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Abstract. In this paper a recursive expansion of the set of ordinary
arithmetical operations is investigated. The addition is considered to be a base
of recursion. Next we have multiplication, rising to a power, and so on, up to
the infinity. Algebra is considered based on the set of recursive operations.

The variable arithmetical operation a+
n

b is defined, where n is the level of
recursion starting with ordinary + (n=1). The same arithmetical expressions
can be interpreted in a various way accordingly to values of some variables.
One can use such expressions to build more flexible mathematical models in
which not only parameters are able to change but also relationship between
parameters (model’s structure). Basic properties of recursive operations are
investigated, an algorithm of calculation of expressions of this algebra is
considered. The recursive counters’ apparatus is proposed to be used to
represent huge integers, which are the results of recursive operations, in
restricted memory. Method based on recursive calculation of a number of
digits in the number being represented. The numbers’ coding tool, offered in
this paper, allows acquiring essential part of information included to a huge
number without necessity of essential computer resources.

1  Introduction

A recursive continuation of the series of binary arithmetic operations already was
considered in mathematics. In [1, 9, 11] the Akkerman’s recursive function was
discussed. This function is an infinite continuation of the series of arithmetic
operations. Setting one parameter of this function, we receive function, realizing some
operation from this series of arithmetic operations. For example, setting this
parameter as 1, we receive usual addition, as 2 - multiplication and etc.. The
Akkerman’s function was considered from the point of view of the theory of recursive
functions. This function is a vivid example of recursion of second degree (two
variables are used to decrease the level of the recursion).

Because of some reasons the research in this area had fail. One reason is that the
results of operations from the infinite series are huge numbers which can not be
located not only on a paper, but even in a computer memory. One of founders of the
theory of recursive functions, Hungarian mathematician R. Peter, said: "... the number

999
 is so huge, that for only its writing it would be necessary a piece of paper with

length 1800 kilometers (if each figure would have half-centimeter width). There

would be not enough a human life for the exact calculation of the value of 999
" [11].



Another reason is that the algorithm, calculating values of operations of the infinite
series is very labor consuming, since it realizes a recursion of second degree. There
are not enough resources of the most modern computer for such calculations. The
third reason is the difficulties to find any practical applications for such apparatus.

The problems of recursion in arithmetic are still under interest [5] as well as
hierarchical structures in arithmetic [8]. Research in artificial intelligence needs
reconfigurable arithmetic [12] to realize artificial neural computation. Results in area
of flexible modeling using reconfigurable structure [4] make certain contribution to
the discussion around Godel’s Theorem and information [3]. Research in fuzzy
arithmetic technique [2] and in interval arithmetic [6] is also accepted to various
computer science applications.

In this paper a recursive expansion of the set of ordinary arithmetical operations is
investigated. The addition is considered to be a base of recursion. Next we have
multiplication, rising to a power, and so on, up to the infinity. An algebra is
considered based on the set of recursive operations. The variable arithmetical

operation a+
n

b is defined, where n is the level of recursion starting with ordinary +
(n=1). The same arithmetical expressions can be interpreted in a various way
accordingly to values of some variables. One can use such expressions to build more
flexible mathematical models in which not only parameters are able to change but
also relationship between parameters (model’s structure). Basic properties of
recursive operations are investigated, an algorithm of calculation of expressions of
this algebra is considered. The recursive counters’ apparatus is proposed to be used to
represent huge integers, which are the results of recursive operations, in restricted
memory. Method based on recursive calculation of  a number of digits in the number
being represented. The numbers’ coding tool offered in this paper allows to acquire
essential part of information included to a huge number without necessity of essential
computer resources.

2  The Infinite Series of Arithmetical Operations

In this chapter, we consider the definition and main equalities of recursive
arithmetical operations, which are used as a basis for Algebra of recursive
arithmetical operations over natural numbers. Also we present the definition of the
reverse and variable recursive arithmetical operations.

2.1 The Definition of Recursive Arithmetical Operations

We shall consider the traditional definitions of arithmetical operations over natural
numbers:

1. Addition: a b+  (we use as basic operation);

2. Multiplication: �������
b

aaaba +++= ...* ;

3. Rising to a power: �����
b

b aaaa *...**= .



