Martinez propose new heterogeneous distance
functions, called the Heterogeneous Value Difference Metric
(HVDM), the Interpolated Value Difference Metric (IVDM),
and the Windowed Value Difference Metric (WVDM). These

new distance functions are designed to handle applications
with nominal attributes, continuous attributes, or both. As
was mentioned in the Wilson and Martinez review [9], there
are many learning systems that depend upon a good distance
function to be successful. A variety of distance functions
are available for such uses, including the Minkowsky, Maha-
lanobis, Camberra, Chebychev, Quadratic, Correlation, and
Chi-square distance metrics; the Context-Similarity measure;
the Contrast Model; hyperrectangle distance functions; and
others.

The problem of service and resource matching (or mea-
suring distance between service query and registered service
profiles) is being actively discussed currently as a new chal-
lenging task for the next generation of annotation approaches
to Web services and Web agents. A significant advantage is
expected when using an ontological approach to semanti-
cally describe and query services. A matchmaking problem
arises when a service is being queried and the query includes
the distance measure between the required service descrip-
tion and the one from the service registry. We realized the
need to analyze the applicability of different matchmaking
methods to agent development tools implemented according
to agent technology specifications such as FIPA (Section 2).
We also consider three main groups of cases: matchmaking
between classes of service profiles in pure taxonomies (Sec-
tion 3); matchmaking between classes in faceted taxonomies
(Section 4); and matchmaking between instances of faceted
taxonomies (Section 5). Some samples of recent related work
are given in Section 6. We conclude in Section 7.

2. FIPA matchmaking algorithm

One of the crucial components of a multi-agent system is a
Registry to provide support for service registering and dis-
covering. According to FIPA specifications [10], the Service
Directory service is in charge of providing such functional-
ity within the Agent System. The Service Directory service
stores information of a service as an entry of its Service De-
scription. The Directory Facilitator [11] is a reification of the
Service Directory Service to provide a yellow page direc-
tory service for agents who have services to advertise. The
Directory Facilitator operates with the Service Descriptions,
which correspond to the structure of Fig. 1. The Service De-
scription consists of the name of the service, its type, its
supported interaction protocols, a list of ontologies, a list
of content languages, the owner of the service, and a list of
additional descriptive properties.

FIPA specifies a concrete matching criteria. The algorithm
has to perform syntactic and structural matching based on a
service template and a registered service description in the
Directory Facilitator. The service template does not match
the registered service description if:

Springer

Appl Intell (2006) 25:223–237 225

Fig. 1 Structure of Service Description

1. Any parameter of the service template does not exist in
the registered service description, or,

2. Any parameter of the service template does not match to
a corresponding parameter of the registered service.

A parameter of the service template matches a parameter
of registered service if both names are equal and their values
match.

For the Service Description it means that

− The name, type and ownership parameters match if their
values are equal; and

− Protocols, ontologies and properties parameters match if
each element of the set of the service template is matched
by an element of the set of the registered service.

A possible service description as part of the Agent De-
scription for Registration:

(service-description
:name BusTicketBookingService1
:type BusTicketBookingService
:ontologies(set ServiceOntology)
:properties(set
(property

:name Country
:value Finland)

(property
:name typeOfConnection
:value local)))

Service Template for matching:

(service-description
:type BusTicketBookingService
:ontologies (set ServiceOntology)
:properties (set
(property

:name Country
:value Finland)))

The main disadvantage is that the algorithm performs
only syntactic matching and does not utilize even easy-to-
implement and obvious possibilities of semantic matching.

For instance, the algorithm checks only the syntactic case-
insensitive equality of a string value of the type of the service
template with type of the registered service. The algorithm
takes into account only existing parameters and values in
the service template, and does not take into account any in-
formation about semantic relation of the parameters nor their
values defined in correspondent ontology. Thus the definition
area of the algorithm is restricted by the possible combina-
tion of optional parameters, user defined properties, and the
ranges of their values. As a result, the algorithm provides
a fewer number of possible matching services because of
the absence of analysis of the correspondent ontology. Last
but not least, the algorithm is a binary function with “yes”
and “no” answers instead of a more flexible approach of a
distance measure.

Different characteristics of multi-agent systems influence
the matching algorithms in the sense of what accessible infor-
mation to utilize during the matching process. For instance,
the Directory Facilitator is a registry of instances of services.
Agents can register services in arbitrary Directory Facilita-
tors. Instances of the service have a reference to ontology
through the type of service parameter. But ontology does not
have references to instances of classes of services. The ab-
sence of these references means that ontology cannot provide
a number of services of some type. But matching algorithms
can utilize numbers of instances to measure distances be-
tween classes more precisely.

3. Taxonomy-based distance measure

Having a service type in a search query, according to cur-
rent FIPA implementations, we can compare a query string
to service type1 strings of available services. Such a com-
parison may lose efficiency in a large and highly distributed
environment. However, new services will require additional
new service types, and it will be quite complex to bind all
services to a finite number of service types in order to save
unambiguity and thus allow for search efficiency.

The simplest solution for a dynamic environment is to
provide taxonomy of service types. The taxonomy provides
its entities with a class-subclass relationship. This relation-
ship is transitive, so if classA has subclass classB and
classB has subclass classC, then classC is a subclass
ofclassA also. Such a hierarchy will break the limitation in
the number of service types and will save—and even gain—
in search efficiency by providing unambiguous search. The
simple example of service type taxonomy (see Fig. 2) can
demonstrate the benefits of such approach.

The simplest hierarchy structure allows an arbitrary num-
ber of subclasses to be created, while saving the semantics of

1 Service type refers to a class in an ontology.

Springer

226 Appl Intell (2006) 25:223–237

Fig. 2 Simple service hierarchy

the upper ones. For example, if we extend TicketBook-
ingService class to four more specific subclasses, they
all still belong to TicketBookingService yet their in-
stances should be returned upon a search request looking
for TicketBookingService. Of course it is possible
to look for only direct instances of a certain class, but this
limitation can be used for a more precise search. For exam-
ple, if we search for only direct instances of Airplane-
TicketBookingService, we will not receive instances
of AllInOneTicketBookingService which could
provide us with the facility we look for.

Information that an instance of a class is also an instance
of all super classes of the class gives us the possibility
to implement the simplest reasoning on taxonomy. For
example, a search request,

(service-description
:type TicketBookingService
:ontologies (set ServiceOntology))

will not provide any response in the case when the FIPA
matching algorithm is used and there are no registered ser-
vices with such type in the Directory Facilitator.

But there are several services registered with types
of subclasses(BusTicketBookingService, Trai-
nTicketBookingService, etc.) of TicketBook-
ingService. The Directory Facilitator has to return such
services in response, as they are also a type of the requested
service that is seen in Fig. 3.

It is easy to implement the functionality of the Direc-
tory Facilitator to perform reasoning over a taxonomy utiliz-
ing the class-subclass relationship among types of services.
There are a number of open source libraries providing rea-
soning API for ontologies encoded in different languages.
For instance, JENA is a JAVA library for the implementa-
tion of Semantic Web features. It can operate with RDF-
and OWL-based ontologies. Concrete implementation of the
matching algorithm has to create the JENA model of the
ontology.

Then, instead of comparing syntactical equality of names
of direct classes of services, JENA gets all the subclasses of a
class of the requested service from the model and compares
them further using the FIPA algorithm of syntactic match.
This source code below allows the forming of a list of sub-
types of a type of the requested service:

Springer

Appl Intell (2006) 25:223–237 227

ArrayList subClasses = new ArrayList();
OntModel model = ModelFactory.createOntologyModel();
model.read("http://sample.domain/ServiceOntology.rdf","
RDF/XML");

OntClass requestedServiceClass =
model.getOntClass("http://sample.domain" +
"/ServiceOntology.rdf#TicketBookingService");

ExtendedIterator iterator =
requestedServiceClass.listSubClasses(false);

while ((iterator!=null)&&(iterator.hasNext())){
OntClass subClass = (OntClass) iterator.next();

subClasses.add(subClass.getLocalName());}

There are two possibilities for a deployment of the subclass
relation-based matching algorithm. The most appropriate one
is to realize it as a part of the Directory Facilitator, as Fig. 4
illustrates.

Such an architectural solution requires changes in the
FIPA specifications. But there is no need to change the proto-
col of request of agents to the Directory Facilitator. Basically
the Directory Facilitator embeds the source code mentioned
above to get a list of the types of services that are subclasses
of the requested service type. Using the list of subtypes, the
Directory Facilitator can perform the regular FIPA algorithm
for the syntactic matching of type and subtypes of the re-
quested service and for the types of the services registered in
the directory. As a result, the Directory Facilitator responds
to all services which have the requested type. Figure 5 shows

a sequence diagram of the described interaction between the
Agent, Directory Facilitator, and Ontology. The main func-
tional characteristics are

– an agent forms one request with a service type,
– the Directory Facilitator requests a list of subclasses for

the specified type of a service from the Ontology, then
– the Directory Facilitator performs internal iterations of the

syntactic match over a list of requested types of services.

Main nonfunctional properties are

– an agent operates according to the regular protocol , and
– the response of the Directory Facilitator is now semanti-

cally full.

Fig. 3 Subclasses of TicketBookingService

Springer

228 Appl Intell (2006) 25:223–237

Fig. 4 Component diagram
when the subclass matching
component belongs to the
Directory Facilitator

Fig. 5 Sequence diagram of an
interoperation of the Agent,
Ontology and Directory
Facilitator

The solution should be used as a possible elaboration of
FIPA specification. Implementing it out of the FIPA speci-
fication could cause a misunderstanding and a lack of inter-
operability of the enhanced Directory Facilitators with the
existing FIPA compliant components.

The second approach is to leave the Directory Facilitator
as is, while implementing a subclass matching as the Agent’s
functionality. Figure 6 depicts the architecture of this solu-
tion.

There is no need to change the FIPA specifications in
this instance. The agents could utilize this functionality with
the already existing implementations of the multi-agent sys-
tems. Figure 7 illustrates a sequence diagram of an interaction
among the Agent, the Ontology and the Directory Facilitator
for this architectural solution. The main functional charac-
teristics are

– the agent requests a list of subclasses for the specified type
of service from the Ontology,

– the agent iteratively forms requests over the list of re-
quested types of services, then

– the Directory Facilitator provides a syntactic matching ser-
vice according to the FIPA specification.

The agent collects the responses after the syntactic match.
The main nonfunctional properties are

– if needed, the Agent can itself form a semantic matching,
– the Directory Facilitator stays unchanged, and
– inefficient network utilization.

In some cases, it is reasonable to return in a search result
not only instances of the class being searched but also in-
stances of classes close to that being searched. For example,

Springer

Appl Intell (2006) 25:223–237 229

Fig. 6 Component diagram
when the subclass matching is
part of the Agent functionality

Fig. 7 Sequence diagram of the interoperation of the Agent, Ontology and Directory Facilitator

if we are looking for BusTicketBookingService and
no instances are available, then, probably, the user wouldn’t
mind getting instances of a sibling service, TrainTick-
etBookingService, as a result. Considering a general
case, we need to provide a distance metric to select the clos-
est classes for response when there are no instances of a
requested type.

One of the metrics could reflect generalization of classes.
The utilization of this semantic relation depends on the in-
terests of a domain and a task. For a search of some service
type, the answer can contain instances of a superclass in the
case where there are no instances of the requested service
class. It means, for example, that on a request for the Bu-
sTicketBookingService, the user may get instances
of TicketBookingService, which are all instances of
the other subclasses of TicketBookingService. If for

some domain or task such functionality is reasonable, then
the distance between the classes is 0 in the case of a subclass
relation and 1 for each instance of a superclass relation. For
instance, Fig. 8 shows thatTicketBookingService has
the distance of 0 to all its subclasses, the distance of 1 to the
direct superclass BookingService, the distance of 2 to
WebService, and the distance of 3 to Service. According
to the distance measure described above, the implementation
of a matching algorithm based on the subclass relation is a
particular case of the distance measure based on the subclass
and superclass relations.

The implementation of the matching algorithm based on
the generalization of classes requires changes of the FIPA
specifications. FIPA defines an object of the search con-
straints to limit the function of searching within a directory.
The object consists of three parameters: max-depth, the

Springer

230 Appl Intell (2006) 25:223–237

Fig. 8 Distances between TicketBookingService and other services

maximum depth of propagation of the search to the feder-
ated directories; max-results, the maximum number of
results to return for the search; and search-id, a globally
unique identifier for a search. An agent has to pass an ad-
ditional parameter, max-distance, to support the imple-
mentation of the generalization-based matching algorithm.
Max-distance is a positive integer, including zero, that
defines an expansion of the search over the ontology. The
value 0 requires services which are of the type of the re-
quested class and its subclasses. The value 1 includes the
direct superclasses and their subclasses in consideration.

Generally, the value of themax-distancedefines the level
of the superclass to which search could be extended if there
are no services on lower levels.

The federation of directories adds a complexity to the
implementation of this algorithm because the directory has
to meet the requirements of the max-results parameter
of the search constraints. One of the possible solutions is
to collect the matching services of the farthest classes in
respect to max-distance parameter. Then the search is
propagated with respect to themax-depth parameter while
integrating the resulting sets of services from the previous

Springer

Appl Intell (2006) 25:223–237 231

Fig. 9 Activity diagram of a matching algorithm based on generalization distance

Fig. 10 Extended structure of
the Search Constraints

directories. The response consists of a max-result or a
smaller number of the most specialized services. Figure 9
illustrates the algorithm described above.

Figure 10 shows the extended structure of the object of
the search constraints. Architectural considerations are the

same as for the matching algorithm based on the subclass
relation.

The Object Match algorithm [12] is more sophisticated. It
calculates the similarity of two concepts based on a hierar-
chy of concepts. The algorithm uses the concept of upwards
cotopy (UC) defined as follows:

UC(O j , H) = {O j | H (Oi , O j) ∪ O j = Oi } (1)

where taxonomy is given by an irreflexive, acyclic, transitive
relation class-subclass H and O is a class in a taxonomy.

The intersection of upwards cotopies of two classes is

I (O1, O2, H) = UC(O1, H) ∩ UC(O2, H) (2)

Springer

232 Appl Intell (2006) 25:223–237

The union of upwards cotopies of two classes is

U (O1, O2, H) = UC(O1, H) ∪ UC(O2, H) (3)

And according to the Object Match algorithm, the simi-
larity of two classes equals to:

S(O1, O2, H) = |I (O1, O2, H)|
|U (O1, O2, H)| (4)

The algorithm reflects the fact that more specialized neigh-
bors are closer to each other than the more general ones.
Basically, the algorithm takes into account the quantity of
common and different parents with a sensitivity to the depth
of classes within the taxonomy.

This algorithm could be enhanced by taking into account
the width as well as the depth of the taxonomy. Similarity is
defined as follows:

Se(O1, O2, H)

=
∑

Oi ∈I (O1,O2,H) |{O j |H ′(Oi , O j) ∪ Oi = O j }|∑
Oi ∈U (O1,O2,H) |{O j |H ′(Oi , O j) ∪ Oi = O j }| (5)

where H ′ is a relation class—direct subclass.
Let us consider an example of the abilities of the algorithm

to reflect the depth and width of taxonomy. Figure 11 shows
three hierarchies of services.

We have to calculate the upwards cotopies in order to
measure the distance between D and E in the first hierarchy
H1, using formula 1:

UC(D, H1) = {D, B, A} (6)

UC(E, H1) = {E, B, A} (7)

The intersection and union of the cotopies are calculated
using formulas 2 and 3:

I (D, E, H1) = {B, A} (8)

U (D, E, H1) = {D, E, B, A} (9)

The similarity according to formula 4 equals

S(D, E, H1) = |{B, A}|
|{D, E, B, A}| = 1

2
(10)

The enhanced similarity by formula 5 is equal to

Se(D, E, H1)

= |{D, E, F, B}| + |{B, C, A}|
|{D, E, F, B}| + |{B, C, A}| + |{D}| + |{E}| = 7

9

(11)

The second hierarchy H2 extends the first hierarchy H1 by
introducing a new subclass of B, thus raising the width of the
hierarchy. The upwards cotopies for D and E in such a case
are the same as in the first hierarchy. The intersection and
union of cotopies are also the same. The value of similarity
of D and E by formula 4 stays unchanged. The enhanced
similarity shows that D and E are semantically closer in the
second hierarchy:

Se(D, E, H2)

= |{G, D, E, F, B}|
|{G, D, E, F, B}| + |{B, C, A}| + |{D}| + |{E}|

+ |{B, C, A}|
|{G, D, E, F, B}| + |{B, C, A}| + |{D}| + |{E}|

= 8

10
(12)

The calculation of the similarity of D and E for the third hi-
erarchy H3 is analogical to the calculation for the first hierar-
chy. The similarities by formula 4 and the enhanced formula
5 are equal to:

S(D, E, H3) = |{B, A, G}|
|{D, E, B, A, G}| = 3

5
(13)

Fig. 11 Example on
Hierarchies

Springer

Appl Intell (2006) 25:223–237 233

Fig. 12 Property domain and range definition in Protégé

Se(D, E, H3)

= |{D, E, F, B}| + |{B, C, A}| + |{A, G}|
|{D, E, F, B}| + |{B, C, A}| + |{A, G}| + |{D}| + |{E}|

= 9

11
(14)

As we can see, D and E are semantically closer by both
formulas 4 and 5 in the third hierarchy as compared to the
first one.

4. Distance measure for ontology with facets

Faceted Classification [13] is a sophisticated alternative to
the traditional classification schemes and modern web direc-
tories, which put one item in only one place. Faceted clas-
sifications are based on the Colon Classification scheme of
Indian library scientist S.R. Ranganathan developed in the
1930s. Ranganathan created a set of properties or character-
istics or attributes of any subject, ideally mutually exclusive
(orthogonal) and exhaustive (complete), which means that
any object being classified could be assigned one of these
descriptions, which he called a facet. The outstanding ad-
vantage is that a hierarchy can be built starting with the facet
considered as the most important. A facet-based classifica-
tion has much more extended capabilities in comparison to
a taxonomy-based one. In ontological modeling it is quite
usual for a certain hierarchy to be selected as a backbone
for the whole Ontology, which is then powered by additional
properties assigned to the classes. The main hierarchy con-
sists of the objects representing the goal of a description. For

example, if we consider services as our description goal, then
we can organize them in the main class-subclass relationship
by their service type and then augment with additional prop-
erties, such as location, type of payment accepted, etc.

For example, we can add the property Location to the
BookingService class (Fig. 12).

We then provide the property Location with domain
and range characteristics. The domain defines the set of
classes allowed to have this property and the range defines
the allowed values for the property.

In our case, we set the domain value to the Service
class. This means that any instance of a Service class
or its subclasses may have the property Location. As a
range value type we set Class, and as an allowed super-
class for value—LocationOntology. In this way we de-
fine a controlled vocabulary for the property values. A con-
trolled vocabulary, or managed vocabulary, is an attempt
to limit the number of terms that will be admitted into a
discourse in order to improve communication. However, the
applicability of a controlled vocabulary in the quickly chang-
ing environments of P2P is still a matter of discussion and
research.