Notice, that the functions, which realize considered operations are recursive. We
shall designate these functions ϕ1, ϕ2 and ϕ3  accordingly:

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
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3 2 3 3

1 1

1 1
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= − =
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       (1)

According to the theory of recursive functions [1], the functions, realizing the
arithmetic operations are primitively recursive. Let us continue the recursive series of
arithmetical operations up to the infinity:

ϕ ϕ ϕ ϕn n n na b a b a a a( , ) ( ( , ), ); ( , ) .= − =−1 1 1               (2)

These functions grow extremely fast. The number ϕ4
4 4 44 4 4( , ) (( ) )=  consists of

39 figures; ϕ4 5 5( , ) - already of 437.
It is assumed that each operation from the given series has appropriate inverse

operation (ϕ1 - subtraction, ϕ2 - division, ϕ3  - taking a root and etc...).

According to the algebra theory notation [7], we shall consider algebra

A’= {N, S},

where N - is the set of natural numbers, S - is the set of operations, defined upon N.

{ },...,,...,, 2121 ϕϕϕϕ=S .

We shall name the algebra A’ as the algebra of recursive arithmetical operations.
Each operation of this algebra is defined on natural numbers and can be obtained
recursively from the previous operation.

We shall use the following symbols to denote the operations of the algebra A’:

ϕ ϕ ϕ ϕ1
1

2
2

1

1

2

2
− + − + − − − −, , ... ; , , ... .   (3)

That is a b a b a b a b a b a b+ = + − = − + =
1 1 2

; ; * , and so forth.
Using the expression (2) and notation (3) one can write the equality, allowing to

calculate recursively the values of expressions of the algebra A’:

a b a b a a a a b a b
n n n n
+ = + − + + = + = +

−
( ( )) ; ; .1 1

1 1
         (4)

From (4), recursively determining expression in brackets, we receive the basic
equality of the algebra A’ (5):

.   ;...
1111

babaaaaba
operandsb

nnnn

+=++++=+
−−−

�� ��� ��    (5)

The function (5) contains the recursion of the second degree (recursion is based on
two variables n and b). The classic theory of recursive functions is not offering any
suitable tool for non-recursive calculation of such expressions. We shall consider an
iterative non-recursive algorithm in this paper to calculate expressions like (5).
2.2  The Inverse Recursive Arithmetical Operations

The inverse operations (ϕ ϕ1 2, ,...) from the set S of the algebra A’ can be defined by

using the µ  - operator [9]. This operator is named also as the limited operator of



minimization or the operator of inversion. The definition of the operation was given
in [9] as follows:

z x y x y zy z/ ( ( ) )= + >≤µ 1   (6)

The expression (6) can be interpreted in a following way: “ The integer part from
the division z by x is equal to the least y, y z≤  such, that x y z( )+ >1  “. We shall
generalize this formula for the recursive arithmetical operations:

)( zxyyxz
n

zy

n

≥+=



 − ≤µ (7)

The expression (7) defines the inverse operations of the algebra A'. It may be

interpreted in a following way " The integer part from z x
n
−  is equal to the least y,

y z≤  such, that  y x z
n
+ ≥ ”.

2.3  The Variable Recursive Operations

The definition of the infinite series of recursive arithmetical operations allows to
consider the operation as variable value, which is equal to an integer result of some
other operation. Thus, one can build the multilevel structures of arithmetical
equations, where the results of operations at the certain level determine which
operations are valid at the previous level. The example of a multilevel arithmetical
equation with variable recursive arithmetical operations is presented as follows:

f a b c
k l l r

t t

=
+ +
+ +
+ +

4
1

3
2

.

The multilevel structure of equations with recursive arithmetical operations allows
to build more flexible mathematical models in which not only parameters are able to
change but also relationship between parameters (model’s structure).

3  Properties of Recursive Arithmetical Operations

We shall consider known to the present moment equalities of the algebra of arithmetic
operations. We used definitions of recursive operations both in  (4) and (5) form.

Property 1: �����
operandsc
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Property 2:                          a b a a b+ = + + −
4 3 3

1( ( )) .



Proof:

))1(()*...**(...
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The proof was based on following property of the rising to a power:

a b c a b c+ + = +
3 3 3

( * ) . The property (2) allows speeding up a procedure of calculation
of the recursive arithmetical operations.

Equalities with constants:

Property 3:                                 a a
n
+ =1 ;

Property 4:                             a a a
n n
+ = +

−
2

1
;

Property 5:                                  2 2 4+ =
n

;

Proof:                        2 2 2 2 2 2 2 2 4
1

+ = + = = = + =
−n n

... * . �

Theorem 1: The result of any recursive operation a b n
n
+ >, where 3  can be

represented as rising of number a to some power c:

∀ ∈ > ∃ ∈ + =a b n N n c N a b a
n

c, , , , :3 .

Proof:         We shall use the method of mathematical induction.

1.  When  n=4: a b a a b+ = + + −
4 3 3

1( ( )) ,  (Property 2).  I.e. c a b= + −
3

1( ) .

2.  Let the theorem is valid when  n=k:

a b a
k

c+ = , where  c - some natural number. (*)

3.  We shall prove for a b
k
+
+1

:

              �����
operandsb

kkkk

aaaba +++=+
+

...
1

     (the basic equality of algebra A’).

Applying serially to each operation +
k

 the assumption (*), we receive:
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That is a b a
k

c+ =
+1

, where c c c cb= −1 2 1* *...* . �
It is necessary to note, that the results of recursive arithmetical operations can not

be presented as sequence of operations higher than rising to a power:

 That is expression ∀ ∈ > > ∃ ∈ + = +a b n k N k n k c N a b a c
n k

, , , , , , :3  is not true.
This can be confirmed by counter examples. The last expression is valid only when



k=1÷3 (for k=3 it was shown in the Theorem 1, for k=2 - further in the Corollary 1,
for k=1 it is evident).

Corollary 1:  The result of any operation a b n
n
+ >, where 2, can be represented

as product of number a with some natural number d:

∀ ∈ > ∃ ∈ + =a b n N n d N a b a d
n

, , , , : *2 .

Proof: From the Theorem 1:            a b a
n

c+ = .

                       a a ac c= −* 1, i.e. a b a d
n
+ = * , where d ac= −1.�

Corollary 2: If  a - some degree of number m ( )a md= 1 , then a b n
n
+ >, where 2

- some degree of number m also: a b m d d
n d+ = ≥2

2 1, where .

Proof: From the Theorem 1: a b a c m m
n d c d c+ = + = =

3
1 1( ) * .

Thus a b m
n d c+ = 1* .�

Corollary 3: If a is divisible by some number c (a k c= 1 ), then a b n
n
+ >, where 1

is also divisible by the number c: a b k c
n
+ = 2 .

Proof: From the corollary 1: a b a d k c d k d c
n
+ = = =* * * ( * )*1 1 .�

Corollary 4: The result of operation a b n
n
+ >, where 2 in a-th numeration looks

as follows: 100 ...0a  (one and some zero).

Proof: When n=3 (rising to a power) it is evident: ab
a= 100 0...  (b zero).

When n> 3 from the Theorem 1: ∃ ∈ + = + =c N a b a a b
n

c
n

a: . ...100 0  (c zero). �

Corollary 5: The number a b n
n
+ >, 2  in a simple multiplier factorization contains

the same elements, as the number a. It directly follows from the Theorem 1. �

4  Calculation of  Recursive Arithmetical Operations

The elementary way of realization of introduced operations will be programming of a
recursive procedure, evaluating the expression (5) (the basic equality of the
considered algebra). Despite the simplicity of program realization, such procedure
appears extremely inefficient and occupies many resources of a computer (memory,

time). For example, for the calculation of the expression 5 5
5
+  on the computer Intel

Pentium, 66 MHz, it was necessary to wait the result more than an hour. Even using
the formula of the fast rising to a power (8), fast multiplication and some properties of
the introduced arithmetic operations (Properties 2,4), such algorithm allows reducing
only few resources of a computer.

a b a b a b a b a+ = + + + + = + +
3 3 3 3 3 3

2 2 2 1 2( * ) ( ) ; ( * ) (( ) )*   .        (8)

That is why we offer non-recursive algorithm of calculation and the apparatus of
recursive counters for evaluating of results with some precision.