When comparing classes with properties, the distance can
be measured based on a number of discriminate properties.
The more identical properties the classes have, the more
similar classes are. The simple distance measure for two
classes, A and B with facets n A and nB, can be calculated by
formula:

D = |n A ∩ nB |
|n A ∪ nB | (15)

Springer

234 Appl Intell (2006) 25:223–237

So we divide the number of identical facets into the num-
ber of facets used for the description of both classes (identical
facets of both classes are counted only once).

For example, if class A has 5 facets {f1, f2, f3, f4, f5} and
class B has 7 facets {f1, f2, f3, f6, f7, f8, f9}, then distance
can be calculated as:

|n A ∩ nB | = |{ f1, f2, f3}| = 3
(16)

|n A ∪ nB | = |{ f1, f2, f3, f4, f5, f6, f7, f8, f9}| = 9

D = 3

9
= 1

3

5. Distance measure between instances in ontology

Faceted classification schemes may vary. The limited set of
allowed values (controlled vocabulary) for certain facet pro-
vides the ability to measure distance between two instances
having the same facet. If the allowed values are arranged in
taxonomy, it extends the distance measure precision. How-
ever, property (attribute) values can be from non-controlled
vocabulary, which means that only a Boolean match can be
applied for returning 1 if values are equal and 0 if not. If the
values are numerical then the distance can be measured using
a standard measure (e.g. Euclidean distance) however values
obtained should be normalized.

When an instance of a certain class is requested and can
not be found (e.g. we ask for the implementation of an online
train ticket service in Finland but there is no service currently
running), then it makes sense to return a bus ticket service
located also in Finland. Hence, we need to deal with instances
and assigned property values.

In our opinion, similarity (or distance) between instances
can be measured only using common properties and, thus,
their comparable values. However, the closest class to class
of instance should be found first. After the closest class is
found, its instances can be taken and the distance can be
measured based on different metrics.

Assume that we have two interpreted profiles with the
same set of attributes, which have numerical or nominal val-
ues. Assume also that the first profile is taken from the “ser-
vice requests” database and the second one from the “service
offerings” database. The distance between these two profiles
can be measured according to [14, 15] as follows:

E(X, Y) =
√ ∑

∀i,xi ∈X,yi ∈Y

ωi · d(xi , yi)2 (17)

where X and Y are two vectors of the values of the attributes
of the two profiles. The component distance d(xi , yi) for

every attribute is normalized by the range of the previously
known values of the attribute so that it is mostly within the
range [0, 1], and weighted by weights ωi according to the im-
portance of the attribute. The weight ωi may be the probabil-
ity that a client, whom a request (interpreted profile) belongs
to, will not be satisfied by an offering (interpreted profile of
the same structure) if the i-th attribute of these profiles is not
taken into account.

The Heterogeneous Euclidean-Overlap Metric is used for
both nominal and numerical features. This function defines
the component distance between two values of an attribute
as:

d(xi , yi)

=

⎧⎪⎪⎨
⎪⎪⎩

if i-th attribute is nominal −
{

0, if xi = yi

1, otherwise

else :
|xi − yi |
rangei

(18)

where rangei is the range of the attribute i .
If the attribute is nominal but has values from the con-

trolled vocabulary organized in taxonomy, then the distance
between the two attribute values can be measured using dis-
tance measure techniques applicable to taxonomy, as de-
scribed in Section 3. So the distance can be defined as:

d(xi , yi) =

⎧⎪⎪⎨
⎪⎪⎩

if i-th attribute is nominal − distance
between ontology concept xi and yi

else :
|xi − yi |
rangei

(19)

The Interpolated Value Difference Metric defines the fol-
lowing component distance between the two values of an
attribute:

d(xi , yi)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ k∑
j=1

|P(j |i ∈ [xi , xi +�])−P(j |i ∈ [yi , yi + �])|2,

if i numerical (continuous) attribute√√√√ k∑
ci =1

|P(j |i = x i) − P(j |i = yi)|2, otherwise,

(20)

where k is the number of classes of profiles; P(j | i = xi) is
the conditional probability that a profile belongs to class j if
its attribute i has the value xi , and P(j |i ∈ [xi + �]) is the
interpolated conditional probability that a profile belongs to
class j if its discreted attribute i has the value xi , and � is
the discretization step.

Springer

Appl Intell (2006) 25:223–237 235

Table 1 Services separated by
facet values Object Quantity

Web Services Total 10
PlaneTicketBookingService 3
TrainTicketBookingService 2
BusTicketBookingService 5
Services accepting Web money 4
Services not accepting Web money 6
PlaneTicketBookingService accepting Web money 1
TrainTicketBookingService accepting Web money 1
BusTicketBookingService accepting Web money 2
PlaneTicketBookingService not accepting Web money 2
TrainTicketBookingService not accepting Web money 1
BusTicketBookingService not accepting Web money 3

A more simple interpretation of the previous formula
might be:

d(xi , yi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√√√√ C∑
c=1

[P(c|xi) − P(c|yi)]2,

if i-th attribute is nominal;

|xi − yi |
rangei

, if i-th attribute is numerical.

(21)

A probabilistic approach requires prior knowledge of the
total number of instances of a certain class but, in the P2P
environment, it may not always be easy to obtain statistics
about instances and range values of numerical attributes. But
by having this data the calculations gain in accuracy. For
example, we have a preference to find a train ticket booking
service that accepts Web money (payment via the Internet)
and has a service load of not more than 60%. The importance
of service load is estimated as 0.2 and importance of transport
type (train, bus or plane) is 0.8 respectively. To calculate the
distance to the closest service profile we need the following
data:

– The total number of ticket booking service instances and
the number of service instances of each class;

– The total number of service instances accepting Web
money and the number of service instances of each class
that accept Web money;

– the service load value.

For example, we have 10 ticket booking service instances,
among them:

– three instances of PlaneTicketBookingService
– two instances of TrainTicketBookingService
– five instances of BusTicketBookingService

Among our 10 service instances only 4 accept Web money.
The four instances accepting Web money comprise a

PlaneTicketBooking Service, a TrainTick-
etBookingService and two instances of BusTicket
BookingService.The six remaining instances are: two
instances of PlaneTicketBookingService, one
TrainTicketBookingService and three instances of
BusTicketBookingService. The summary is pro-
vided in Table 1.

Let’s consider two service profiles (Table 2).
In order to calculate the distance from our preference to

the Service Profiles, we need conditional probability values
calculated according to Eq. (12) (see Table 3).

Table 2 Service profiles
attribute values Service Profile 1 Service Profile 2

ServiceType TrainTicketBookingService BusTicketBookingService
Load 80% 20%

Table 3 Conditional
probability values for the
calculation of the distance
between TrainTicket-
BookingService and
BusTicketBooking-
Service values

Probability Value

P(Accepts Web money | ServiceType = TrainTicketBookingService) 1/2
P(Accepts Web money | ServiceType = BusTicketBookingService) 2/5
P(Not accepts Web money | ServiceType = TrainTicketBookingService) 1/2
P(Not accepts Web money | ServiceType = BusTicketBookingService) 3/5

Springer

236 Appl Intell (2006) 25:223–237

So the distance can be calculated as:

d(“Train”, “Bus”)

=

√√√√√√√√√

⎛
⎜⎜⎜⎝

(P(AcceptsWM | ServiceType = Train)

− P(AcceptsWM | ServiceType = Bus))2

+ (P(NotAccWM | ServiceType = Train)

− P(NotAccWM | ServiceType = Bus))2

⎞
⎟⎟⎟⎠

(22)

Substituting the values in Eq. (22), we have:

d(“Train”, “Bus”)

=
√(

1

2
− 2

5

)2

+
(

1

2
− 3

5

)2

≈ 0, 141 (23)

Now we can calculate the distance of our preferences to
Service Profiles. Here we have to mention that the distance of
attribute having numerical value as a marginal value should
be calculated with an additional condition. In our case, we
assume that “60% load” parameter should be not more than
60%, hence the distance can be calculated as:

d(xi , yi) =
⎧⎨
⎩

0, if xi ≤ yi

|xi − yi |
rangei

, otherwise,

where rangei = max(yi) − yi

(24)

The maximum range value for the Service Load attribute
is 100 because its value is a percentage.

Now, the distance to the Service Profiles is calculated us-
ing Eq. (17).

D(UserP, SP1) =
√

0.8 · 0 + 0.2 ·
(

80 − 60

100 − 60

)2

= 0.1

D(UserP, SP2) =
√

0.8 · (0.141)2 + 0.2 · 0 ≈ 0.126 (25)

where D(UserP, SP1) is a distance between User Preferences
and Service Profile 1 and D(UserP, SP2) is a distance be-
tween Preferences and Service Profile 2 respectively.

As we can notice from the equations above, it is pos-
sible to vary the weights so that the initially preferred
TrainTicketBookingService might be farther from
the BusTicketBookingService because of undesir-
able attribute values.

6. Related work

The application of semantic technology in different dis-
tributed environments is an open issue for many research
projects. Peer service discovery and matching, based on se-
mantic profiles described in [16], provides an ontology-based
matching and a distance measure based on the shortest path
between ontology nodes. However, the full power of the on-
tology is not used and more attention should be paid to overall
system architecture and interoperability of nodes.

Another recent activity [17], aimed at service discovery
within a grid environment, proposes a similarity metric for
measuring the distance between a service request and service
descriptions available in the registry. The metric is based on
a similarity function which is a weighted sum of matching
attributes, description and metadata. The weights are calcu-
lated as probabilistic functions.

A Semantic Similarity Measure for Semantic Web Ser-
vices is proposed in [18]. The formula for semantic similarity
is defined as follows: sim(a, b) = fcommon (a, b)

fdesc(a, b) , where fcommon

is the common function measuring the information value of
the description that is shared between a and b, and fdesc is the
description function giving the value of the total information
content of a and b. But the key feature is how the functions
fcommon and fdesc are calculated. Deep analysis is done to-
wards the formation of the description sets. The authors use
OWL Lite as a descriptive language and give examples of
the applicability on OWL-S descriptions.

7. Conclusions

In this paper, we tried to analyze the applicability of the
ontology-based models for the improvement of the searching
capabilities in Agent Systems. Firstly, we have demonstrated
the drawbacks of the matching algorithm of the Directory
Facilitator, compliant with the FIPA specification [11]. The
algorithm responds to an incorrect set of services from the
ontological point of view because of an instance of a class is
also an instance of all superclasses of this class. Secondly, we
demonstrated through the examples that matching algorithms
based on a distance or similarity measure are more flexible
and appropriate in the task of a services search because they
provide responses even if an exact match does not exist. With
a matching algorithm based on distance measure, there is
a possibility for a user to prepare and efficiently execute
requests based on uncertain or incomplete information.

The main conclusion is that the Agent, Grid Services,
and Web Service technologies can be effectively integrated
with each other. However such integration requires cor-
rect ontology-based matching tools, which can be consid-
erably improved by similarity measure methods. Analysis
shows that some of the algorithms can be easily implemented

Springer

Appl Intell (2006) 25:223–237 237

without radical changes within the existing tools and stan-
dards while giving more sophisticated results of matching.

Although an elaboration of the existing standards requires
deeper analysis of the quality characteristics of the dis-
tance measure-based matching algorithms, we consider these
changes as inevitable.

Acknowledgment This research has been supported by the “Proactive
Self-Maintained Resources in Semantic Web” (SmartResource) project,
funded by TEKES and the industrial consortium of Metso Automation,
TeliaSonera, and TietoEnator.

References

1. Kaikova H, Khriyenko O, Kononenko O, Terziyan V, Zharko
A (2004) Proactive self-maintained resources in semantic web.
Eastern-European J Enter Technol, 2(1):4–16, ISSN: 1729-3774

2. SmartResource project, http://www.cs.jyu.fi/ai/OntoGroup/Smart–
Resource details.htm

3. Adaptive Services Grid, Integrated project supported by the
European Commission, http://asg-platform.org/

4. FIPA, Foundation for Intellegent Physical Agents, http://www.fipa
.org/

5. Tailor C, Tudhope D (1996) Semantic closeness and classification
schema based hypermedia access. In: Proceedings of the 3-rd Inter-
national Conference on Electronic Library and Visual Information
Research (ELVIRA’96), Milton, Keynes

6. Brooks T (1995) Topical subject expertise and the semantic distance
model of relevance assessment. J Doc, 51(4):370–387

7. Foo N, Garner B, Rao A, Tsui E (1992) Semantic distance in con-
ceptual graphs. In: Gerhotz L (ed) Current directions in conceptual
structure research. Ellis Horwood, pp 149–154

8. Rada R, Mili H, Bicknell E, Blettner M (1989) Development and
application of a metric on semantic nets. IEEE Tran Sys, Man, and
Cybernetics 19(1):17–30

9. Wilson D, Martinez T (1997) Improved heterogeneous distance
functions. J Art Intell Rese 6:1–34

10. FIPA Abstract Architecture Specification, http://fipa.org/specs/
fipa00001/

11. FIPA Agent Management Specification, http://fipa.org/specs/fipa
00023/

12. Stojanovic N, Meadche A, Staab S, Studer R, Sure Y (2001) SEAL:
A framework for developing semantic PortALs. In: Proceedings
of the International Conference on Knowledge Capture, Victoria,
British Columbia, Canada, ACM Press. pp 155–162

13. Glossary of Content Management Professionals, http:www. cms-
glossary.com/

14. Cost S, Salzberg S (1993) A weighted nearest neighbor algorithm
for learning with symbolic features. Mach Learn 10(1):57–78

15. Puuronen S, Tsymbal A, Terziyan V (2000) Distance functions in
dynamic integration of data mining techniques. In: Dasarathy BV
(ed) data mining and knowledge discovery: Theory, tools and tech-
nology II, Proceedings of SPIE, vol. 4057, The Society of Photo-
Optical Instrumentation Engineers, USA, pp 22–32

16. Haase P, Agarwal S, Sure Y (2004) Service-oriented semantic peer-
to-peer systems, Lecture Notes in Computer Science, vol. 3307, pp
46–57

17. Ludwig SA, Reyhani SMS (2005) Semantic approach to service
discovery in a grid environment. J Web Semant, 3(4) Elsevier

18. Hau J, Lee W, Darlington J (2005) A Semantic Similarity Measure
for Semantic Web Services, Web Service Semantics Workshop

Vagan Terziyan Professor in Software En-
gineering since 1994 and the Head of the
Artificial Intelligence Department since 1997
in Kharkiv National University of Radioelec-
tronics (Ukraine). Currently he is working
in Agora Center (University of Jyvaskyla,
Finland) as a project leader of the SmartRe-
source TEKES Project and Head of Industrial
Ontologies Group. He is a member of IFIP WG
12.5 (“Artificial Intelligence Applications”),
PC Chair of IFIP International Conference on

Industrial Applications of Semantic Web. His research and teaching
profile is design of Intelligent Web Applications, which utilise and inte-
grate emerging Knowledge-, Agent-, Machine-Learning- and Semantic
Web- Based technologies and tools. For more details please refer to his
homepage at http://www.cs.jyu.fi/ai/vagan/

Sergiy Nikitin (1982) is currently working
as a researcher in Agora Center (University
of Jyväskylä, Finland) on the SmartResource
TEKES project. Sergiy graduated form the
Kharkiv National University of Radioelec-
tronics (KNURE), Ukraine with the Engi-
neer’s degree in 2004. At the end of the same
year he obtained a Master of Science degree
from the University of Jyväskylä, Finland. In
2005 he entered a Ph.D.-program at the Fac-
ulty of Information Technology of the Univer-

sity of Jyväskylä. Among other research activities Sergiy has taken part
in Adaptive Services Grid (ASG) and SCOMA projects.

His research interests include semantic web services, seman-
tic configuration, agent technology and ontology engineering ar-
eas. Sergiy Nikitin has been a member of Industrial Ontologies
Group since 2004. For more details please refer to his homepage at
http://www.cc.jyu.fi/ senikiti

Anton Naumenko (1980) is a researcher at
the Department of Mathematical Information
Technology, University of Jyväskylä, Finland
(JYU). He has Master of Science degrees in
Information Technology from the JYU and
in Computer Science from the Kharkov Na-
tional University of Radioelectronics, Ukraine
(KhNURE). He also earned a Bachelor of Eco-
nomics degree from the KhNURE. In 2004,
he has started his postgraduate education in
the Faculty of Information Technology, JYU.

Anton’s professional career started in the KhNURE with a position of
technician (2000) in a research project, where he became a researcher
and leaded database designers and software developers (2001–2002).
He was a leader of a software development team and a researcher in the
SmartResource project (2004). After that he participated in the Adap-
tive Services Grid (2005) and Mobile Design Patterns and Architectures
(2005–2006) research projects. His expertise and interests consist of Se-
mantic Web, Agent Technologies, Object-Oriented Design, and Access
Control. For more details please visit his homepage at www.cc.jyu.fi/ an-
naumen.

Springer

III

DATA INTEGRATION SOLUTION FOR PAPER IN-
DUSTRY - A SEMANTIC STORING, BROWSING AND
ANNOTATION MECHANISM FOR ONLINE FAULT

DATA

by

Sergiy Nikitin, Vagan Terziyan and Jouni Pyötsiä 2007

Proceedings of the 4th International Conference on Informatics in Control,
Automation and Robotics (ICINCO), May 9-12, 2007, Angers, France, INSTICC

Press, ISBN: 978-972-8865-87-0, pp. 191-194.

© 2007 Institute for Systems and Technologies of Information, Control and
Communication (INSTICC) press. Reprinted with permission

DATA INTEGRATION SOLUTION FOR PAPER INDUSTRY
A Semantic Storing Browsing and Annotation Mechanism for Online Fault Data

Sergiy Nikitin, Vagan Terziyan
Agora Center, University of Jyväskylä, Mattilanniemi 1, Jyväskylä, Finland

senikiti@cc.jyu.fi, vagan@it.jyu.fi

Jouni Pyötsiä
Metso Automation

Jouni.Pyotsia@metso.com

Keywords: Semantic Web, Semantic Storage, Information Integration, Paper Industry.

Abstract: A lot of IT solutions exist for simplification and time saving of industrial experts’ activities. However, due
to large diversity of tools and case-by-case software development strategy, big industrial companies are
looking for an efficient and viable information integration solution. The companies have realized the need
for an integrated environment, where information is ready for extraction and sophisticated querying. We
present here a semantic web-based solution for logging and annotating online fault data, which is designed,
and implemented for a particular business case of a leading paper machinery maintenance and automation
company.

1 INTRODUCTION

Rapid changes and discontinuities in the 21st
century business environment will challenge
companies with the growing demand for competitive
advantages within their business solutions. To
ensure high flexibility, sustainable growth and
profitability, companies have to search for new
innovative approaches to products and services
development. New innovative business solutions call
for strong integration of automation technology,
information and communication technology (ICT),
and business processes. At the same time, embedded
intelligence in different machines and systems gives
new possibilities for automated business process
operation over the network throughout the machines
and systems life cycles.