Iterated algorithm allows to avoid unnecessary recursive calls of functions and,
accordingly, to avoid overflow of the stack. The algorithm makes decomposition of

operation a b
n
+  to a sequence of operations of a lower level, +

m
, m < n.  For example,

with the help of this algorithm it is possible to calculate the result of a b
n
+  by a

sequence of operations of rising to a power only, or multiplication only, or any other
known arithmetical operation. The algorithm is based on regularity, which is inherent
to any recursive process of calculation of operations considered. Such regularity it is
possible to see in the example presented in Figure 1.

a b= + = + +3 3 3 3 3
3 3 3

, .

Fig. 1. Example of calculation of the value 3 4
4
+

At each level, the calculation represents a sequence of groups of operations with
identical operands. As such group, in the example, we use expression

a a a a m N
m m m
+ + + ∈... , , . We shall name an element of a group a as a multiplier, and the

number of operations in a group - size of a group.
The algorithm is based on the following two rules:
1. At the end of calculation of the result for some group, the multiplier for the

following group at this level becomes equal to the result of previous group.
2. If the calculation of the group g from the level h has been completed and some

group from the level h+1 simultaneously comes to the end, then the size of the group
g+1 at the level h becomes equal to the result of the group’s g calculation minus one.

We shall consider the text of algorithm in the language, being simplified Pascal:

1. Input  (a, b, n, m) (a, b, n, m ∈  N; a, b, n>1; m<n-1).

2. C11:=b-1; C21:=b-1; C12:=a-1; C22:=a-1;... ;C1n-m-1:=a-1; C2n-m-1:=a-1;

3. Result:=a; GroupSize:=a-1;
4. Factor:=Result; Operations:=GroupSize;

5. Result:=Result+
m

Factor; Operations:=Operations-1; if Operations>0 then goto 5;
6. i:=n-m-1;

7. if i=0 then Output (Result), End;  C1i:=C1i-1; if C1i=0 then i:=i-1, goto 7;

8. if i=n-m-1 then goto 4; GroupSize:=Result-1; i:=i+1; C1i:=C2i;

9. i:=i+1; if i=n-m goto 4; C1i:=Result-1; C2i:=Result-1; goto 9.



Variables, used in the text of the algorithm:
•  a, b - operands of the evaluated operation;

•  n - the operation calculated +
n

;

•  m - the operation + <
m

m n, , which is used to carry out the calculation;

•  C1 [1.. n-m-1] - array, that contains the current sizes of groups at levels above m;
•  C2 [1.. n-m-1] - array, containing a copy of the array C1 for the subsequent
restoration;
•  Result - variable, in which the result of the calculation is formed;
•  GroupSize - size of a current group at the level m;
•  Factor - operand of current group;
•  Operations - number of non-calculated operations in current group;
•  i - auxiliary index variable.

We shall describe actions, made in the algorithm:
1 - input of the initial data (operands, operations);
2 - initialization of arrays - counters of the groups’ sizes at each level;
3,4 - initialization of variables;
5    - calculation of the next group;
6,7 - decrement of the sizes of groups after making an operation;
8 - change of the size of current group (rule 2);
8,9 - restoration and change of the sizes of current groups at all levels.

The non-recursive algorithm for evaluating the results of the recursive arithmetical
operations of the algebra A' was realized on a computer and checked experimentally.
The algorithm allows refusing labor-consuming recursive algorithm. One of problems
remains: results of most recursive operations grow quickly and are not located in
memory. The further research is necessary to find out completely new properties of
the infinite series of operations, that would essentially effect to the resources of
calculation.

5 The Recursive Counters as a Tool for Evaluation of Huge Natural
Numbers

In this chapter, the recursive counter apparatus is proposed to be used to represent
huge integers in restricted memory. This representation is recursive with partial loss
of information about number (losing of accuracy, and getting an advantage with an
amount of a computer memory required). The method is based on recursive
calculation of a number of digits in the number being represented. Representation
consists of the number of recursion’s steps, which are necessary to reduce initial huge
integer so that it becomes less than certain value. Representation also contains the
result obtained at the last step of recursive algorithm. The more long a number is the
more steps of recursion are necessary to represent it. The certain loss of the
information is expected for each level of recursion. However the rate of saved
memory grows quite fast from level to level. Goals of such representation include
possibility to proceed the recursive arithmetical operations.



5.1  The Basic Definitions and Equalities of the Recursive Counters’ Apparatus

We shall refer to the recursive counter (here and after - recounter) of n-th level of
some number as the number of figures in the recounter of n-1-th level of the number.
Thus a recounter of 0-th level - an initial number. Naturally, since a certain level l, all
further recounters of number are equal to 1. We shall name the number l as a level of
a number. With the help of the level of a number it is possible to restore easily the
interval, in limits of which this number can lay (to give an estimation of a number). In
addition, if the initial number is rather great, the relative error of the number
representation by the offered apparatus will be small enough. Thus we will distinguish
the two concepts: the level of a recounter and the level of a number. The level of a
recounter means the number of steps of recursive count of a quantity of the figures in
a number. The level of a number means the value of the level of recounter in which
recounter begins to be equal to one.

We will mark the operation of taking the  recounter of certain level as an initial
number with level of recounter in corner brackets:

n or n’ < >1  - recounter of the first level taken from the number n;

n m< >  - recounter of the m-th level taken from the number m.
Then it is possible to write (square brackets denote the operation of taking the

integer part from a number):

n n nk k
’ log log ( )= + = +1 1  (9)

n n n nm m
k

m
k

m< > < − > < > < − > < − >= = + = +( ) log ( ) log ( )1 1 1 11 1 , (10)

where k is the base of the numeration system.
The expressions (9) and (10) allow to calculate recursively the value of recounter

of any level in a numeration system with the base k. The level of a number n we shall
designate as ord(n). Then it is possible to write:

ord n m n m( ) ( )= =< >µ 1 (11)

The expression (11) defines the level of number with the help of the µ - operator
(the limited operator of minimization or the operator of inversion). So, ord(n) is equal
to the least  natural m such, that n m< > = 1. From (11) it follows, that the figures have
the first level, numbers 10 999999999÷  - the second, and etc.

It is offered to code numbers with the following pair:

                                { }>−< 1, mnm , (12)

where m = ord(n),  or m - is the level of a number n, n m< − >1 is the last recounter
which is not equal to 1.

For example, one of the huge results of forth-level recursive operation can be

coded as follows: { }8,398
4

=+ . It means that number of figures in the number of

figures in the result is equal to 8.
In the pair (12) n m< − > = ÷1 2 9, since by the definition of a level of a number

n m< > = 1. We shall show numerical intervals, which correspond to one coding pair:

     { } { } { } ;...9991003,2  ;99102,2  );92(,1 ÷=÷=÷= digitsnn



…; { } { } � �;9...90...012,3  ;9999999991000000009,2
999

÷=÷=       (13)

     { } � � { } � �;...9...90...019,3  ; ...  ;9...90...013,3
11011099999 98 −−

÷=÷=

The expression (13) contains the intervals of numbers, coded by one pair with the

level of numbers from 1 up to 3. Let { }nm,min  and { }nm,max  - accordingly the

minimum and the maximum numbers of an interval, coded by such pair. They can be
determined recursively from the expression (14):

{ } { }
{ } { } { } { } .110,max;10,min

;110,2max;10,2min
,1max1,1min

1

−==
−==

−−−

−

nmnm

nn

nmnm

nn
 (14)

The formula (14) can be used for coding of natural numbers only in the decimal
numeration system. We can generalize its to use for coding in any numeration system
with the base k (15) (n can vary from 2 to k-1):

{ } { }
{ } { } { } { } .1,max;,min

;1,2max;,2min
,1max1,1min

1

−==
−==

−−−

−

nmnm

nn

knmknm

knkn
(15)

When we realize the coding system (12) in a computer we have to restrict the
maximal value of a level of a number in order to have an ability to place it in

restricted volume of a computer memory. Let m
*
 denote the maximal value of a level

of a number. Then we shall need log log ( )*
2 2 2m k+ −  bits to store one pair (12)

that codes some number n in a computer memory, where k denotes the base of the
used numeration system. The number n can vary in such case from 2 to

{ }1,max * −km . Consequently with the pair (12) when level of number is restricted

by m m m* *( )≤ , we can code any natural number:

            { }     .bits)2(loglogin1,max2 2
*

2
* −+−÷= kmkmn

In order to evaluate in some way the quality of the coding by the pair (12) we will
introduce the operator Q[m,n], which will help to determine the quality of the coding

by the pair { }nm, . The quality Q[m,n] in our case is equal to the coefficient of

information advantage i in comparison with usual representation of numbers divided
by the coefficient of relative error of the coding δ(16).