The new emerging remote service solutions
imply that products transform into life cycle services
and these services, in turn, transform into customers'
service processes. Business messages coming from
intelligent machines and systems drive these
processes, utilizing embedded intelligence and ICT
solutions.

In the future, a variety of collaborative resources,
like intelligent machines, systems and experts, will

create a huge amount of new information during the
life cycles of machines and systems. Message flow
management and compression to on-line knowledge
are already a demanding issue for the logging of
product-related activities. On the other hand,
optimization requirements demand more effective
knowledge utilization and the speeding up of
network-based learning in the process of
collaboration between different resources.

Industry challenges the IT-sector with the new
requirements that are dictated by the need to offer
essentially new services to customers in order to be
competitive in the market. These requirements may
become hard to meet using conventional tools and
approaches. The growth in the information volumes
we want to store and process by integrating data
from different sources leads to an unprecedented
level of complexity. Modern Enterprise Resource
Planning (ERP) systems are trying to provide
integrated solutions for large companies. However
the installation and adjustment of such systems may
take a half a year, involving hundreds of consultants
and subcontractors.

The current trend towards more open service-
based computing environments is a new approach to
componentization and components distribution.
Service-oriented architecture aims to achieve a new

191

level of reusability and business process flexibility;
however, to ensure the interoperability between the
components we need a common “glue” that would
adjust the semantics of the data being exchanged.
The Semantic Web technology (Berners-Lee, T., et
al., 2001) introduces a set of standards and
languages for representation of a domain model with
the explicit semantics. The main instrument of
domain model construction is ontology, which
allows for domain data representation in a
formalized and unified way.

In this paper we present a solution that utilizes
Semantic Web technology to provide a tool for
online maintenance data browsing, analysis and
annotation. We utilize experience obtained in the
SmartResource project (SmartResource, 2006) and
apply the General Adaptation Framework (Kaykova
et al., 2005) to align data with the domain ontology.
The paper is organized as follows: In the next
section we describe the paper machinery ICT
infrastructure, and Section 3 presents the solution we
have developed using Semantic Web tools and
standards. We end with conclusions and future work.

2 IT INFRASTRUCTURE IN
PAPER INDUSTRY

Metso Corporation is a global supplier of process
industry machinery and systems as well as know-
how and aftermarket services. The corporation's core
businesses are fiber and paper technology, rock and
minerals processing, and automation and control
technology. Metso's strategy is based on an in-depth
knowledge of its customers' core processes, close
integration of automation and ICT, and a large
installed base of machines and equipment. Metso's
goal is to transform into a long-term partner for its
customers. Based on the remote service
infrastructure, it develops solutions and services to
improve efficiency, usability and quality of
customers' production processes throughout their
entire life cycles.

2.1 Remote Service Infrastructure

Metso's remote service infrastructure consists of a
service provider's Central Hub and several
customers' Site Hubs, which are integrated over the
network (see Figure 1).

The key issues in a Site Hub solution are: open
standards, information security, reliability,
connectivity and manageability.

GPRS/
GSM

Single Devices

Site
Hub

Legacy
Systems

Local Administrator
Interface

Customer Site 1

Firew
all

Legacy
Systems

Site
Hub

Local Administrator
Interface

Customer Site nFirewallSite
Hub

Local Administrator
Interface

Customer Site 2

Firewall

Central
Hub

Global
Administrator

Interface

Metso Site

Firew
all

Service Network

Figure 1: Site Hub network architecture.

Message Center is the main component of the
Site Hub. It checks the validity of messages and
routes them to the correct receivers. Messaging in
Site Hub is based on Web Services technology.

Hub-based integrated infrastructure combined
with secure connectivity allows easy incorporation
of new business logic on both customer and Metso
sites. A messaging mechanism between customers
and Metso provides a very flexible medium for
information exchange and new service provisioning.

3 LOGGING AND ANNOTATION
OF MAINTENANCE DATA

The main purpose of the system we present here is
to store alarm data, generated by paper machine
monitoring systems. When an alarm happens, a
SOAP/XML message (SOAP, 2003) is generated
and sent to the Site Hub, which then forwards it to
the Central Hub. We have established a message
flow from the Central Hub to the computer at the
university network, where messages are processed
by our system.

3.1 Architecture of the System

The system can be divided into two main
subcomponents – Message Handler and Message
Browser (see Figure 2).

Message Handler receives and processes
SOAP/XML messages from customers. It invokes
the Adapter to transform the XML content into an

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

192

RDF-graph (RDF, 2004) object and store it in the
Sesame RDF storage (Sesame).

Web
Service Adapter

MESSAGE
BROWSER

HTML

Query
Results

XML

SeRQL

XML

Graph

MESSAGE
HANDLER

Browsing and Annotation tool

Central
Hub

Metso Site

RDF graphApplication server

SOAP
message

Figure 2: Architecture of the system.

The RDF storage contains an Ontology that plays
the role of a schema for all data within the storage.
Based on the analysis of SOAP/XML messages, we
have defined main concepts (classes) with the
corresponding properties (see Figure 3).

Message
-messageUID
-securityLevel
-time
-hash
-hasAlarm
-receiverGroup
-hasMessageType
-messageSender
-messageReceiver

ExpertAnnotation
-annotationName
-numOfMessagesReferred
-annotationTime
-annotationDescription
-madeByExpert
-messageReference

Expert
-expertName
-hasAnnotation

Alarm
-value
-failureDescription
-lowLimit

-situationDescription

-tag
-alarmTime
-highLimit
-status
-productionLine

-alarmSource
-customer
-measurementUnit

Figure 3: Ontology classes.

The Message class describes such message
properties as message sender and receiver, message
reception time, etc. The Message class also refers to
an Alarm class, which contains information about
the reason for message generation, such as
measurements of sensors, status data and exact
module of the production line where the alarm
happened. The ExpertAnnotation class defines the

structure for labelling groups of messages with an
expert’s decision and has references to instances of
the Message class.

The Message Browser component provides a
web-based interface for browsing and filtering
messages stored in the RDF-storage, according to
user-defined filtering criteria.

The purpose of message filtering is to distinguish
the groups of messages leading to exceptional
situations. The expert provides annotations for
message groups which are stored to the RDF-storage
and that can be used as samples for machine learning
algorithms. The client-server interaction is
implemented using AJAX technology (Garrett,
2005), which provides a more dynamic script-based
interaction with the server (see Figure 4). When a
user performs any action that requires invocation of
server functionality, the script on a client side wraps
the required parameters into XML format and sends
it to the server. For example, in order to filter the
messages, a user selects the needed parameters and
specifies parameter values within the corresponding
textboxes (see Figure 4).

MESSAGE BROWSER

Application server
Web

Browser

XML

HTML

C
ontrol

ServletA
JA

X
Script

HTML Query
Results

XML SeRQL
Browsing

XML Graph
Annotation

Figure 4: Client-server interaction.

On the server side, the Control Servlet handles
the XML document. For filtering, it generates a
SeRQL query (Broekstra, 2004) and executes it. On
the client side, a dedicated callback script function
processes the response and shows the result in a web
browser.

3.2 Integration with the Agent
Platform

We realize that the extension of the system will
challenge the complexity of development and
maintenance. That is why, following the autonomic
computing paradigm (Kephart, 2003), we have
tested agent-based scenario (see Figure 5)
implemented on a JADE agent platform
(Bellifemine; 2001). We have assigned an agent to
manage RDF-storage activities (Metso Storage
Agent) and provided a Metso Expert Agent to
interact with a maintenance expert.

DATA INTEGRATION SOLUTION FOR PAPER INDUSTRY - A Semantic Storing Browsing and Annotation
Mechanism for Online Fault Data

193

Web
Service

MESSAGE
BROWSER

HTML

Query
Results

XML

SeRQL

XML

Graph

MESSAGE
HANDLER

Browsing and Annotation tool

Central
Hub

Metso Site

Application server

SOAP/XML

METSO
STORAGE
AGENT

METSO EXPERT AGENT

KML

SOAP

Real-Time
Monitoring

tool

Adapter

SOAP/XML

RDF graph

Figure 5: Agent-enabled system.

The messages coming from customers are
handled by the Metso Storage Agent, which
incorporates Adapter to perform transformation and
storage. Then, the Metso Storage Agent sends the
message to the Metso Expert Agent, which updates
the situation on a Real-time Monitoring Tool and
provides an expert with the message content and a
link to the browsing and annotation tool.

4 CONCLUSIONS

Although we have succeeded with the
implementation of the solution presented here, there
are still many issues to cope with in order to meet
key industrial requirements, such as scalability,
maintainability and robustness. RDF-storages can
handle billions of triples, but there are no mature
semantic storage-oriented development patterns or
guidelines. Nevertheless, the simplicity and
efficiency of querying, as well as model extending,
provide incontestable arguments in favour of
semantic data storages. The ontological domain
model brings more benefits to customers when there
are more sources integrated. However, the
complexity of such a system, if developed using
conventional approaches, will be too burdensome to
maintain and extend. In order to distribute the

complexity, we introduce self-manageable entities in
the agent-based communication scenario.

ACKNOWLEDGEMENTS

This research has been supported by the
SmartResource project, funded by TEKES, and the
industrial consortium of Metso Automation,
TeliaSonera and ABB. The preparation of this paper
was partially funded by the COMAS graduate school.

REFERENCES

Bellifemine, F., Poggi, A., and Rimassa, G. 2001. JADE: a
FIPA2000 compliant agent development environment.
In Proceedings of the Fifth international Conference
on Autonomous Agents (Montreal, Quebec, Canada).
AGENTS '01. ACM Press, New York, NY, 216-217.
DOI= http://doi.acm.org/10.1145/375735.376120

Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The
Semantic Web, Scientific American, Vol. 284, No. 5,
pp. 34-43.

Broekstra, J., Kampman A., and F. van Harmelen.
Sesame: An Architecture for Storing and Querying
RDF Data and Schema Information. In D. Fensel, J.
Hendler, H. Lieberman, and W.Wahlster, editors,
Semantics for the WWW. MIT Press, 2001.

Broekstra, J., Kampman, A. SeRQL: An RDF query and
transformation language. In Proceedings of the
International Semantic Web Conference, ISWC 2004,
Hiroshima, Japan.

Garrett, J., Ajax: A New Approach to Web Applications
(white paper).,http://www.adaptivepath.com/publica-
tions/essays/archives/000385.php, February 2005.

Kaykova O., Khriyenko O., Kovtun D., Naumenko A.,
Terziyan V., Zharko A., General Adaption
Framework: Enabling Interoperability for Industrial
Web Resources, In: International Journal on Semantic
Web and Information Systems, Idea Group, ISSN:
1552-6283, Vol. 1, No. 3, July-September 2005,
pp.31-63.

Kephart J.O., Chess D.M., 2003. The vision of autonomic
computing, IEEE Computer, Vol. 36, No. 1, pp. 41-50

RDF – Resource Description Framework, A W3C
Recommendation, Feb 2004, http://www.w3.org/RDF/

SmartResource – a TEKES funded project, http://www.
cs.jyu.fi/ai/OntoGroup/SmartResource_details.htm

SOAP – Simple Object Access Protocol, A W3C
Recommendation, 2003, http://www.w3.org/TR/soap/

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

194

IV

ONTONUTS: REUSABLE SEMANTIC COMPONENTS
FOR MULTI-AGENT SYSTEMS

by

Sergiy Nikitin, Artem Katasonov and Vagan Terziyan 2009

R. Calinescu et al. (Eds.), Proceedings of the Fifth International Conference
on Autonomic and Autonomous Systems (ICAS 2009), April 21-25, 2009, Valen-

cia, Spain, IEEE CS Press, pp. 200-207.

© 2009 IEEE. Reprinted with permission, from Proceedings of the Fifth In-
ternational Conference on Autonomic and Autonomous Systems (ICAS 2009),
ONTONUTS: REUSABLE SEMANTIC COMPONENTS FOR MULTI-AGENT

SYSTEMS, Sergiy Nikitin, Artem Katasonov and Vagan Terziyan

Ontonuts: Reusable semantic components for multi-agent systems

Sergiy Nikitin, Artem Katasonov and Vagan Terziyan
Industrial Ontologies Group, University of Jyväskylä

{sergiy.nikitin , artem.katasonov , vagan.terziyan}@jyu.fi

Abstract

The volumes of data in information systems are

growing drastically. The systems become increasingly
complex in trying to handle heterogeneity of ubiquitous
components, standards, data formats, etc. According to
the vision of Autonomic Computing, the complexity can
be handled by introducing self-manageable
components able to “run themselves.” Agent
Technology fits this vision, whereas interoperability
among autonomic components can be tackled by
Semantic Technologies. The problem of efficient
heterogeneous data sharing, exchange and reuse
within such systems plays a key role. We present an
approach of constructing semantic capabilities (self-
descriptive functional components) for software agents
and a mechanism for distributed data management that
applies these capabilities to build various industrial
business intelligence systems.

1. Introduction

The volumes of data in information systems are
growing drastically. The systems become increasingly
complex in trying to handle heterogeneity of ubiquitous
components, standards, data formats, etc. According to
the vision of Autonomic Computing [1], the complexity
of information systems can be handled by introducing
self-manageable components, able to “run themselves.”
In our opinion, Agent Technology fits this vision very
well. Whereas the interoperability among autonomic
components (agents) can be tackled by Semantic
Technologies, efficient data sharing, exchange and reuse
within such systems still play key roles. Semantic agent-
driven systems cannot fully substitute e.g. high-
performance industrial data storage, nor can they avoid
physical distribution of data and services. In attempt to
resolve the challenges stated, we are developing an
agent platform of a new generation – called UBIWARE
[2], [3]. Efficient data sharing, exchange and reuse
determine the usability of the UBIWARE platform and
its technological success in industry. In this paper we
introduce a mechanism for distributed data management

within the UBIWARE platform that allows platform
users to build distributed industrial business solutions.

The paper is organized in the following way. In the
next section, we present an industrial scenario for
distributed querying and discuss problems that call for
new ICT solutions. In Section 3, we briefly describe
the UBIWARE platform. The fourth section presents a
concept of semantic components called Ontonuts and
shows how they are applied to the scenario of
distributed querying. The discussion on related work is
presented in Section 5. We conclude and propose
future work in Section 6.

2. Distributed Querying Scenario in Paper
Industry

The scenario we have selected is based on the real

software infrastructure from process industry. There is
a complex production line (e.g. paper producing
machine) which is served by a number of control and
diagnostic systems. The measurements taken from
sensors are stored in the Alarm History Database. The
Diary Database contains records about critical alarms
and comments from maintenance workers. There are
also comments on actions taken. The Scheduled
Performance Monitoring database stores results of the
analysis that is performed daily. The analysis includes
all nodes with performance indices that indicate the
condition of the node (Figure 1).

As an example, suppose a serious fault happened in
the paper machine that has led to the subsequent alarm
and maintenance actions. All events are recorded in the
respective databases. However, in order to analyze the
preceding events, e.g. during the week before the fault,
an expert may need to query portions of data from all
the databases, then change filtering parameters and
query databases again and again. An expert may have
interfaces to all the databases separately; however, the
expert’s decision will be stored (if it would be at all) to
a separate file or database.

2009 Fifth International Conference on Autonomic and Autonomous Systems

978-0-7695-3584-5/09 $25.00 © 2009 IEEE
DOI 10.1109/ICAS.2009.34

200

Experts’
diary

Scheduled
Performance
Monitoring

Alarm
History DB

Figure 1. The IT-infrastructure of the paper

machine

Within the current IT infrastructure, it is hard to
find previously made expert decisions on an immediate
fault situation. Thus there is no integrated view on all
the contents of the databases, nor on other sources of
information about the paper machine operation. In the
Semantic Web domain, it is called a proof when any
knowledge is connected with the rules and facts that
were used to infer it. The problem of an integrated
view on the information is important in the industrial
automation particularly because we perceive that many
experienced experts in a majority of companies are
going to retire during next 5-10 years without a proper
knowledge transfer to new experts. On the other hand,
semantic linking of the information will be in a great
demand when the standardization efforts taken in
companies will go beyond the companies’ boundaries
and will call for a unified mechanism of distributed
querying for knowledge and expertise exchange (see
Figure 2).

Experts’
diary

Scheduled
Performance
Monitoring

Alarm
History DB

Standard-based
domain ontology

provider 1

Providers of
IT solutionsFactory 1

provider 2

provider n

Experts’
diary

Scheduled
Performance

Monitoring

Alarm
History DB

Factory 2

Experts’
diary

Scheduled
Performance
Monitoring

Alarm
History DB

Factory n

Figure 2. Inter-company standardization in

paper industry

In the ideal case, companies would be able to sell
information and analytic services to each other
seamlessly with little or no programming effort. The
services sold would be easily integrated into the
company environment with the guaranteed
compatibility. Furthermore, service consumers
(factories) could become service providers too.
Industry might share data and use it as learning

samples for analytic services. The role of providers of
IT solutions would shift from the integration aspects to
those of intelligence. We, therefore, foresee the need
for tools and capabilities in the UBIWARE platform
that will simplify distributed querying and information
integration.

3. UBIWARE platform

In this section we briefly introduce the UBIWARE
agent-driven middleware platform, its agent engine,
and S-APL – a Semantic Agent Programming
Language for programming of software agents within
the platform.

3.1. UBIWARE Platform Architecture

Central to the core platform is the architecture of a
UBIWARE agent, depicted in Figure 3.

Figure 3. UBIWARE Agent

There is a Live behavior engine implemented in
Java, a declarative middle layer, and a set of Java
components, known as Reusable Atomic Behaviors
(RABs). RABs can be considered sensors and
actuators, i.e. components sensing or affecting the
agent’s environment, but are not restricted these. A
RAB also can be a reasoner (data processor) if some of
the logic needed is not efficient or possible to realize
with the S-APL means, or if one wants to enable an
agent to do some other kind of reasoning beyond the
rule-based one.

The UBIWARE agent architecture implies that a
particular UBIWARE-based software application will
consist of a set of S-APL documents (data and

201

behavior models) and a set of specific atomic
behaviors needed for this particular application. Since
reusability is an important UBIWARE concern, it is
reasonable that the UBIWARE platform provides some
of those ready-made. Therefore, the UBIWARE
platform, as such, can be seen as consisting of the
following three elements:

- The Live behavior engine
- A set of “standard” S-APL models
- A set of “standard” RABs

The extensions to the platform are exactly some sets
of such “standard” S-APL models and RABs that can
be used by the developers to embed into their
applications certain UBIWARE features.

3.2. S-APL platform language

In the UBIWARE Platform, behavior models are
presented in a high-level, rule-based language, the
Semantic Agent Programming Language (S-APL). S-
APL is based on the RDF (http://www.w3.org/TR/
1999/REC-rdf-syntax-19990222/) data model, i.e. the
whole document can be seen as a set of subject-
predicate-object triples. A behavior model specifies the
initial beliefs (including knowledge, goals,
commitments, and behavioral rules) of the agent in the
role. Commitments and behavioral rules normally lead
to adding/removing beliefs and executing various
RABs. The notation that is selected for use in S-APL is
a subset of Notation3 (http://www.w3.org/Design
Issues/Notation3.html). Notation3 was proposed by
Tim Berners-Lee as an alternative to the dominant
RDF/XML notation. There are namespaces in S-APL;
in particular, the “sapl” namespace is used for the
resources that are defined in the language’s ontology.
The default namespace is used for all the other
resources in this paper.

In S-APL every statement is a belief of the agent.
Simple belief would look like:

:John :Loves :Mary

Whereas a belief in a context is defined as:
{:John :Loves :Mary}
:since {:Year :Is 2005}

The unconditional commitment to an action (e.g.
calling an RAB) is defined as follows:

{sapl:I sapl:do java:ubiware.shared.
MessageSenderBehavior}
sapl:configuredAs {
 p:receiver sapl:is :John.
 p:content sapl:is “bla bla”.
 sapl:Success sapl:add {

:John :was :notified }}

When the agent’s engine finds a belief with the
“java:” prefix in a general context G (active memory),
it executes the specified action (RAB).

The sequential plan can be defined as:
{ sapl:I sapl:do ...}

sapl:configuredAs{ ...
 sapl:Success sapl:add {
 { sapl:I sapl:do ...}
 sapl:configuredAs {...} } }

meaning that, upon successful execution of the first
commitment, the enclosed one should be added.

However, the central construct of the language is
the conditional commitment:

{:John :Loves :Mary} =>
{{sapl:I sapl:do java:SendMail}
sapl:configuredAs {...}}

The interpretation is straightforward: Upon
occurrence of a belief that satisfies the condition stated
in the subject, the contents of the object are added to
agent’s general context G. Another key construct is
matching with variables (querying). The commitment
for querying is defined as follows:

{{:John :Loves ?x} :accordingTo ?y.
 ?x sapl:is :Girl
} =>
{sapl:I sapl:do java:SendMail}
sapl:configuredAs {
p:receiver sapl:is ?x ...}

which can be interpreted, then, as “If John loves ?x,
according to someone’s opinion, and ?x is a girl, then
send an email to ?x”.

Yet one more construct is a behavior rule:
{{...} => {...}} sapl:is sapl:Rule

The behavior rule differs from the commitment.
Whereas a commitment is removed from the agent’s
beliefs upon execution, the rule stays and executes in
agent’s beliefs permanently. It must be removed
explicitly.

In this section we have briefly introduced the core
concepts of the UBIWARE. In the next section, we
present an extension done beyond the core that makes
an important step towards practical applicability of the
platform in industrial applications.

4. Ontonuts Concept

We introduce here the concept of Ontonut to
facilitate the presentation of modular scripts and plans
within the UBIWARE platform. Ontonut is a semantic
software component. Instances of the Ontonut concept
generally represent a capability with known input and
expected output. We then extend Ontonuts to solve the
problem of distributed querying discussed in Section 2
of this paper.

4.1. Ontonuts in a nutshell

The Ontonuts technology is implemented as a
combination of an S-APL script and RABs and, hence,
can be dynamically added, removed or configured.
Ontonuts allow componentization of S-APL code by
introducing a semantic annotation to it. Such annotated

202

pieces of code are called capabilities (analog of
function in procedural programming). The capabilities
have S-APL descriptions with explicitly defined
preconditions and effects:

Ontonut: {script, precondition, effect}

The capabilities can be dynamically combined
further into plans and put into execution by the
Ontonuts engine, which allows us to automatically
compose the agent’s actions to achieve a specified
goal. The script part of the capability in general has an
S-APL code that produces the effect once the
precondition is satisfied. The whole data model of the
UBIWARE platform is triple-based; therefore goals,
preconditions and effects are defined as triple sets in S-
APL. For example, we have an initial data set {A A A},
a goal G1 defined as {C C C}, and we have two
ontonuts O1 and O2, defined as:

O1 rdf:type :Ontonut
O1 ont:precondition {A A A}
O1 ont:effect {B B B}
O1 ont:script {{A A A}=>... =>{B B B}}
O2 rdf:type :Ontonut
O2 ont:precondition {B B B}
O2 ont:effect {C C C}
O2 ont:script {{B B B}=>...=>{C C C}}

The appearance of the goal G1 will activate the
Ontonuts engine that will match the G1 against
available effects and then apply planning, which will
result in an execution plan: O1=>O2=>G1.

Ontonuts reuse available scripts and RABs without
any modifications to the platform. Architecturally, the
Ontonuts engine consists of three main components:
the Triggering Rule, Action Planner and Plan Executor
(Figure 4). The Ontonuts Triggering Rule is a starting
point of the engine work. The Triggering Rule is a
MetaRule, i.e. it runs before other rules and
commitments. On each iteration of the Live behavior,
the rule checks whether there are any Ontonut calls to
be handled and passes the activity to the Action
Planner, which provides an execution plan for the Plan
Executor.

Ontonut capabilities may include interaction with
other agents or external resources, such as databases,
files or web services. On the other hand, capabilities
can perform local actions and do some computations
on the data, e.g. statistical analysis.

4.2. Invoking Ontonuts

The Ontonuts engine supports three types of Ontonut
calls:

- Explicit
- Goal-based
- Pattern-based

Web
Service

CSV file

RDBMS

A
ge

nt
 B

el
ie

fs
(S

-A
P

L
co

de
)

SQLReader
TextTableReader

ExcelReader
…

MessageSender
MessageReceiver

Ontonuts Role Script

Business Logic Script

R
eu

sa
bl

e
A

to
m

ic

B
eh

av
io

rs

(J
av

a
co

de
)

Excel
sheet

…

Ontonut capability

GoalAnalyser
ActionPlanner

Action Planner

Ontonuts triggering rule

Plan Executor

Agent Services

External resources
Figure 4. Architecture of Ontonuts

The Explicit call to Ontonut is defined as:
{sapl:I sapl:do <ontonutid>}
 sapl:configuredAs
{p:precondition sapl:is {<Input
statements>}}.

The result of the call is added to the G.
The Goal-based call is initiated by adding the

following goal definition to the G:
sapl:I ont:haveGoal :id.
:id ont:goalDef{<goal statements>}
:id ont:initData {<initial data>}

The Ontonuts engine runs the planner to check if
the plan can be produced for the goal using the initial
data provided.

The third type – a Pattern-based call is triggered
when the content of the active commitment in its left
part matches the effect pattern of at least one Ontonut:

{A A ?a} => {<some action with ?a>}.

This call can be considered an abbreviated syntax
for goal definition when the left part of the
commitment is considered a goal. The Ontonuts engine
intercepts such a commitment before it executes,
removes it from G, and then uses the left part
information to perform planning and execution.
However, this type of call does not specify the initial
data set as the second type of call does. Such goal
definition is possible for those Ontonuts, for which
precondition is always true within the goal specified.
For example, an Ontonut can perform queries over a
certain database and use a (sub)pattern of the goal to
produce a query and execute it. After the goal is

203

achieved, and, hence, the variable values in the left part
of the commitment can be assigned, the Ontonuts
engine produces the result (the right part) of the
commitment using the variable values. This type of
Ontonuts targets mainly the task of distributed
querying that is discussed in Section 4.6.

4.3. Planning the execution

The planning is organized as a goal-driven process.

We apply a backward chaining algorithm to build an
action plan, which may involve other Ontonuts and
Rules. The planner performs a semantic inference over
the set of initial data before the actual plan generation
starts. Therefore, the semantic annotations of Ontonuts,
as well as the corresponding domain ontology, are key
success factors of the Ontonuts-based applications. The
planner acts in a straightforward way – it matches the
goal against Ontonut annotations by subtracting
(operation over sets) these annotations from the goal. If
a goal can be fulfilled by the available initial data and
Ontonuts, the planner starts to check whether the
preconditions of these Ontonuts can be fulfilled. If the
preconditions may need to use other Ontonuts, they are
checked as well. In such an iterative manner, the
planner builds a solution tree. The planner then
chooses the preferable solution using different criteria,
e.g. utility-based selection.

4.4. Handling the execution

The Ontonuts engine does not execute the plan as a

whole; rather, it generates a plan that is run by the
agent’s Live behavior engine. However, the plan is not
straightforward: It includes additional handlers that
allow the Ontonuts engine to observe the state of the
execution and react if the execution cannot be
successfully completed. The plan is sequential and
therefore has steps or control points. At each control
point, the plan produces the statements that represent
the status of the execution. These statements are
collected into a container that is attached to the plan:

:planid ont:execStatus {
 :01 ont:status ont:Success.
 …
 :nn ont:status ont:NoResponse.}.

The engine then can use the status information for
re-planning if the current plan did not succeed.

There are two classes of Ontonuts executed in
different ways:

- Self-running
- Engine-running
The latter type has a built-in script that runs in the

agent’s Live behavior as an independent code and
returns the result to the G container. Meanwhile, the

former is a description that is recognized and executed
by the Ontonuts engine. The engine-running Ontonut
calls are presented in the plan as explicit (see Section
4.2). In the current version, the engine supports one
type of engine-running Ontonuts that simplify access
to the databases.

4.5. Distributed querying with Ontonuts

There are two main viewpoints towards distributed

querying in the UBIWARE: adapter-based and service-
based. The former tackles the adaptation of the data
sources that are external to the platform (databases,
files, web services, etc.), while the latter deals with the
agent-to-agent querying. Nevertheless, both target the
same goal: to make distributed querying logic
transparent (simple) to the UBIWARE agent (see
Figure 5).

Figure 5. Distributed querying in UBIWARE

The agent-to-agent querying follows the servicing
paradigm and, in particular, the data servicing
discussed in [4]. The adaptation of external sources
(e.g. RDF-based adaptation is discussed in [5])
resolves the problem of connectivity and interaction
with those resources that are external to the platform,
i.e. communicating with them in their native language.

However, from the business logic developer’s point
of view, any remote resource should be transparent in
order to keep business logic script as modular and clear
as possible. Ontonuts become the wrapper, adapter and
connector in one place.

In a distributed querying task, every Ontonut is an
interface to the data source that has an associated data
query pattern (effect) it replies to. The Ontonuts engine
introduces an extension for the data source-based
Ontonuts. The extension allows for the Ontonut
developer to not implement all the RAB calls and S-
APL transformations from the scratch, but rather to
define a description of the data source and

204

transformation mappings. We call this subclass of
Engine-running Ontonuts Donuts (Database Ontonuts).
The engine distinguishes the Donuts and treats them in
a different way. The user-defined query can match
several Donuts; therefore, the Triggering Rule invokes
Action Planner. The Action Planner distinguishes sub-
queries from the initial query and produces a
distributed query plan. The plan is then passed to the
Plan Executor. The executor handles the intermediate
results of sub-queries and modifies subsequent sub-
queries accordingly.

The structure of the Donuts is defined by Donuts
Ontology (see Figure 6).

precondition
Ontonut

effect

mapping

Donut

SQLQueryBase

s
hasURL

DataSource

hasDriver
RDBDataSource

hasUsername
hasPassword

s

script

dataSource

Figure 6. A fragment of Donuts ontology

The fragment of the ontology above describes the
root classes Ontonut and DataSource, as well as their
extensions for connectivity with relational databases
(Donut, RDBDataSource). Similarly, other types of
extensions will include type-specific facets in their
descriptions.

The Plan Executor uses data source descriptions for
fetching the sub-queries and applies mapping
definitions to transform sub-query results into the
semantic form.

4.6. An illustrative example

The example presented here is based on the usage

scenario described in Section 2 of this paper. Suppose
that a fault situation happened and the agent of the
expert wants to extract the comment strings from the
Expert’s Diary database and align them with the
performance indices from the Performance Monitoring
database. Then the alarm limits and alarm values are
extracted from the Alarm History database, based on
the node-to-tag mappings. The time interval used for
filtering is 10 days before the fault. The agent prints
the collected values to the command line. The
resources involved in the query and their tables are
shown in Figure 7. Each resource has an associated
Ontonut in the agent’s beliefs.

entryDate

diary.Entry

author

entryID

title
description
position

analysisDate

pmon.analysis

nodeID

analysisID

performanceIndex
isautomatic

alarmTime

ahist.alarm

tag

alarmID

alarmLimitHigh

value

Experts’
diary Scheduled

Performance
Monitoring

Alarm
History DB

alarmLimitLow

Figure 7. Sample database tables

The description of the Ontonut associated with the
expert’s diary and the datasource object (an instance of
RDBDataSource) are shown below:

:DiaryEntryNut rdf:type ont:Donut.
:DiaryEntryNut ont:dataSource :entrydb.

:DiaryEntryNut ont:SQLQueryBase
"SELECT entryID, entryDate, author, title,
description, position FROM diary.Entry".

:DiaryEntryNut ont:mapping {
 ?entryId ont:mapsTo

{ont:sqlentity sapl:is “entryID”}.
?entryDate ont:mapsTo
{ont:sqlentity sapl:is “entryDate”}.

 ?author ont:mapsTo
{ ont:sqlentity sapl:is “author”}.

 ?title ont:mapsTo
{ ont:sqlentity sapl:is “title”}.
?description ont:mapsTo
{ont:sqlentity sapl:is “description”}.
?position ont:mapsTo
{ont:sqlentity sapl:is “position”}

}.

:DiaryEntryNut ont:effect {
 ?entry :entryId ?entryId.
 ?entry :entryDate ?entrydate.
 ?entry :author ?author.
 ?entry :title ?title.

?entry :description ?description.
?entry :position ?position

}.

 :entrydb rdf:type ont:RDBDataSource.
 :entrydb ont:hasURL http://host:80/diary.
 :entrydb ont:hasDriver

oracle.jdbc.OracleDriver.
 :entrydb ont:hasUsername diaryuser.
 :entrydb ont:hasPassword mypwd.

The ont:SQLQueryBase defines the SQL query
that extracts the data that is used to produce the
Ontonut instances. The mapping definitions use the
column names from the SQLQueryBase property.

Other Ontonut descriptions are defined in a similar
manner. The effect of the second Ontonut used in this
example is defined as follows:

:PMAnalysisNut ont:effect {

205

 ?pmnode :analysisID ?aid.
 ?pmnode :analysisDate ?adate.
 ?pmnode :nodeID ?nodeid.
 ?pmnode :performanceIndex ?pindex
 ?pmnode :isautomatic ?isautom}.

The effect of the Ontonut for the Alarm History
database is defined as:

:AHAlarmNut ont:effect {
 ?alarm :alarmID ?alid.
 ?alarm :alarmTime ?aldate.
 ?alarm :tag ?altag.
 ?alarm :alimitHigh ?ahigh
 ?alarm :alimitLow ?alow
 ?alarm :value ?avalue}.

The commitment (query) in the agent’s beliefs is
shown below:

{?entry :entryDate ?edate.
 ?entry :title ?ctitle.
 ?entry :position ?pos.

 ?pos :mapsTo_1 ?nodeid.

 ?pmnode :nodeId ?nodeid.
 ?pmnode :performanceIndex ?pindex.
 ?pmnode :analysisDate ?adate.

 ?pos :mapsTo_2 ?tag.

 ?alarm :tag ?tag.
 ?alarm :alarmTime ?atime.
 ?alarm :alarmValue ?value.
 ?alarm :almLimitHigh ?ahigh.
 ?alarm :almLimitLow ?alow.

 ?edate = “31.12.2008”.
 ?adate < 31.12.2008.
 ?adate > 21.12.2008.
 ?atime < 23:59:59T31.12.2008.
 ?atime > 23:59:59T21.12.2008.
}=>
{ {gb:I gb:do :Print} gb:configuredAs
 {x:print gb:is "| ?ctitle | ?edate |
 ?pos | ?adate | ?pindex | ?atime |
 ?value | ?ahigh | ?alow | "}. }

The commitment does not explicitly refer to the
type of the Ontonut by the rdf:type property, which
would simplify the implementation of the triggering
procedure, but we apply pattern-based matching, i.e.
use subtract operation over available Ontonut effect
patterns and the query.

In the particular query, the triple that matches the
identifiers defined as:

?pos :mapsTo_1 ?nodeid.

It is a bridging property between the two property
values of respective Ontonuts, which have physical
data sources behind. It may belong to any of the
Ontonuts it bridges or be an independent Ontonut:
How it is modeled is domain-specific.

As soon as the matching with available Ontonuts
has succeeded, the matchmaking rule passes the
control to the Query Planner. In this particular case, the
work of Query Planner is straightforward – to decide
which Ontonut is to be queried first and apply the

query parameters for the SQL query generation. The
order of execution may depend e.g. on the average
expected number of records of each independent sub-
query. The methods of execution planning and
optimization go beyond the scope of this paper. Further
reading suggestions are in the next Section.

The result of the first executed sub-query is then
used to limit the range of the variables in the
subsequent sub-query. When all the query results are
collected, they are printed to the command line (see
Figure 8).

205015.404:03

30.12.2008

0.630.12
.2008

205017.914:37

30.12.2008

205010.012:59

31.12.2008

--QT-
123

31.12.
2008

Paper
jam

205018.006:01

24.12.2008

0.724.12
.2008

205019.516:23

23.12.2008

205019.316:30

25.12.2008

205017.714:37

27.12.2008

0.627.12
.2008

205019.714:37

21.12.2008

0.821.12
.2008

205018.118:17

28.12.2008

lo
w

hi
gh

va-
lue

atimepin
dex

adatepose-datecti-
tle

Figure 8. Query results

The table of results is compressed (duplicate rows
are removed and repeating values substituted with dash
sign) and arranged in a chronological order for a
purpose of readability. The table allows e.g. an expert
to analyze how the actual parameter values and
performance indices were behaving before the fault
happened.

5. Related work

The notion of semantic component composition is

discussed in [10] and [11], but the authors focus on
improving the programming paradigm as such, not the
autonomic computing and semantic agent
programming. The execution planning and
optimization of queries are thoroughly researched in
[6] and are a rather complementary part for our work
dealing with query planning. The approach in [7]
proposes a solution for management of corporate
histories using multi-agent system and semantic data,

206

our work, in contrast, introduces an intra-agent feature,
that simplifies the programming of an agent. A set of
Semantic Web Service platforms and languages like
OWL-S [8] and WSMF [9] externalize semantic
components and allow planning and execution.
However, the Ontonuts approach treats components as
internal capabilities of an agent that can be
externalized as semantic services. While the approach
presented in [12] proposes an extension to the RDF
language in order to allow modifications of the RDF
content upon some triggered actions, we deal with the
extension to the rule-based agent programming
language, which allows componentization and data
updates. Ontonuts allow semantic integration of both
internal and external capabilities and stand for a
semantic agent-driven workflow planning and
execution engine.

6. Conclusions and future work

The approach presented in this work aims toward a
quite specific target – to structure the S-APL code of
the UBIWARE agent in order to simplify
programming of the agent and allow automated goal-
driven planning. Although the paper mainly covers a
quite narrow domain of distributed querying, it
involves the generic problems of agent planning and
semantic programming. The emphasis of this paper is
on the automated planning of distributed queries and is
related to the notion of distributed RDF queries and so-
called virtual graphs, when the graph being queried
does not have RDF content beneath. The approach
proposed uses patterns to define desired result and
applies queries or any other code to fill the patterns
requested.