Q m n
i m n

m n
[ , ] =

[ , ]

[ , ]δ
(16)

Here 
{ } 

   )2(loglog

1),(maxlog
=],[

2
*

2

2

−+
+

km

nm
nmi (17)



(17) - is the ratio of the number of bits needed for ordinary coding to the number
of bits is needed for proposed coding.

{ } { }
{ }

{ } { } { }

{ }
{ } { }

{ } { } interval. coded  theof average the-,,
,max*2

,min,max

,max
2

,min,max
,max

,max

,,max
=],[

nm
nm

nmnm

nm

nmnm
nm

nm

nmnm
nm

µ

µδ

−=

=

+−
=−

  (18)

Value δ[ , ]m n  is a relative error that is equal to the maximal absolute error of the

coding by the pair { }nm,  divided by maximal number in this interval.

Let us determine Q[2,n] and Q[3,n] in order to see how the quality will change
from the second level of numbers to the third.

Q
n

m k
q n q Const

n

n

[2, n] =
+ −

⋅
⋅ −

−
≈ ⋅ =

−

−

log

log log ( )

( )
,( ).

*
2

2 2

1

1

2 2
10

2

2 10
1

10

9
1

10

(19)

Q n
m k

q q Const
n

n[ , ]3
10 1 10

2
2 10

2

2 2
3 3≈

−

+ −
≈ ⋅ =

( ) log

log log ( )
* ,( ).

*
(20)

One can see that we have a recursive power growth of function Q[m,n]. It is easy

to show that [ ] [ ] )10(
5

)10(
4

)10(

10*,5;10*,4
nn

qnQqnQ ≈≈  and so on, where q4

and q5  - some constants. So, we always have almost linear graphic of function Q[m,n]
with m-2 - logarithmic scale of vertical axis. For example, graphic Q[6,n] will appear
linear with the twice-logarithmic scale of vertical axis. With the growth of a level of a
number in a pair (12) the function Q[m,n] also grows. It means that the size of a
number grows faster than the size of coding interval grows. It means also that the
relative error grows much slower than the size of a number grows.

Naturally, the coding with the help of the pair (12) is not a universal tool of
representation of any numbers right up to infinity in a limited volume of computer
memory. Since certain number n, its level in the coding pair will exceed an allowable
limit of an occupied volume of memory. It is difficult even to imagine such number.
However if such number will appear in some problem, it is possible to code the level
of a number by the same tool, which we use to code number: to consider the level of
the second degree of a number: ord n ord ord n2 ( ) ( ( ))= . If it is not enough, then one
can use the level of the third, fourth degree,..., level of degree of number level, and
etc.



5.2  Operations Over Recursive Counters

The realization of operations over numbers, represented by recounters, enables to
estimate the results of arithmetic expressions containing operations over recounters.
The realization of operations over recounters is complicated by ambiguity (loss of the
information) of recounters. We shall consider it by giving an example. Let a’=2, and
b’=1. We can not unequivocally specify result of expression (a*b)’:  (a*b)’=a’+b’ or
a’+b’-1 (3 or 2 in our case). We can estimate the lower or the upper boundary of
calculated expression. We shall consider possible outcomes of taking of recounter
from a result of operation of multiplication:
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If  n1 ≥ n2, then we obtain: .1where,
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The expressions (21) and (22) contain possible outcomes of the multiplication of
numbers, presented by its recounters of various levels. The similar equality can be
written down for other operations, for example, for addition (23), (24):
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If  n1 ≥ n2, then we obtain: .0where,
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Knowing possible outcomes of operations over recounters (21) - (24) we can
estimate the lower and the upper boundaries of a result of any arithmetical expression
with such operations over huge numbers. Further it is necessary to simulate
distribution with the specified probabilities for more exact evaluation. The more the
volume of calculations there will be, the more precise result will be received. It can be
explained so: under identical probability of appearance of each of figures in the
categories of number, the probability of each of possible outcomes remains constant.
The probability of each of outcomes can be calculated by two ways: statistical or
analytical. Statistical - on great volume of calculations, when identical probability of
occurrence of each figure of a number is reached, the probability is equal to ratio of
number of occurrence of researched outcome to common number of tests. Analytical -
with use of mathematical calculations, based on fact that probabilities of occurrence