At the moment, the first prototype is nearing its
completion. We plan to extend functionality of the
Ontonuts engine by introducing more engine-running
Ontonut types, e.g. for web services and agent services.
Another important step to be taken is to perform
scalability tests over large data volumes and compare
the results with purely SQL-based implementation
alternatives. The planning procedure should also be
improved to keep alternative pathways on each stage of
the execution. Furthermore, in theory, agents can share
Ontonuts as self-containing executable modules.

7. Acknowledgement

This research has been performed in the UBIWARE

project, funded by TEKES, and the industrial
consortium of Metso Automation, Fingrid, Nokia and
Inno-W.

8. References

[1] Kephart, J. O. and Chess, D. M. (2003). The vision of
autonomic computing. IEEE Computer, 36(1):41–50.
[2] Katasonov A., Terziyan, V., Semantic Agent
Programming Language (S-APL): A Middleware Platform
for the Semantic Web, In: Proceedings of the Second IEEE
International Conference on Semantic Computing (ICSC-
2008) / International Workshop on Middleware for the
Semantic Web, August 4-7, 2008, Santa Clara, CA, USA,
IEEE CS Press, pp. 504-511.
[3] Katasonov A., Kaykova O., Khriyenko O., Nikitin S.,
Terziyan, V., Smart Semantic Middleware for the Internet of
Things, In: Proceedings of the 5-th International Conference
on Informatics in Control, Automation and Robotics, 11-15
May, 2008, Funchal, Madeira, Portugal, ISBN: 978-989-
8111-30-2, Volume ICSO, pp. 169-178.
[4] Quilitz, B.; Leser, U., “Querying Distributed RDF Data
Sources with SPARQL”, The Semantic Web: Research and
Applications, 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008,
pp.524-538.
[5] Langegger, A.; Blochl, M.; Woss, W., "Sharing Data on
the Grid using Ontologies and distributed SPARQL Queries",
18th International Conference on Database and Expert
Systems Applications, DEXA '07. Regensburg, Germany, 3-7
Sept., 2007, pp.450-454.
[6] Obermeier, P., Nixon, L., A Cost Model for Querying
Distributed RDF Repositories, Advanced Reasoning on the
Web workshop, European Semantic Web Conference
(ESWC) 2008, Tenerife, Spain.
[7] F. Gandon, L. Berthelot, R. Dieng-Kuntz., A Multi-Agent
Platform for a Corporate Semantic Web, in: Proceedings of
AAMAS'2002 (First International Joint Conference on
Autonomous Agents and Multi-Agent Systems), Bologna,
Italy, July 15-19 2002, p. 1025-1032.
[8] D. Martin et al., "Bringing Semantics to Web Services:
The OWL-S Approach." First International Workshop on
Semantic Web Services and Web Process Composition
(SWSWPC 2004) 6-9, 2004, San Diego, California, USA.
[9] D. Fensel and C. Bussler., The web service modeling
framework (WSMF), Electronic Commerce: Research and
Applications, (1):113–137, 2002.
[10] Sjachyn, M. and Beus-Dukic, L. 2006. Semantic
Component Selection — SemaCS. In Proceedings of the
Fifth international Conference on Commercial-off-the-Shelf
(Cots)-Based Software Systems (February 13 - 16, 2006).
ICCBSS. IEEE Computer Society, Washington, DC, 83.
[11] Liu, X., Wang, B., and Kerridge, J. 2005. Achieving
seamless component composition through scenario-based
deep adaptation and generation. Sci. Comput. Program. 56,
1-2 (Apr. 2005), 157-170.
[12] G. Papamarkos, A. Poulovassilis, and P. T.Wood.
RDFTL: An Event-Condition-Action Language for RDF. In
Proc. 3rd Int.Workshop on Web Dynamics (in conjunction
with WWW2004), 2004.

207

V

SOFIA: AGENT SCENARIO FOR FOREST INDUSTRY

by

Sergiy Nikitin, Vagan Terziyan and Minna Lappalainen 2010

Proceedings of the 12th International Conference on Enterprise Infor-
mation Systems (ICEIS 2010), Funchal, Madeira, Portugal, 8-12 June, 2010,

 pp. 15-22.

© 2010 Institute for Systems and Technologies of Information, Control and
Communication (INSTICC) press. Reprinted with permission

SOFIA: AGENT SCENARIO FOR FOREST INDUSTRY
Tailoring UBIWARE Platform Towards Industrial Agent-driven Solutions

Sergiy Nikitin, Vagan Terziyan
Industrial Ontologies Group, University of Jyväskylä, Mattilanniemi 1, Jyväskylä, Finland

{sergiy.nikitin, vagan.terziyan}@jyu.fi

Minna Lappalainen
Fixteri Oy, Finland

minna.lappalainen@fixteri.fi

Keywords: Agent Technology, Distributed Applications, Semantic Web, Forestry Services.

Abstract: Current economical situation in Finnish forest industry desperately calls for higher degree of efficiency in
all stages of the production chain. The competitiveness of timber-based products directly and heavily
depends on the raw material cost. At the same time, the successes of companies, that use timber, determine
the volumes of the raw wood consumption and, therefore, drive forest markets. However, wood consuming
companies (e.g. paper producers) can not unilaterally dictate logging and transportation prices to their
contractors, because profitability of those, has already reached its reasonable margins (Vesterinen, 2005,
Penttinen, 2009). Recent research conducted in 2005-2008 shows extremely high degree of inefficiency in
logistic operations amongst logging and transportation companies. Some of them have already realized the
need for cooperative optimization, which calls for cross-company integration of existing information and
control systems; however privacy and trust issues prohibit those companies from taking the open
environment solutions. Therefore, the researchers have suggested new mediator-based business models that
leverage the utilization and preserve current state of affairs at the same time. New business solutions for
logistic optimization can be built, when a unified view on the market players is possible. Nevertheless, with
fast development of communications, RFID and sensor technologies, forest industry sector is experiencing a
technological leap. The adoption of innovative technologies opens possibilities for enactment of new
business scenarios driven by bleeding edge ICT tools and technologies. We introduce an application
scenario of the semantic agent platform called UBIWARE to the forest industry sector of Finland.

1 INTRODUCTION

Current economical situation in Finnish forest
industry desperately calls for higher degree of
efficiency in all stages of the production chain. The
competitiveness of timber-based products directly
and heavily depends on the raw material cost. At the
same time, the successes of companies, that use
timber, determine the volumes of the raw wood
consumption and, therefore, drive forest markets.
However, wood consuming companies (e.g. paper
producers) can not unilaterally dictate logging and
transportation prices to their subcontractors, because
profitability of those, has already reached its
reasonable margins (Vesterinen, 2005, Penttinen,
2009). Recent research conducted in 2005-2008
shows extremely high degree of inefficiency in

logistic operations amongst wood logging and
transportation companies. Some of them have
already realized the need for cooperative
optimization, which calls for cross-company
integration of existing information and control
systems; however privacy and trust issues prohibit
those companies from taking the open environment
solutions. Moreover, the logistic optimization within
one company is complicated due to heterogeneity of
information systems used in harvesters and timber
trucks. The same harvester, in order to perform
logging for e.g. three different clients, needs to use
three distinct systems. Those systems are not
integrated, thus the logger has to learn three different
interfaces still not having a composite view. Same
applies to the subcontractor’s office desktop
systems, where, operator needs to manage e.g. 5
harvesters having different ordering systems from its

15

clients. Although, an increasing number of logging
and transportation subcontractors have or control
two or more machines, still the logistic plan is
mainly done manually or requires manual work to
align the data from different systems.

The research performed in 2005-2009
(Lappalainen, 2009) has suggested new mediator-
based business models that leverage the utilization
and preserve current state of affairs at the same time.
New business solutions for logistic optimization can
be built, when a unified view on the market players
is possible. Although, the companies involved in the
forestry sector have a high degree of the ICT
infrastructure, yet they do not utilize it to improve
the situation cooperatively. The ICT solutions used
in a majority of cases are developed as black box
standalone applications, therefore the integration of
those raises technological challenges. Traditional
system integration, if applied here, would become an
expensive task involving changes to the existing
solutions on the companies’ site or building a new
system from the scratch. According to the surveys
conducted in Finland, currently, forest market
players are more or less satisfied with the existing
ICT solutions and are neither interested, nor capable
to spend resources for new information systems and
technologies. The innovative ICT solution, if it takes
place, should seamlessly penetrate into the existing
infrastructure. The revolutionary changes would not
be accepted, unless dictated by market leaders in
wood consumption. Those, however, are tied by the
contracts with their ICT solution providers.

In this paper we present an outcome of the
preparatory project – a proposal of innovative ICT
solution for forest industry. In Section 2 we explore
the problem domain and define a driving use case
that calls for a new ICT solution. Section 3 presents
the architecture of the semantic middleware platform
that can be considered as a construction tool for a
new solution. The extension of the middleware
platform to the forestry domain is discussed in
Section 4. In Section 5 we present related work and
conclude in Section 6.

2 ICT IN FORESTRY

The business environment considered in this work
involves wood buyers, forest owners, forest owner
associations, and forest and transportation
contractors. The interactions are automated, i.e. the
wood purchase and cutting orders are done via
information systems.

2.1 State of the Art: Wood Purchase
Scenario

A forest owner either finds a forest buyer or contacts
forest owners association with the request to sell
forest in a certain area on the owner’s behalf. The
forest counsellor (either from the association or from
the forest buyer) goes to that area to estimate what
will be an approximate outcome and of what quality
(classified by dimensions).

Forest counsellor is equipped with the handheld
device with the GPS-receiver and her/his conclusion
automatically goes either to the association or to the
buyer database. Upon counsellor’s decision, the
operator of the association or buyer enterprise makes
an order to a forest contractor for harvesting service.
The order includes the amount and optimized sizes
of the logs to be cut. The forest contractor loads the
order to the information system of the harvester and
starts felling. After the felling is done, the timber is
forwarded to the roadside storage place where it can
be accessed by the timber truck. The operator of the
association or buyer’s enterprise then does next
order to the transportation contractor to deliver the
wood to the destination place (e.g. sawmill, pulp
mill, power plant, etc.).

2.2 Contractor’s Viewpoint

A large share of forest logging or transportation
contractors usually own two or more harvesters or
timber trucks. Furthermore, increasing number of
them receives orders from two or more order makers
(wood buyers, forest management associations) (see
Figure 1). In order to receive these orders, the
contractors have to install respective information
systems. Each buyer and/or association has its own
tailored solution, which is incompatible with the
solutions from others. The contractor has to learn
peculiarities of each system, such as different
internal codes for wood types, different user
interfaces and principles of functioning, etc. The
system heterogeneity makes it impossible for the
contractor to integrate the data from those systems
and obtain an integrated view of his/her own
business. At the moment the integration is done
manually by reading and inserting data into one
table, or, sometimes, calculations on the paper are
used. In the following subsection we present a
desired functionality of the logistics management
platform for harvesting and transportation SME’s in
a form of a use case.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

16

Figure 1: Contractor’s view point.

2.3 Driving Use Case: A Platform for
Integrated Logistics Optimization

A logging contractor company called
KORJUUBEST Oy has 5 harvesters and three
different order makers (customers). Timo Saarinen is
a company owner and CEO. Timo likes to keep
things controlled in his own hands; therefore, he also
does the operator job when he is free from traveling
and meetings. Timo has double backup, if he is
busy, then another operator in the office can
substitute him, or Timo can turn on the automatic
mode in his new logistics control platform called
SOFIA. Every morning Timo comes to his office
and after a morning coffee he starts his laptop and
logs into the SOFIA platform. The system shows
current situation of Timo’s harvesters and their
status (e.g. working, stopped, short maintenance
break, or out of order). Timo chooses the harvester
icon and browses the tasks assigned and planned. He
can also browse the history. After a short look on the
harvesters’ status Timo opens the bookmark called
orders. He sees the integrated currently pending
order list as well as the orders already planned,

based on the long term contracts. The system
proposes the optimized order assignment table for
the next week, where Timo can reassign tasks to
other harvesters if he thinks it is needed and press
“Approve” button. The system will send new (not
yet sent) logging tasks to the harvesters and the
operators will immediately see the new task
information in the operator’s web-based view. The
operators can download order files attached to the
task and load them to the harvester’s native system.
In the evening, upon the completion of the work, the
operators can send progress reports or, if the task
was completed, a closing report.

SOFIA platform can be configured so, that it
automatically sends closing reports to the order
maker, or, it may wait for an approval and manual
submission from Timo or the operator in charge.

After a half a year of successful operation and
optimized utility, Timo has realized that his
company can serve at least one more order maker
(customer) and luckily, he has met a potential client
from big company called Metsänhoitajat Oy last
week in sauna. They have agreed to meet in more
formal way as soon as they clarify how much work
would be needed to integrate their information and
ordering systems. Timo has called to the SOFIA
maintenance center and has received a surprisingly
good answer. With the minimum cost a new
customer’s ordering system can be connected to
Timo’s platform with no need to stop it. Luckily,
Metsänhoitajat Oy company has already worked
with other contractor, who is using SOFIA platform,
therefore the system adapter is already available, it
only needs to be configured for Timo’s platform.
Even, though, the adapter wasn’t ready, it would not
take longer than one month to plug a new ordering
system to SOFIA.

In the evening, after a successful meeting with
Metsänhoitajat Oy where a new contract was signed,
Timo has made an order to SOFIA maintenance
center for a platform configuration. Next day Timo
could already see a new partner in his system and in
short time, new orders have started to come.

In the following section we present a middleware
platform called UBIWARE – a convenient tool for
the implementation of SOFIA platform.

3 UBIWARE PLATFORM

UBIWARE is a generic domain independent
middleware platform (Katasonov et al., 2008) that is
meant to provide support for integration,
interoperability, adaptation, communication,

SOFIA: AGENT SCENARIO FOR FOREST INDUSTRY - Tailoring UBIWARE Platform Towards Industrial
Agent-driven Solutions

17

proactivity, self-awareness and planning for
different kinds of resources, systems and
components (e.g. data information and knowledge,
software and services, humans, hardware and
processes). The UBIWARE platform is developed
inline with the fundamental vision towards GUN -
Global Understanding Environment (Terziyan, 2003,
2005; Kaykova et al., 2005). In GUN various
resources can be linked to the Semantic Web-based
environment via adapters (or interfaces), which
include (if necessary) sensors with digital output,
data structuring (e.g. XML) and semantic adapter
components (XML to Semantic Web). Software
agents are to be assigned to each resource and are
assumed to be able to monitor data coming from the
adapter about the state of the resource, make
decisions on behalf of the resource, and to discover,
request and utilize external help if needed. Agent
technologies within GUN allow mobility of service
components between various platforms,
decentralized service discovery, utilization of FIPA
communication protocols, and multi-agent
integration/composition of services.

When applying the GUN vision, each traditional
system component becomes an agent-driven “smart
resource”, i.e. proactive and self-managing. This can
also be recursive. For example, an interface of a
system component can become a smart resource
itself, i.e. it can have its own responsible agent,
semantically adapted sensors and actuators, history,
commitments with other resources, and self-
monitoring, self-diagnostics and self-maintenance
activities.

At the same time, UBIWARE naturally
integrates such domains as Semantic Web, Proactive
Computing, Ubiquitous Computing, Autonomous
Computing, Human-Centric Computing, Distributed
AI, Service-Oriented Architecture and Enterprise
Application Integration.

3.1 UBIWARE Platform Architecture

UBIWARE has two main elements: an agent engine,
and S-APL – a Semantic Agent Programming
Language (Katasonov and Terziyan, 2008) for
programming of software agents within the platform.

The architecture of UBIWARE agent (Figure 2)
consists of a Live behavior engine implemented in
Java, a declarative middle layer, and a set of Java
components – Reusable Atomic Behaviors (RABs).

RABs can be considered as sensors and
actuators, i.e. components sensing or affecting the
agent’s environment, but are not restricted to these.
A RAB can also be a reasoner (data processor) if

some of the logic needed is not efficient or possible
to realize with the S-APL means, or if one wants to
enable an agent to do some other kind of reasoning
beyond the rule-based one.

Figure 2: UBIWARE Agent.

UBIWARE agent architecture implies that a
particular UBIWARE-based software application
will consist of a set of S-APL documents (data and
behavior models) and a set of specific atomic
behaviors needed for this particular application.
Since reusability is an important UBIWARE
concern, it is reasonable that the UBIWARE
platform provides some of those ready-made.

Therefore, logically the UBIWARE platform,
consists of the following three elements:

- The Live behavior engine
- A set of “standard” S-APL models
- A set of “standard” RABs
The extensions to the platform are exactly some

sets of such “standard” S-APL models and RABs
that can be used by the developers to embed into
their applications certain UBIWARE features.

As Figure 2 shows, an S-APL agent can obtain
the needed data and rules not only from local or
network documents, but also through querying S-
APL repositories. Such a repository, for example,
can be maintained by some organization and include
prescriptions (lists of duties) corresponding to the
organizational roles that the agents are supposed to
play.

Technically, the implementation is built on top of
the JADE – Java Agent Development Framework
(Bellifemine et al. 2007), which is a Java
implementation of IEEE FIPA specifications.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

18

4 UBIWARE MEETS FORESTRY

The business models that were thoroughly studied in
the recent research (Lappalainen, 2009), stumbled in
the technological challenges that are being tackled in
the UBIWARE. At the same time, UBIWARE
platform should be tailored to the industrial
domains, in order to attract businesses. Therefore a
SOFIA platform (SOFIA stands for Seamless
Operation of Forest Industry Applications) described
in Section 2.3, when developed on top of the
UBIWARE, will benefit from inherent flexibility
and extensibility and ensure sustainable ICT
infrastructure for logging and transportation SMEs.

4.1 Tailoring UBIWARE to Forestry

The logistics optimization drives the main direction
of platform development. However, in order to solve
optimization tasks, the platform requires adaptation
and connectivity problems to be resolved first.
Those, in turn, call for a unified domain model
(domain ontology).

As soon as SOFIA platform will serve as an
integrator of information systems provided from
different order makers (wood buyers and forest
owner associations), the orders coming from
different systems will be gathered to one integrated
view allowing the contractor to apply logistics
optimization tool and decrease useless overheads in
operation (see Figure 3).

Figure 3: SOFIA platform.

To perform integration, we define a set of target
information systems (based on the case studies) and
make deep analysis of the connectivity options and
internal data models used. The integration will result
in construction of adapters to the respective systems.
The configuration on the order maker site may still
be required to redirect data flow from order maker to
SOFIA platform.

The order makers, however, may not be flexible
in changing some settings or opening access to their
data and systems. Therefore, we have a requirement
to minimize changes on the order maker side if not
to avoid at all.

4.2 Handling Connectivity Challenges

The main implementation challenge of the platform
is connectivity. Figure 4 shows a generic data
exchange scenario between order maker and
contractor.

Figure 4: Data flow between order maker and contractor.