of each figure of number are identical, on theorems of the theory of probabilities. For
example, probabilities to obtain exact recounter valuation of the result of
multiplication are presented as follows:
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where p - probability of corresponding outcome. The amount of digits in a
multiplication of two numbers depends only of the first digits of the numbers. For
example, if the first digits are 4 and 3 (or if at least one of the digits is more) then we
may say that we shall have the second outcome. If the first digits are 2 and 2 (or if at
least one of the digits is less) - the first. If the first digits are 3,3 or 2,3- we have to
check the second digits because in this case we may have both of the outcomes.

One important property of the apparatus of recounters is the opportunity to operate
not with numbers, but with their recounters. Recounters allow simplifying
considerably the processing of huge numbers, to lower considerably required
resources. The work with huge numbers occurs on the following algorithm: if in result
of any operation the recounter of the current n-th level exceeds a certain threshold, the
initial number is coded by recounter of n+1-th level, and all operations will be carried
out over this recounter. The apparatus of recounters is expected to be applied to such
areas of computer science where it would be necessary to handle huge numbers.

5.3  A Relationship Between Recounters and Recursive Arithmetical Operations

We will prove a theorem which defines a relation between the concept of a recursive
arithmetical operation and the concept of a recursive counter. The considered theorem
allows to define a recounter of a certain level as a result of a recursive operation. The
proof of the theorem is based on two facts (10) and (26).

The expression (10) allows to calculate a recounter of the level l of some number
n in a numeration system with the base k. This expression is based on properties of
positional numeration system [13].
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The expression (26) determines the logarithm of the fifth recursive operation.
Now we can proof of the theorem. Words “(or + 1)”, written down after some

equality mean here and further, that the expression can also be more on a unit.
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The last transformation is explained by the fact that the number of figures in the
expression in brackets is equal to the number of figures in the first summand (or more
on a unit of it).

Now we use the mathematical induction in a following way:
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The last transformation is explained by fact that the number of figures in the
expression in brackets is equal to the number of figures in the second summand (or
more on a unit of it). �
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The corollary shows a close relation between the fifth recursive operation and the
operation of taking a recounter. One can see that the simultaneous increasing of the
second operand and the level of a recounter is not effecting the result. It shows that
the operation of taking a recounter allows evaluating the results of a recursive
arithmetical operation. In the Figure 2, the results of fifth recursive operation for x =
3÷20, calculated using the corollary, are presented.

x 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y 1 3 4 5 6 8 9 10 12 13 15 17 18 20 21 23 25 27

Fig. 2. The values of function y x x l l( ) ( )= + < >5
with discrete x = 3÷20

6  Conclusion

In this paper, the mathematical apparatus, being integration of arithmetic, was offered.
Expansion of the set of ordinary arithmetical operations is investigated with a goal to
make a tool for representation of quite flexible mathematical expressions.
Unfortunately, to create of the perfect mathematical apparatus on the basis of offered
ideas and realize it on practice are difficult enough problems and need a lot of further
research.  Search of practical applications of the results, considered in this paper, is
now going on. Philosophical aspects of the infinite series of recursive operations are
under consideration, physical analogues are being studied.

The given work can be considered as an attempt to guess the future flexible
programming in which the same arithmetical expressions can be interpreted in a
various way accordingly to values of some variables. The multilevel structure of
equations with recursive arithmetical operations one can use to build more flexible
mathematical models in which not only parameters are able to change but also
relationship between parameters (model’s structure).

The large numbers that occur as the result of recursive operations can be handled
using the apparatus of the recounters. The numbers’ coding tool, offered in this paper,
allows acquiring essential part of information included to a huge number without
necessity of essential computer resources.
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