The flow is mostly organized via FTP server,
which is checked by the client software installed on
the contractor’s machine site and, sometimes, at the
office. The order flow goes directly from the order
maker to the machine. In such situation a contractor
is unable to decide, which order goes to which
machine, i.e. the machine is rather directly
controlled by the order maker (preceded by a generic
contract of course). The software for data exchange
is proprietary and, therefore, does not provide any
API. The intermediate files, though, appear on the
FTP-site as well as in temporary folders on local
machines.

In such scenario even data collection may put
platform development to the tight corner. We
propose virtualization approach (see next
subsections) to handle the issue and introduce two
possible workaround scenarios.

SOFIA: AGENT SCENARIO FOR FOREST INDUSTRY - Tailoring UBIWARE Platform Towards Industrial
Agent-driven Solutions

19

4.2.1 Contractor Site as a Firewall

In case when an FTP server can be accessed by our
platform software (only username and password are
required and known), we can fully emulate the
behaviour of a harvester or a truck. No changes on
the order maker site are needed.

In case, when an FTP server can only be
accessed by the proprietary client software (the
password and username may be hardcoded and not
known to the contractor), we can move the client
from the machine to the contractor site and access
FTP server from it. Temporary files, stored by the
client, then can be sensed by the platform and passed
to the responsible agent.

4.2.2 Machine Agent

In neither case, when no FTP access can be
arranged, nor client software can be moved from the
machine site (e.g. proprietary restrictions), we can
establish our listener software on the machine site to
catch the data from the client and send the data to
the contractor site. In this case, we have extra delay
time because of additional data transfer step from
the machine to the contractor site and back. This
approach may change the architecture of the whole
system drastically and may require a lot more
efforts. Nevertheless it is still possible.

4.3 Virtualization of Forestry Market

The requirement to preserve systems of order
makers untouched can be accomplished by
introducing the know-how of the SOFIA platform –
a concept of virtual machine applied to harvesters
and timber trucks. The contractor creates an
interface-like view to his/her harvesting and
transportation facilities by means of virtual
machines (see Figure 5).

From the service order maker point of view the
contractor looks the same, however, the real
equipment of the contractor is hidden. The orders are
made seamlessly, but the assembly chosen for the
execution, is virtual. The service provider then has
the opportunity to build an optimized operations
plan and after that assign tasks to the real units.

The virtualization may go beyond the SME
boundaries. Several contractors may establish virtual
enterprise that works as a proxy for order makers.
Such enterprise would have better optimization
capacity because of wider order and equipment base.
The business model, that clearly explains and
guarantees the benefit to stakeholders, yet to be

elaborated. The model should take into account
region-specific circumstances and context.

Figure 5: A virtual machine concept.

Although, physical resources virtualization
(harvesters and trucks) is attractive to contractors, it
may also lead to complexities in resource planning
in global scale. In general, if the same resource is
present in two independent planning systems (e.g.
two virtual contractor SMEs have signed the
contract with the same harvester owner), then both
systems may build long-term plans, expecting the
resource to be available. The problem may show up,
only when a detailed short-term contract has to be
signed and both virtual harvesting contractors are
pretending to employ the same harvester. The
business model should exclude ambiguity and
guarantee the availability of the resources at the
execution time. We can compare the problem to the
car rental process, where we see the capacity (cars
available) and know the car class (e.g. Ford Focus or
analogous), but we do not know the exact car license
plate id, before we come to the office and get the
keys. In the simplest case, the rental company is the
owner of the car, but in harvesting we may have a
situation, when a harvester owner has signed
contracts with two or more harvesting SMEs.

4.4 SOFIA beyond National
Boundaries

The platform and the model described above fit well
forestry market in global scale. We expect that a
globally present enterprise can sell platform services
worldwide. Although, the localization requires quite
significant effort, which is not in the nature of the
global service, still it is compensated by limited

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

20

number of harvester manufacturers (only three key
manufacturing enterprises). The small amount of
manufacturers means significant reduction of
software adaptation efforts. Running one nationally
wide service platform would already include
adapters to the systems of the key manufacturers.
Next, the middleware platform we use, possesses the
features for easy tailoring to local region-specific
requirements. The platform architecture employs
semantic technology, which can be considered as
most expressive one for domain modelling. The
semantic nature combined with the agent technology
brings other benefits as well – adaptivity and
configurability that allow the platform users to get
new business models up and running with small
effort. Configurability also makes the maintenance
of the platform less resource-consuming for the
customer.

The web-based solution on the global scale, if it
takes place, can utilize cloud computing (Hayes,
2008) to ease scalability and optimize expenditures
for the hardware and software infrastructure. The
components of the platform (see Figure 6), when run
in the cloud can be updated or configured on-the-fly.

Figure 6: SOFIA component view.

The platform behaviour is specified in the
ontology – a backbone of both the data and the
business logic. We can consider ontology as a rich
configuration file that describes structure of the
software components being run as well as the data.
The Web GUI component may undertake minor
localization changes, whereas Connectors &
Adapters will differ significantly from region to
region, due to a variety of local information systems
at wood buyer sites that have to be connected. The
optimization algorithms and methods may require

region-specific settings for better efficiency, but
otherwise remain untouched.

In this Section we have presented the analysis of
the domain-specific features that have to be
implemented on top of the existing middleware
platform. The analysis shows that technical
implementation is feasible in spite of the state of the
market and relationships amongst market players.

5 RELATED WORK

Latest industrial ICT trends define inter-component
and system interoperability as a key direction.

The interoperability is also known as one of the
major future challenges in ICT. Current industrial
standardization efforts aim at resolving this
challenge by creating a unified vocabulary of
communication, or, in other words, a standard.
Forest industry is not an exception. Standardization
and interoperability form a basis for competitive
market, and hence, for cost-efficient production. In
recent years forest industry have run a set of
standardization projects, e.g. papiNet
(www.papinet.org) and its initiative - WoodX,
Edifact (www.unece.org/trade/untdid/welcome.htm)
and StanForD (http://www.skogforsk.se/upload/
6867/StanForD_MainDoc_070327.pdf).

The standards mentioned above simplify the
implementation of SOFIA in order of magnitude
and, therefore, we have to make thorough analysis of
standards already adopted as well as those being
developed. SOFIA’s ontology should be built
standard-compliant and allow easy standard-based
document and interface generation.

The improvement of the wood production chain
is also a subject of integrated EU FP7 project called
“IndisputableKey” (www.indisputablekey.com). The
project aims at a new methodology and advanced
technologies that improve the use of wood and
optimize the forest production. The project is
targeting the supply chain improvement as a whole,
whereas SOFIA is a contractor SME-oriented at the
same time applying and developing ICT
technologies far beyond those currently available.

In (Frayret et al., 2007; Forget et al., 2008) the
authors state that forestry companies are facing the
need to re-engineer their organizational processes
and business practices taking into account other
companies in forest industry. An agent-based
approach is proposed to tackle the problem of
dynamic planning in the supply chain. SOFIA rather
approaches the same domain from the software
architecture viewpoint and introduces innovative

SOFIA: AGENT SCENARIO FOR FOREST INDUSTRY - Tailoring UBIWARE Platform Towards Industrial
Agent-driven Solutions

21

software platform model for forestry contractors.

6 CONCLUSIONS

A unified platform solution for forest industry faces
the ICT challenges that were foreseen in GUN
activities early in years 2002-2003. The UBIWARE
platform being designed to resolve such challenges,
still remains domain independent, and, therefore, has
to be tailored and extended to meet domain-specific
needs. Such platform customization is a first step
towards GERI (Global Enterprise Resource
Integration) – where various industrial domains will
be taken into account. At the moment, UBIWARE-
based industrial applications are naturally needed for
proper platform evolution as a whole. SOFIA
platform will have an extended tool set (RABs and
S-APL models) on top of UBIWARE to solve forest
industry sector tasks. We believe that success of
SOFIA forest industry platform can bring a new
breath both to the forestry and to the ICT worlds.

The results of the research published in
(Lappalainen, 2009), state that utilization of business
models with more than one customer for the
harvesting, transportation and chipping contractors,
can save approximately 50 million euro annually in
the forest biomass supply chain in Finland only. A
simulation study conducted within the same project
has shown that annual cost savings in raw wood
harvesting only would account for 21 million euro at
least if business models and ICT-tools would
support it (Väätäinen et al., 2008).

In addition to the cost savings mentioned above,
SOFIA can be used to provide higher level
harvesting and transportation services for customers
at the same time serving simultaneously many of
them. SOFIA would enable more efficient order
handling and organization of right-time deliveries
while minimizing the risk of human failures.

We have presented the results of the preparatory
project. This work has been inspired by thorough
analysis of business opportunities that led us to look
for technological implementation challenges and
workarounds. At the moment we are considering
both business-oriented as well as science-oriented
directions for further development of SOFIA.

REFERENCES

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007).
Developing Multi-Agent Systems with JADE. Wiley.

Frayret, J.-M., D'Amours, S., Rousseau, A., Harvey, S.,

Gaudreault, J. 2007. Agent-Based Supply Chain
Planning in the Forest Products Industry. International
Journal of Flexible Manufacturing Systems, 19(4), p.
358-391.

Forget, P., D'Amours, S., Frayret, J-M., Multi-behavior
agent model for planning in supply chains: An
application to the lumber industry, Robotics and
Computer-Integrated Manufacturing, Volume 24,
Issue 5, October 2008, Pages 664-679, ISSN 0736-
5845, DOI: 10.1016/j.rcim.2007.09.004.

Hayes, B. 2008. Cloud computing. Commun. ACM 51, 7
(Jul. 2008), 9-11. DOI= http://doi.acm.org/10.1145/
1364782.1364786

Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S.,
Terziyan, V., Smart Semantic Middleware for the
Internet of Things. In: Proceedings of the 5-th
International Conference on Informatics in Control,
Automation and Robotics, 11-15 May, 2008, Funchal,
Madeira, Portugal, ISBN: 978-989-8111-30-2,
Volume ICSO, pp. 169-178.

Katasonov, A., and Terziyan, V., 2008. Semantic agent
programming language (S-APL): A middleware
platform for the Semantic web. In Proc. 2nd IEEE
International Conference on Semantic Computing, pp.
504–511, 2008.

Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A.,
Terziyan, V., and Zharko, A., 2005. General Adaption
Framework: Enabling Interoperability for Industrial
Web Resources, In: International Journal on Semantic
Web and Information Systems, Idea Group, Vol. 1,
No. 3, pp.31-63.

Lappalainen, M., 2009 Kotimaisen puunhankinnan
tulevaisuuden liiketoimintamallit –tutkimushanke.
Loppuraportti., University of Jyväskylä, School of
Business and Economics. Working paper No
355/2009.

Penttinen, M. & Mikkola, J. & Rummukainen, A., 2009.
Profitability of wood harvesting enterprises. Working
Papers of the Finnish Forest Research Institute, No.
126.

Terziyan, V., 2003. Semantic Web Services for Smart
Devices in a “Global Understanding Environment”, In:
R. Meersman and Z. Tari (eds.), On the Move to
Meaningful Internet Systems 2003: OTM 2003
Workshops, Lecture Notes in Computer Science, Vol.
2889, Springer-Verlag, pp.279-291.

Terziyan, V., 2005. Semantic Web Services for Smart
Devices Based on Mobile Agents, In: International
Journal of Intelligent Information Technologies, Vol.
1, No. 2, Idea Group, pp. 43-55.

Vesterinen, M., 2005. Kotimaisen puunhankinnan
tulevaisuuden liiketoimintamallit. In edition Niemelä,
T. et al. Puheenvuoroja yrittäjyydestä maaseudulla.,
University of Jyväskylä, School of Business and
Economics, Publications No: 152/2005. pp. 84-100.

Väätäinen, K., Lappalainen, M., Asikainen, A. and Anttila,
P. 2008. Kohti kustannustehokkaampaa puunkorjuuta
– puunkorjuuyrittäjän uusien toimintamallien
simulointi., Finnish Forest Research Institute.
Working Papers No 73.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

22

VI

MASTERING INTELLIGENT CLOUDS: ENGINEER-
ING INTELLIGENT DATA PROCESSING SERVICES IN

THE CLOUD

by

Sergiy Nikitin, Vagan Terziyan and Michal Nagy 2010

Proceedings of the 7th International Conference on Informatics in Control,
Automation and Robotics (ICINCO 2010), Funchal, Madeira, Portugal, 15-18

June, 2010, pp. 174-181.

© 2010 Institute for Systems and Technologies of Information, Control and
Communication (INSTICC) press. Reprinted with permission

MASTERING INTELLIGENT CLOUDS
Engineering Intelligent Data Processing Services in the Cloud

Sergiy Nikitin, Vagan Terziyan and Michal Nagy
Industrial Ontologies Group, University of Jyväskylä, Mattilanniemi 1, Jyväskylä, Finland

{sergiy.nikitin, vagan.terziyan, minagy}@jyu.fi

Keywords: Agent Technology, Cloud Computing, Semantic Web, Cloud Services, Ubiware.

Abstract: Current Cloud Computing stack mainly targets three architectural layers: Infrastructure, Platform and
Software. These can be considered as services for the respective layers above. The infrastructure layer is
provided as a service for the platform layer and the platform layer is, in turn, a service for the Software
layer. Agent platforms fit the “Platform as a service” layer within this stack. At the same time, innovative
agent-oriented approaches to programming, open new possibilities for software design in the cloud. We
introduce main characteristics of our pilot agent platform called UBIWARE and offer flexible servicing
architecture within the cloud platform, where various components and systems can configure, run and reuse
intelligent cloud services to provide higher degree of flexibility and interoperability for their applications.

1 INTRODUCTION

Fast development of network technologies has
recently brought back to life business models with
the “thin client” architecture. Powerful data centers
connected to the internet via broadband networks
can minimize IT-infrastructure of any company to a
set of simple terminals with less demanding system
requirements. All the software and data can reside
on the data center side, making user access easy and
location independent. The providers offer different
payment schemes as “pay-per-use” or subscription-
based, that seems to be advantageous compared to
standard IT-infrastructure expenses. The approach
has got a set of new features and a new branding
name: “Cloud Computing” (Hayes, 2008; Foster,
2008).

Cloud management platforms provide API for
management either through command line or a
remote method calls. The API, however, is used
mainly by system administrators, who take care of
proper functioning of services within the cloud.
Management of the cloud platform is considered as
something that a system administrator should
arrange and do. Usually administrators use batch
files for managing routine tasks and resolving
exceptional situations.

At the same time, more and more software
architecturing paradigms call for new approaches to
software design and development, where software

components get a certain degree of self-awareness,
when a component can sense its own state and act
based on the state changes. The vision of Autonomic
Computing (Kephart, 2003) proposes to handle the
complexity of information systems by introducing
self-manageable components, able to “run
themselves.” The authors state, that self-aware
components would decrease the overall complexity
of large systems. The development of those may
become a “nightmare of ubiquitous computing” due
to a drastic growth of data volumes in information
systems as well as heterogeneity of ubiquitous
components, standards, data formats, etc. The Cloud
Computing and Autonomic Computing paradigms
will become complementary parts of global-scale
information systems in the nearest future. Such a
fusion sets the highest demands to the software
architects because cloud platforms will have to
provide self-management infrastructure for a variety
of complex systems residing in the same cloud,
separated virtually, but run physically on the same
hardware. At the same time, the cloud platform itself
may possess features of self-aware complex system.
A variety of self-aware components of different
nature (i.e. end-user oriented, infrastructure-
oriented, etc.) will need a common mechanism for
interoperability, as far as they may provide services
to each other.

The vision of GUN – Global Understanding
Environment (Terziyan, 2003, 2005; Kaykova et al.,

174

2005) has introduced a concept of “Smart Resource”
and a notion of an environment where all resources
can communicate and interact regardless of their
nature. In GUN various resources can be linked to
the Semantic Web-based environment via adapters
(or interfaces), which include (if necessary) sensors
with digital output, data structuring (e.g. XML) and
semantic adapter components (e.g. XML to
Semantic Web). Software agents are assigned to
each resource and are assumed to be able to monitor
data coming from the adapter about the state of the
resource, make decisions on behalf of the resource,
and to discover, request and utilize external help if
needed. Agent technologies within GUN allow
mobility of service components between various
platforms, decentralized service discovery,
utilization of FIPA communication protocols, and
multi-agent integration/composition of services.

When applying the GUN vision, each traditional
system component becomes an agent-driven “smart
resource”, i.e. proactive and self-managing. This can
also be recursive. For example, an interface of a
system component can become a smart resource
itself, i.e. it can have its own responsible agent,
semantically adapted sensors and actuators, history,
commitments with other resources, and self-
monitoring, self-diagnostics and self-maintenance
activities.

In this paper we introduce a flexible servicing
architecture within the cloud platform, where
various components and systems can configure, run
and reuse intelligent cloud services to provide higher
degree of flexibility and interoperability for their
applications. We use our pilot agent platform
developed in accordance with GUN vision called
UBIWARE to show how cloud computing can
expand platform functionality and at the same time
how an agent platform can become a high-level
service provisioning instrument in the cloud.

The paper is organized as follows: In the next
Section we discuss architectures of state-of-the-art
cloud computing platforms and explore the
possibilities for the interoperability mechanisms.
Section 3 presents the architecture of the semantic
middleware agent platform and explores possible
options of connectivity with the cloud. Section 4
describes the scenarios and the architecture of the
agent-driven intelligent servicing platform for a
cloud. In Section 5 we discuss related work and
conclude in Section 6.

2 STATE OF THE ART IN CLOUD
INTELLIGENCE PLATFORMS

Architecture of current Cloud Computing stack
mainly targets three layers: Infrastructure, Platform
and Software. These layers can be considered as
services for the respective layers above. The
infrastructure as a service (IaaS) is provided to the
platform layer and the platform becomes a service
(PaaS) for the software layer. And finally, the
software as a service layer (SaaS) brings the topmost
end-user web services to clients (see Figure 1).

Figure 1: Cloud computing stack.

Cloud providers market niche is already a
competitive field. Several big players are currently
active in the market, e.g. SalesForce.com (SFDC),
NetSuite, Oracle, IBM, Microsoft, Amazon EC2,
Google Apps, etc. For a comprehensive survey of
cloud computing systems see (Rimal et al., 2009).
The services of the platform layer are in the scope of
this work. In the next section we present a
middleware platform and later introduce a new
servicing approach in the cloud stack.

3 UBIWARE PLATFORM

UBIWARE has two main elements: an agent engine,

MASTERING INTELLIGENT CLOUDS - Engineering Intelligent Data Processing Services in the Cloud

175

and S-APL – a Semantic Agent Programming
Language (Katasonov and Terziyan, 2008) for
programming of software agents within the platform.

The architecture of UBIWARE agent (Figure 2)
consists of a Live behavior engine implemented in
Java, a declarative middle layer, and a set of Java
components – Reusable Atomic Behaviors (RABs).

Figure 2: UBIWARE Agent.

RABs can be considered as sensors and
actuators, i.e. components sensing or affecting the
agent’s environment, but are not restricted to these.
A RAB can also be a reasoner (data processor) if
some of the logic needed is not efficient or possible
to realize with the S-APL means, or if one wants to
enable an agent to do some other kind of reasoning
beyond the rule-based one. UBIWARE agent
architecture implies that a particular UBIWARE-
based software application will consist of a set of S-
APL documents (data and behavior models) and a
set of specific atomic behaviors needed for this
particular application. Since reusability is an
important UBIWARE concern, it is reasonable that
the UBIWARE platform provides some of those
ready-made.

Therefore, logically the UBIWARE platform,
consists of the following three elements:

- The Live behavior engine
- A set of “standard” S-APL models
- A set of “standard” RABs
The extensions to the platform are exactly some

sets of such “standard” S-APL models and RABs
that can be used by the developers to embed into
their applications certain UBIWARE features.

As Figure 2 shows, an S-APL agent can obtain
the needed data and rules not only from local or

network documents, but also through querying S-
APL repositories. Such a repository, for example,
can be maintained by some organization and include
prescriptions (lists of duties) corresponding to the
organizational roles that the agents are supposed to
play.

Technically, the implementation is built on top of
the JADE – Java Agent Development Framework
(Bellifemine et al. 2007), which is a Java
implementation of IEEE FIPA specifications.

4 MASTERING INTELLIGENT
CLOUD PLATFORM

Cloud computing providers offer various stack
configurations with different sets of software and
services inside. Theoretically, one can buy any
configuration from the cloud provider; however this
configuration will have nothing to do with the
already running business logic of the customer. The
application scenarios a customer wants to run will
have to be adjusted. For example, consider a case,
when a customer buys a virtual server with the
MySQL database installed and a Java solution stack
available. On top of this stack customer runs a
workflow engine, e.g. BPEL-based. The user will
have to install the engine, and then adjust local data
storage settings (passwords, tables, queries). Then
the process descriptions (BPEL files) should be
adjusted to work with local settings. In some cases
this process may be avoided if the cloud stack is
identical to the customer’s environment, and if the
all code was developed as portable. But what if the
cloud stack slightly differs, but the prices are very
attractive? Then customers may need to spend
resources for solution code porting.

We propose architecture for a generic stack
extension that allows users and platform providers
to:

- Smoothly integrate with the infrastructure
- Build stack-independent solutions
- Automate reconfiguration of the solutions
The architecture is based on the UBIWARE

platform architecture and extends cloud platform
services with the standardized configurable
intelligent models.

4.1 Agent-driven Servicing in the
Cloud

Interoperability is stated as one of the challenges of
the cloud computing paradigm. We believe that

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

176

adoption of the existing interoperability tools and
solutions will become one of the major cloud
computing research directions. Dummy platform
API extension will just put the interoperability
problem from the cloud provider to the client side.
At the same time, the competitiveness of the cloud
providers may depend on the simplicity of the
integration with the client solutions and systems.
Therefore, we foresee that embedded services
offered by the cloud providers should be flexible and
smart enough to handle client-specific model
adjustments and configurations. We expand the
understanding of the platform service to the smart
proactive agent driven service. Such a service should
not only be flexible and configurable in accordance
with the customers’ needs, it should also be prepared
to resolve data- and API-level interoperability issues
while being integrated with the client software.

Figure 3 shows the placement of the agent-driven
extension in the cloud computing stack. From the
user perspective the extension is still a service API
but it offers an advanced functionality.

Figure 3: Placement of the agent-driven API.

The API shown above is a standalone
middleware platform running either as a cloud
facility, or embedded into the virtual machine
instances as a platform extension. The detailed API
content is shown of Figure 4.

Figure 4: Agent-driven flexible platform service extension
API.

The agent-driven adapters are software entities
that facilitate data sources management. Adapters
provide advanced data source connectivity functions
(e.g. simplified database connectivity, file formats
parsing, sensor data acquisition, etc.). Next, adapters
handle the connectivity problem by providing the
components for data transformation with
configurable mapping functionality. The adapter
becomes a proactive entity, i.e. it observes its state
and takes actions based on the state and environment
changes. The actions of the adapter may vary from
simple fault messaging up to self-reconfiguration
when an exceptional or fault situation occurs.

The services’ API allows the user to run
declarative models as services. The API provides a
“model player API” for a particular domain-specific
model definition language (the example of the API
as well as the language will be discussed in the next
Section). The model of the service being played is at
the same time controlled by the dedicated agent that
takes care of proper model functioning (e.g. load
balancing and failures in the operation). Service
agent may temporarily relocate the service
executable code to another virtual machine instance
to improve the performance in critical cases, thus the
service becomes remote for its own original virtual
machine instance. We also consider service API that
has a local representative agent on each virtual
machine, but the service execution is handled by the
cloud provider (see Figure 5).

MASTERING INTELLIGENT CLOUDS - Engineering Intelligent Data Processing Services in the Cloud

177

Figure 5: Service execution in cloud infrastructure.

In the Figure above the PCA stands for the
Personal Customer Agent and PMA is a Platform
Management Agent. The PCA may request the PMA
agent to host a service execution (time period is a
subject of contracting details) on a separate virtual
machine to obtain e.g. higher performance, or for
any other reason. At the same time the local API
within the user’s virtual machine and/or platform
will stay the same. The PCA agent will wrap and
forward local API calls to the PMA agent. The
difference of the architecture proposed from the
standard remote method invocation is a control
channel between agents that allows the service
management layer to stay separated from the service
consumption (service calls).

In the next Section we discuss how the web
services from the data mining domain can be
integrated into the infrastructure described above.
Data mining services can be embedded as platform
services into the cloud stack for particular domain-
specific cloud configurations at the same time
preserving features of configurability, mobility and
self-awareness.

4.2 Mastering Data Mining Services
into the Cloud

To model the data mining services we have to define
a corresponding data mining domain ontology. The
ontology will cover data mining methods as well as
requirements for method inputs and respective
outputs. The inputs and outputs should, in turn, refer
to the data types. The data mining domain can not
include all possible applications of its methods;
therefore we should keep the granularity of the
conceptualization and distinguish the data mining
models and their application scenarios. For the
purpose of this scenario we take two data mining
techniques: cluster analysis and k-NN method
(classification).

The efforts towards standardization of data
mining techniques, methods and formats have been a

matter of discussion for the last ten years. One of the
notable efforts is PMML language (PMML, 2009;
Guazzelli et al., 2009). The language is a standard
for XML documents which express instances of
analytical models. In our work we take PMML as a
reference model for the Data Mining Ontology and
enhance both the model as well as the data with the
semantic descriptions required to automate data
mining methods application to the domain data. In
this work we do not take into account the stage of
information collection, preparation, etc. We assume
that data is ready for data mining algorithm
application. The PMML structure for model
definition is composed of a set of elements that
describe input data; model and outputs (Figure 6).

Figure 6: PMML model structure.

The PMML specification ver. 4.0 provides
means for exhaustive model description, thus the
model can be fully exported or imported without
losses. Such model transportability gives huge
opportunities for service orientation of the data
mining methods. We also expect the PMML models
reuse in the cloud computing domain in the nearest
future. The specification of a software-independent
descriptive data mining standard implies that
Infrastructure and Platform layers of Cloud
Computing stack are fully transparent for the data
mining methods, i.e. the functional characteristics of
the method-based services will be same for any
stack configuration. The QoS, however, may vary

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

178

depending on the performance of the hardware and
efficiency of platform software, therefore the
additional control channel over the service
configuration may be needed.

We have identified three main types of data
mining services regardless of their application
domain and have introduced a classification of them
(Figure 7).

Figure 7: Upper ontology of data mining services.

We consider two major categories of data mining
services:

� model construction services
� computational services
The model construction services produce a

model (a semantic description) from the set of
learning samples. In other words, input of such a
service is learning data and conditions (for the
neural network depending on its mode it can be a set
of vectors plus e.g. initial network parameters). The
output of the model construction service is a model
with the parameters assigned (e.g. a neural network
model, see Figure 8).

Figure 8: Model construction service.

The group of computational services can also be
divided into two major groups:

� services with fixed model
� model player services

The services with fixed model define the format
of the input and output as well as provide reference
model description and the parameters that determine
how the model is configured. For example, Figure 9
shows the definition of the neural network-based
alarm classifier service for a paper machine.

Figure 9: Neural network model in a classification service.

Usage of model player services has two stages:
in the first stage the service accepts the service
model as an input, and in the second stage, it can
serve as a fixed model service (see Figure 10).

Figure 10: Model player service.

The true power of data mining services can be
demonstrated in combination with the distributed
querying (i.e. collecting learning or classification
data), data mining model construction and further
classification. The generic use case of such
combination is shown on Figure 11.

The automated data collection process (first step
in the use case) uses the Ontonuts technology and
approach researched in the (Nikitin et al., 2009). The
approach allows dynamic distributed query planning
and execution, which we apply in this work to
collect learning set data. The sources of the data may
vary from databases, to csv-files and reside
physically on different platforms and sites. The data
collection and, hence, the querying implemented as a
sequence of semantic data service calls orchestrated
by a workflow management agent. Service
orientation of data sources makes distributed
querying a homogeneous part of other service-based
workflow scenarios. The data collected (usually in
form of a table of query results), may undergo
preparatory steps to become a learning dataset. In
this work we omit the procedure of normalization, or

MASTERING INTELLIGENT CLOUDS - Engineering Intelligent Data Processing Services in the Cloud

179

other data transformations, however, they will be
necessary and obligatory. We assume that all
operations with the data are also wrapped as
semantic services.

As soon as the learning set is ready, a desired
model constructor should be chosen (step 2). The
model constructor may require specific data
preparation, therefore it is good to combine data
preparation step with the model constructor service.

Figure 11: A use case scenario.

As an input, model constructor may require
additional input parameters for model building.
Those may be set as default, or, if other parameters
were prepared, they should be supplied in the proper
form. When a model is ready, we feed it to the
model player service which is a platform service in
terms of cloud computing, because it provides an
infrastructure and software platform for service
execution. As soon as our newly built model is
deployed as a service, we can start classifying the
data vectors, e.g. alarms coming from the paper
machine.

The scenario described above may be
dynamically reconfigured by the infrastructure
agents. Some steps of the case (e.g. learning) may be
temporarily moved to the separate execution
environment (separate platform or virtual machine)
to perform computationally expensive tasks.

The overall infrastructure of services should be
highly proactive and responsive to the customer
calls. Agents may monitor the execution and be
ready to reconfigure their services in accordance
with the current customer context.

5 RELATED WORK

The cloud platform solutions for business
intelligence are gaining popularity. For example,
SalesForce.com claims about 2 million success
stories of its customers. The platform provides wide
range of products (from infrastructure as a service,
up to tailored web-based solutions for health care,
retail and sales). The business intelligence tools are
offered too. Nevertheless, the user has to adjust or
prepare her/his software and data for the tools
provided by the cloud. The advantage of the
approach we offer is to empower any cloud platform
with the intelligent adaptation mechanisms that
would allow seamless data connectivity and
integration. The architecture we offer is an extension
to the cloud platform, not the platform itself. The
data mining services with highly configurable
parameters driven by the intelligent agents would
simplify business intelligence integration, hence
making adoption of cloud architecture easier for
clients.

6 CONCLUSIONS

The research presented above describes specific
application domain of intelligent services. We
foresee that model player services will be a
successful business case for the emerging paradigm
of cloud computing. Pay-per-use principles
combined with high computational capacities of
cloud and standardized DM-models will be
definitely an alternative to expensive business
intelligence and statistics toolkits.

Another niche of data mining services in cloud
computing can be model construction services. Such
systems will drive innovations in data mining
methods as well as applied data mining in certain
domains. Such services will compete by introducing
know-how and innovative tools and algorithms that
bring add-values in e.g. predictive diagnostics or
computational error estimation. This direction will
lead to so-called “web intelligence” (Cercone et al.).

The role of UBIWARE platform in cloud
computing emerges as a cross-cutting management
and configuration glue for interoperability of future
intelligent cloud services and client applications.

The main burden of UBIWARE will be
management of consistency across different domain
conceptualizations (Ontologies) and cross-domain
middleware components. Fine-grained ontology
modeling is still a challenge for research community
and we predict that in the nearest future the domain

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

180

modeling will be task-driven, i.e. the domain model
engineers may incorporate some standardized and
accepted conceptualizations, whereas the whole
ontology for solution will be tailor made. Tailored
ontologies will require subsequent mapping
mechanisms and additional efforts.

The advanced data integration mechanisms
embedded into the cloud platform as services is also
an interesting concept that may become an add value
for competing cloud platforms. The easiness of
integration into the cloud infrastructure should not
be underestimated especially by enterprise-sized
companies, where business processes and
component interdependencies have reached an
unprecedented level of complexity. We believe that
autonomy and self-awareness of building blocks will
be a key to the future design of information systems
and cloud platforms.

ACKNOWLEDGEMENTS

This research has been supported by the UBIWARE
project, funded by TEKES, and the industrial
consortium of Metso Automation, Fingrid and Inno-
W. The preparation of this paper was partially
funded by the COMAS graduate school.

REFERENCES

Bellifemine, F. L., Caire, G., and Greenwood, D., 2007.
Developing Multi-Agent Systems with JADE. Wiley.

Cercone, N.; Lijun Hou; Keselj, V.; Aijun An;
Naruedomkul, K.; Xiaohua Hu, 2002. "From
computational intelligence to Web intelligence,"
Computer , vol.35, no.11, pp. 72-76, Nov 2002.

Foster, I.; Yong Zhao; Raicu, I.; Lu, S., 2008 "Cloud
Computing and Grid Computing 360-Degree
Compared," Grid Computing Environments Workshop
GCE '08, vol., no., pp.1-10, 12-16 Nov. 2008.

Guazzelli, A., Zeller, M., Lin, W. and Williams, G., 2009.
PMML: An Open Standard for Sharing Models. The R
Journal, Volume 1/1, May 2009.

Hayes, B. 2008. Cloud computing. Commun. ACM 51, 7
(Jul. 2008), 9-11. DOI= http://doi.acm.org/10.1145/
1364782.1364786

Kaykova, O., Khriyenko, O., Kovtun, D., Naumenko, A.,
Terziyan, V., and Zharko, A., 2005. General Adaption
Framework: Enabling Interoperability for Industrial
Web Resources, In: International Journal on Semantic
Web and Information Systems, Idea Group, Vol. 1,
No. 3, pp.31-63.

Kephart, J. O. and Chess, D. M., 2003. The vision of
autonomic computing., IEEE Computer, 36(1):41–50.

Nikitin S., Katasonov A., Terziyan V., 2009. Ontonuts:
Reusable Semantic Components for Multi-Agent
Systems, In: Proceedings of the Fifth International
Conference on Autonomic and Autonomous Systems
(ICAS 2009), April 21-25, 2009, Valencia, Spain,
IEEE CS Press, pp 200-207.

PMML, 2009. Data Mining Group. PMML version 4.0.
WWW, URL http://www.dmg.org/pmml-v4-0.html

Rimal, B-P; Choi, E; Lumb, I, 2009, "A Taxonomy and
Survey of Cloud Computing Systems," INC, IMS and
IDC, 2009. NCM '09. Fifth International Joint
Conference on , pp.44-51, 25-27 Aug. 2009.

Terziyan, V., 2003. Semantic Web Services for Smart
Devices in a “Global Understanding Environment”, In:
R. Meersman and Z. Tari (eds.), On the Move to
Meaningful Internet Systems 2003: OTM 2003
Workshops, Lecture Notes in Computer Science, Vol.
2889, Springer-Verlag, pp.279-291.

Terziyan, V., 2005. Semantic Web Services for Smart
Devices Based on Mobile Agents, In: International
Journal of Intelligent Information Technologies, Vol.
1, No. 2, Idea Group, pp. 43-55.

MASTERING INTELLIGENT CLOUDS - Engineering Intelligent Data Processing Services in the Cloud

181

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

1 ROPPONEN, JANNE, Software risk management -
foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.

2 KUZMIN, DMITRI, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

3 KARSTEN, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto
3 p. 2000.

4 KOSKINEN, JUSSI, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.

5 RISTANIEMI, TAPANI, Synchronization and blind
signal processing in CDMA systems. -
Synkronointi ja sokea signaalinkäsittely
CDMA järjestelmässä. 112 p. Yhteenveto 1 p.
2000.

6 LAITINEN, MIKA, Mathematical modelling of
conductive-radiative heat transfer. 20 p.
(108 p.) Yhteenveto 1 p. 2000.

7 KOSKINEN, MINNA, Process metamodelling.
Conceptual foundations and application. 213
p. Yhteenveto 1 p. 2000.

8 SMOLIANSKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1 p. 2001.

9 NAHAR, NAZMUN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

10 FOMIN, VLADISLAV V., The process of standard
making. The case of cellular mobile telephony.
- Standardin kehittämisen prosessi. Tapaus-
tutkimus solukkoverkkoon perustuvasta
matkapuhelintekniikasta. 107 p. (208 p.)
Yhteenveto 1 p. 2001.

11 PÄIVÄRINTA, TERO, A genre-based approach
to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

12 HÄKKINEN, ERKKI, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.

13 HIRVONEN, KULLERVO, Towards better
employment using adaptive control of labour
costs of an enterprise. 118 p. Yhteenveto 4 p.
2001.

14 MAJAVA, KIRSI, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

15 SAARINEN, KARI, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.

16 FORSELL, MARKO, Improving component reuse
in software development. 169 p. Yhteenveto
1 p. 2002.

17 VIRTANEN, PAULI, Neuro-fuzzy expert systems
in financial and control engineering.
245 p. Yhteenveto 1 p. 2002.

18 KOVALAINEN, MIKKO, Computer mediated
organizational memory for process control.

Moving CSCW research from an idea to a
product. 57 p. (146 p.) Yhteenveto 4 p. 2002.

19 HÄMÄLÄINEN, TIMO, Broadband network
quality of service and pricing. 140 p.
Yhteenveto 1 p. 2002.

20 MARTIKAINEN, JANNE, Efficient solvers for
discretized elliptic vector-valued problems.
25 p. (109 p.) Yhteenveto 1 p. 2002.

21 MURSU, ANJA, Information systems
development in developing countries. Risk
management and sustainability analysis in
Nigerian software companies. 296 p. Yhteen-
veto 3 p. 2002.

22 SELEZNYOV, ALEXANDR, An anomaly intrusion
detection system based on intelligent user
recognition. 186 p. Yhteenveto 3 p. 2002.

23 LENSU, ANSSI, Computationally intelligent
methods for qualitative data analysis. 57 p.
(180 p.) Yhteenveto 1 p. 2002.

24 RYABOV, VLADIMIR, Handling imperfect
temporal relations. 75 p. (145 p.) Yhteenveto
2 p. 2002.

25 TSYMBAL, ALEXEY, Dynamic integration of data
mining methods in knowledge discovery
systems. 69 p. (170 p.) Yhteenveto 2 p. 2002.

26 AKIMOV, VLADIMIR, Domain decomposition
methods for the problems with boundary
layers. 30 p. (84 p.). Yhteenveto 1 p. 2002.

27 SEYUKOVA-RIVKIND, LUDMILA, Mathematical and
numerical analysis of boundary value
problems for fluid flow. 30 p. (126 p.) Yhteen-
veto 1 p. 2002.

28 HÄMÄLÄINEN, SEPPO, WCDMA Radio network
performance. 235 p. Yhteenveto 2 p. 2003.

29 PEKKOLA, SAMULI, Multiple media in group
work. Emphasising individual users in
distributed and real-time CSCW systems.
210 p. Yhteenveto 2 p. 2003.

30 MARKKULA, JOUNI, Geographic personal data,
its privacy protection and prospects in a
location-based service environment. 109 p.
Yhteenveto 2 p. 2003.

31 HONKARANTA, ANNE, From genres to content
analysis. Experiences from four case
organizations. 90 p. (154 p.) Yhteenveto 1 p.
2003.

32 RAITAMÄKI, JOUNI, An approach to linguistic
pattern recognition using fuzzy systems.
169 p. Yhteenveto 1 p. 2003.

33 SAALASTI, SAMI, Neural networks for heart rate
time series analysis. 192 p. Yhteenveto 5 p.
2003.

34 NIEMELÄ, MARKETTA, Visual search in
graphical interfaces: a user psychological
approach. 61 p. (148 p.) Yhteenveto 1 p. 2003.

35 YOU, YU, Situation Awareness on the world
wide web. 171 p. Yhteenveto 2 p. 2004.

36 TAATILA, VESA, The concept of organizational
competence – A foundational analysis.
- Perusteanalyysi organisaation
kompetenssin käsitteestä. 111 p. Yhteenveto 2
p. 2004.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

37 LYYTIKÄINEN, VIRPI, Contextual and structural
metadata in enterprise document
management. - Konteksti- ja rakennemetatieto
organisaation dokumenttien hallinnassa.
73 p. (143 p.) Yhteenveto 1 p. 2004.

38 KAARIO, KIMMO, Resource allocation and load
balancing mechanisms for providing quality
of service in the Internet. 171 p. Yhteenveto
1 p. 2004.

39 ZHANG, ZHEYING, Model component reuse.
Conceptual foundations and application in
the metamodeling-based systems analysis
and design environment. 76 p. (214 p.) Yh-
teenveto 1 p. 2004.

40 HAARALA, MARJO, Large-scale nonsmooth
optimization variable metric bundle method
with limited memory. 107 p. Yhteenveto 1 p.
2004.

41 KALVINE, VIKTOR, Scattering and point spectra
for elliptic systems in domains with
cylindrical ends. 82 p. 2004.

42 DEMENTIEVA, MARIA, Regularization in
multistage cooperative games. 78 p. 2004.

43 MAARANEN, HEIKKI, On heuristic hybrid
methods and structured point sets in global
continuous optimization. 42 p. (168 p.)
Yhteenveto 1 p. 2004.

44 FROLOV, MAXIM, Reliable control over
approximation errors by functional type a
posteriori estimates. 39 p. (112 p.) 2004.

45 ZHANG, JIAN, Qos- and revenue-aware resource
allocation mechanisms in multiclass IP
networks. 85 p. (224 p.) 2004.

46 KUJALA, JANNE, On computation in statistical
models with a psychophysical application. 40
p. (104 p.) 2004.,

47 SOLBAKOV, VIATCHESLAV, Application of
mathematical modeling for water
environment problems. 66 p. (118 p.) 2004.

48 HIRVONEN, ARI P., Enterprise architecture
planning in practice. The Perspectives of
information and communication technology
service provider and end-user. 44 p. (135 p.)
Yhteenveto 2 p. 2005.

49 VARTIAINEN, TERO, Moral conflicts in a project
course in information systems education.
320 p. Yhteenveto 1p. 2005.

50 HUOTARI, JOUNI, Integrating graphical
information system models with visualization
techniques. - Graafisten tietojärjestelmäku-
vausten integrointi visualisointitekniikoilla.
56 p. (157 p.) Yhteenveto 1p. 2005.

51 WALLENIUS, EERO R., Control and management
of multi-access wireless networks. 91 p.
(192 p.) Yhteenveto 3 p. 2005.

52 LEPPÄNEN, MAURI, An ontological framework
and a methodical skeleton for method
engineering – A contextual approach. 702 p.
Yhteenveto 2 p. 2005.

53 MATYUKEVICH, SERGEY, The nonstationary
Maxwell system in domains with edges and
conical points. 131 p. Yhteenveto 1 p. 2005.

54 SAYENKO, ALEXANDER, Adaptive scheduling for
the QoS supported networks. 120 p. (217 p.)
2005.

55 KURJENNIEMI, JANNE, A study of TD-CDMA and
WCDMA radio network enhancements. 144 p.
(230 p.) Yhteenveto 1 p. 2005.

56 PECHENIZKIY, MYKOLA, Feature extraction for
supervised learning in knowledge discovery
systems. 86 p. (174 p.) Yhteenveto 2 p. 2005.

57 IKONEN, SAMULI, Efficient numerical methods
for pricing American options. 43 p. (155 p.)
Yhteenveto 1 p. 2005.

58 KÄRKKÄINEN, KARI, Shape sensitivity analysis
for numerical solution of free boundary
problems. 83 p. (119 p.) Yhteenveto 1 p. 2005.

59 HELFENSTEIN, SACHA, Transfer. Review,
reconstruction, and resolution. 114 p. (206 p.)
Yhteenveto 2 p. 2005.

60 NEVALA, KALEVI, Content-based design
engineering thinking. In the search for
approach. 64 p. (126 p.) Yhteenveto 1 p. 2005.

61 KATASONOV, ARTEM, Dependability aspects in
the development and provision of location-
based services. 157 p. Yhteenveto 1 p. 2006.

62 SARKKINEN, JARMO, Design as discourse:
Representation, representational practice, and
social practice. 86 p. (189 p.) Yhteenveto 1 p.
2006.

63 ÄYRÄMÖ, SAMI, Knowledge mining using
robust clustering. 296 p. Yhteenveto 1 p. 2006.

64 IFINEDO, PRINCELY EMILI, Enterprise resource
planning systems success assessment: An
integrative framework. 133 p. (366 p.) Yhteen-
veto 3 p. 2006.

65 VIINIKAINEN, ARI, Quality of service and
pricingin future multiple service class
networks. 61 p. (196 p.) Yhteenveto 1 p. 2006.

66 WU, RUI, Methods for space-time parameter
estimation in DS-CDMA arrays. 73 p. (121 p.)
2006.

67 PARKKOLA, HANNA, Designing ICT for mothers.
User psychological approach. – Tieto- ja
viestintätekniikoiden suunnittelu äideille.
Käyttäjäpsykologinen näkökulma. 77 p.
(173 p.) Yhteenveto 3 p. 2006.

68 HAKANEN, JUSSI, On potential of interactive
multiobjective optimization in chemical
process design. 75 p. (160 p.) Yhteenveto 2 p.
2006.

69 PUTTONEN, JANI, Mobility management in
wireless networks. 112 p. (215 p.)
Yhteenveto 1 p. 2006.

70 LUOSTARINEN, KARI, Resource , management
methods for QoS supported networks. 60 p.
(131 p.) 2006.

71 TURCHYN, PAVLO, Adaptive meshes in computer
graphics and model-based simulation. 27 p.
(79 p.) Yhteenveto 1 p.

72 ZHOVTOBRYUKH, DMYTRO, Context-aware web
service composition. 290 p. Yhteenveto 2 p.
2006.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

73 KOHVAKKO, NATALIYA, Context modeling and
utilization in heterogeneous networks.
154 p. Yhteenveto 1 p. 2006.

74 MAZHELIS, OLEKSIY, Masquerader detection in
mobile context based on behaviour and
environment monitoring. 74 p. (179 p). Yh-
teenveto 1 p. 2007.

75 SILTANEN, JARMO, Quality of service and
dynamic scheduling for traffic engineering in
next generation networks. 88 p. (155 p.) 2007.

76 KUUVA, SARI, Content-based approach to
experiencing visual art. - Sisältöperustainen
lähestymistapa visuaalisen taiteen kokemi-
seen. 203 p. Yhteenveto 3 p. 2007.

77 RUOHONEN, TONI, Improving the operation of an
emergency department by using a simulation
model. 164 p. 2007.

78 NAUMENKO, ANTON, Semantics-based access
control in business networks. 72 p. (215 p.)
Yhteenveto 1 p. 2007.

79 WAHLSTEDT, ARI, Stakeholders’ conceptions of
learning in learning management systems
development. - Osallistujien käsitykset
oppimisesta oppimisympäristöjen kehittämi-
sessä. 83 p. (130 p.) Yhteenveto 1 p. 2007.

80 ALANEN, OLLI, Quality of service for triple play
services in heterogeneous networks. 88 p.
(180 p.) Yhteenveto 1 p. 2007.

81 NERI, FERRANTE, Fitness diversity adaptation in
memetic algorithms. 80 p. (185 p.) Yhteenveto
1 p. 2007.

82 KURHINEN, JANI, Information delivery in mobile
peer-to-peer networks. 46 p. (106 p.) Yhteenve-
to 1 p. 2007.

83 KILPELÄINEN, TURO, Genre and ontology based
business information architecture framework
(GOBIAF). 74 p. (153 p.) Yhteenveto 1 p. 2007.

84 YEVSEYEVA, IRYNA, Solving classification
problems with multicriteria decision aiding
approaches. 182 p. Yhteenveto 1 p. 2007.

85 KANNISTO, ISTO, Optimized pricing, QoS and
segmentation of managed ICT services. 45 p.
(111 p.) Yhteenveto 1 p. 2007.

86 GORSHKOVA, ELENA, A posteriori error estimates
and adaptive methods for incompressible
viscous flow problems. 72 p. (129 p.) Yhteen-
veto 1 p. 2007.

87 LEGRAND, STEVE, Use of background real-world
knowledge in ontologies for word sense
disambiguation in the semantic web. 73 p.
(144 p.) Yhteenveto 1 p. 2008.

88 HÄMÄLÄINEN, NIINA, Evaluation and
measurement in enterprise and software
architecture management. - Arviointi ja
mittaaminen kokonais- ja ohjelmistoarkki-
tehtuurien hallinnassa. 91 p. (175 p.) Yhteen-
veto 1 p. 2008.

89 OJALA, ARTO, Internationalization of software
firms: Finnish small and medium-sized
software firms in Japan. 57 p. (180 p.) Yhteen-
veto 2 p. 2008.

90 LAITILA, ERKKI, Symbolic Analysis and
Atomistic Model as a Basis for a Program
Comprehension Methodology. 321 p.
Yhteenveto 3 p. 2008.

91 NIHTILÄ, TIMO, Performance of Advanced
Transmission and Reception Algorithms for
High Speed Downlink Packet Access. 93 p.
(186 p.) Yhteenveto 1 p. 2008.

92 SETÄMAA-KÄRKKÄINEN, ANNE, Network
connection selection-solving a new
multiobjective optimization problem. 52 p.
(111p.) Yhteenveto 1 p. 2008.

93 PULKKINEN, MIRJA, Enterprise architecture as
a collaboration tool. Discursive process for
enterprise architecture management,
planning and development. 130 p. (215 p.)
Yhteenveto 2 p. 2008.

94 PAVLOVA, YULIA, Multistage coalition
formation game of a self-enforcing
international environmental agreement.
127 p. Yhteenveto 1 p. 2008.

95 NOUSIAINEN, TUULA, Children’s involvement in
the design of game-based learning
environments. 297 p. Yhteenveto 2 p. 2008.

96 KUZNETSOV, NIKOLAY V., Stability and
oscillations of dynamical systems. Theory
and applications. 116 p. Yhteenveto 1 p. 2008.

97 KHRIYENKO, OLEKSIY, Adaptive semantic Web
based environment for web resources. 193 p.
Yhteenveto 1 p. 2008.

98 TIRRONEN, VILLE, Global optimization using
memetic differential evolution with
applications to low level machine vision.
98 p. (248 p.) Yhteenveto 1 p. 2008.

99 VALKONEN, TUOMO, Diff-convex combinations
of Euclidean distances: A search for optima.
148 p. Yhteenveto 1 p. 2008.

100 SARAFANOV, OLEG, Asymptotic theory of
resonant tunneling in quantum waveguides
of variable cross-section. 69 p. Yhteenveto 1 p.
2008.

101 POZHARSKIY, ALEXEY, On the electron and
phonon transport in locally periodical
waveguides. 81 p. Yhteenveto 1 p. 2008.

102 AITTOKOSKI, TIMO, On challenges of simulation-
based globaland multiobjective optimization.
80 p. (204 p.) Yhteenveto 1 p. 2009.

103 YALAHO, ANICET, Managing offshore
outsourcing of software development using
the ICT-supported unified process model: A
cross-case analysis. 91 p. (307 p.)
Yhteenveto 4 p. 2009.

104 K OLLANUS, SAMI, Tarkastuskäytänteiden
kehittäminen ohjelmistoja tuottavissa organi-
saatioissa. - Improvement of inspection
practices in software organizations. 179 p.
Summary 4 p. 2009.

105 LEIKAS, JAANA, Life-Based Design. ‘Form of life’
as a foundation for ICT design for older
adults. - Elämälähtöinen suunnittelu. Elä-
mänmuoto ikääntyville tarkoitettujen ICT
tuotteiden ja palvelujen suunnittelun lähtö-
kohtana. 218 p. (318 p.) Yhteenveto 4 p. 2009.

J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

106 VASILYEVA, EKATERINA, Tailoring of feedback in
web-based learning systems: Certitude-based
assessment with online multiple choice
questions. 124 p. (184 p.) Yhteenveto 2 p.
2009.

107 KUDRYASHOVA, ELENAV., Cycles in continuous
and discrete dynamical systems.
Computations, computer assisted proofs, and
computer experiments. 79 p. (152 p.) Yhteen-
veto 1 p. 2009.

108 BLACKLEDGE, JONATHAN, Electromagnetic
scattering and inverse scattering solutions for
the analysis and processing of digital signals
and images. 297 p. Yhteenveto 1 p. 2009.

109 IVANNIKOV, ANDRIY, Extraction of event-related
potentials from electroencephalography data.
- Herätepotentiaalien laskennallinen eristämi-
nen EEG-havaintoaineistosta. 108 p. (150 p.)
Yhteenveto 1 p. 2009.

110 KALYAKIN, IGOR, Extraction of mismatch
negativity from electroencephalography data.
- Poikkeavuusnegatiivisuuden erottaminen
EEG-signaalista. 47 p. (156 p.) Yhteenveto 1 p.
2010.

111 HEIKKILÄ, MARIKKA, Coordination of complex
operations over organisational boundaries.
265 p. Yhteenveto 3 p. 2010.

112 FEKETE, GÁBOR, Network interface
management in mobile and multihomed
nodes. 94 p. (175 p.) Yhteenveto 1 p. 2010.

113 KUJALA, TUOMO, Capacity, workload and
mental contents - Exploring the foundations
of driver distraction. 146 p. (253 p.) Yhteenve-
to 2 p. 2010.

114 LUGANO, GIUSEPPE, Digital community design -
Exploring the role of mobile social software in
the process of digital convergence. 253 p.
(316 p.) Yhteenveto 4 p. 2010.

115 KAMPYLIS, PANAGIOTIS, Fostering creative
thinking. The role of primary teachers. -
Luovaa ajattelua kehittämässä. Alakoulun
opettajien rooli. 136 p. (268 p.) Yhteenveto 2 p.
2010.

116 TOIVANEN, JUKKA, Shape optimization utilizing
consistent sensitivities. - Muodon optimointi
käyttäen konsistentteja herkkyyksiä. 55 p.
(130p.) Yhteenveto 1 p. 2010.

117 MATTILA, KEIJO, Implementation techniques for
the lattice Boltzmann method. -
Virtausdynamiikan tietokonesimulaatioita
Hila-Boltzmann -menetelmällä:
implementointi ja reunaehdot. 177 p. (233 p.)
Yhteenveto 1 p. 2010.

118 CONG, FENGYU, Evaluation and extraction of
mismatch negativity through exploiting
temporal, spectral, time-frequency, and
spatial features. - Poikkeavuusnegatiivisuu-
den (MMN) erottaminen aivosähkönauhoi-
tuksista käyttäen ajallisia, spektraalisia, aika-
taajuus - ja tilapiirteitä. 57 p. (173 p.) Yhteen-
veto 1 p. 2010.

119 LIU, SHENGHUA, Interacting with intelligent
agents. Key issues in agent-based decision
support system design. 90 p. (143 p.) Yhteen-
veto 2 p. 2010.

120 AIRAKSINEN, TUOMAS, Numerical methods for
acoustics and noise control. - Laskennallisia
menetelmiä akustisiin ongelmiin ja
melunvaimennukseen. 58 p. (133 p.) Yhteen-
veto 2 p. 2010.

121 WEBER, MATTHIEU, Parallel global optimization
Structuring populations in differential
evolution. - Rinnakkainen globaalioptimointi.
Populaation rakenteen määrittäminen
differentiaalievoluutiossa. 70 p. (185 p.)
Yhteenveto 2 p. 2010.

122 VÄÄRÄMÄKI, TAPIO, Next generation networks,
mobility management and appliances in
intelligent transport systems. - Seuraavan
sukupolven tietoverkot, liikkuvuuden hallinta
ja sovellutukset älykkäässä liikenteessä. 50 p.
(111 p.) Yhteenveto 1 p. 2010.

123 VIUKARI, LEENA, Tieto- ja viestintätekniikka-
välitteisen palvelun kehittämisen kolme
diskurssia. - Three discourses for an ICT-
service development . 304 p. Summary 5 p.
2010.

124 PUURTINEN, TUOMAS, Numerical simulation of
low temperature thermal conductance of
corrugated nanofibers. - Poimutettujen
nanokuitujen lämmönjohtavuuden numeeri-
nen simulointi matalissa lämpötiloissa .
114 p. Yhteenveto 1 p. 2010.

125 HILTUNEN, LEENA, Enhancing web course
design using action research . - Verkko-
opetuksen suunnittelun kehittäminen
toimintatutkimuksen keinoin .
192 p. Yhteenveto 2 p. 2010.

126 AHO, KARI, Enhancing system level
performance of third generation cellular
networks through VoIP and MBMS services.
121 p. (221 p.). Yhteenveto 2 p. 2010.

127 HÄKKINEN, MARKKU, Why alarms fail. A
cognitive explanatory model.
102 p. (210 p.). Yhteenveto 1 p. 2010.

128 PENNANEN, ANSSI, A graph-based multigrid
with applications. - Graafipohjainen
monihilamenetelmä sovelluksineen.
52 p. (128 p.). Yhteenveto 2 p. 2010.

129 AHLGREN, RIIKKA, Software patterns,
organizational learning and software process
improvement. 70 p. (137 p.). Yhteenveto 1 p.
2011.

130 NIKITIN, SERGIY, Dynamic aspects of industrial
middleware architectures 52 p. (114 p.).
Yhteenveto 1 p. 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

