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ABSTRACT 
 
Industrial diagnostics is an important application area for 
many AI formalisms. Temporal diagnostics, based on 
analyzing temporal relations between values of crucial 
variables, is one possible approach to industrial 
diagnostics. Often, the information obtained from an 
industrial object can be uncertain, making the task of 
diagnostics more complex. In this paper, we propose an 
approach to temporal industrial diagnostics, which uses 
algebra of uncertain temporal relations. We estimate 
temporal relations between the set of symptoms (crucial 
values of important variables) obtained from an industrial 
object to build the temporal relational network for this 
particular situation. After that, we compare the obtained 
network with known temporal scenarios (patterns) of 
failures, using the numerical measure of the distance 
between a network and a scenario. Using this approach 
we derive the probabilities of possible diagnoses for the 
particular situation. We also show how the learning for 
the database of scenarios can be performed, which will 
make diagnostics for future cases more precise. 
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1.  Introduction 
 
In many industrial process control and monitoring tasks 
there is a need to identify and classify the situation 
occurred. This is crucial for enabling process 
improvements and the successful operation of industrial 
equipment. The examples of such situations are: 
automated inspection (flaw location) [11], automated 
diagnosis of failures occurred [8], and real-time diagnosis 
of the situation to prevent failures in future.  
 
One of the means, which can help to perform these tasks, 
is temporal diagnostics, i.e diagnostics based on temporal 
data. The main advantage of this type of diagnostics is 

that it considers not only a static set of symptoms, but also 
the time of monitoring. This enables us to have a broader 
view on the situation: sometimes just considering 
temporal evolution of relations between different 
symptoms can give us a hint as to precise diagnostics. 
Especially important in this approach is to have ready 
temporal scenarios of possible critical situations that can 
occur. Any particular situation can be compared with 
existing scenarios and possibly classified as belonging to 
one of them.  
 
A number of techniques to temporal diagnostics have 
been proposed so far, but problems still exist that require 
further attention. One such problem shows up when the 
temporal information obtained from an industrial object is 
uncertain. During the past several decades a number of 
uncertainty management techniques have been proposed, 
and many of them have been applied to the field of 
diagnostics, i.e. [4]. Although there have been successful 
applications in fields such as medical diagnosis, there are 
also problems in industry which currently cannot be 
solved. Some problems arise in trying to implement 
uncertainty techniques in industrial diagnostic field; such 
problems in automated inspection are discussed in [11]. 
Formalisms for dealing with uncertainty are often divided 
into numerical and symbolic ones. Among the numerical 
ones those most often used in diagnostics are the 
probability theory and the fuzzy sets theory.  
 
A probabilistic extension for model-based diagnosis was 
proposed, for example, in [9]. In that paper model-based 
diagnosis was considered as an uncertain reasoning 
problem. The authors argue that the use of probabilities in 
diagnosis is beneficial to the performance of diagnostic 
engines. The architecture of the diagnostic system 
proposed in [9] is capable of detecting failures that are 
difficult to detect using a conventional diagnostic engine. 
A statistical interpretation was attributed to nonmonotonic 
reasoning, allowing the use of a hybrid (probabilistic-
logical) inference engine in this system.  
 
Fuzzy temporal reasoning was implemented within 
diagnostic reasoning, for example, in [3] and [10]. In the 



latter, disorders are described as an evolving set of 
necessary and possible manifestations. Ill-known 
moments in time, e.g. when a manifestation should start 
or end, are modeled by fuzzy intervals, which are also 
used to model the elapsed time between events, e.g. the 
beginning of a manifestation and its end. The information 
about the intensity and time when manifestations started 
and ended are also modeled using fuzzy sets. 
 
In many practical situations in industrial field the 
diagnosis of machine failure can be made by analyzing 
the set of temporal relations between values of the 
variables crucial for the process controlled, and by 
comparing this set with existing temporal patterns of 
known failures. Moreover, it could even be possible to 
predict such failure, if this temporal diagnostics is 
performed in real time and the patterns of possible 
failures are present. This would be even more valuable for 
practitioners in the field, since it could help to prevent, for 
example, the breakage of expensive industrial equipment.  
 
In this paper we propose an approach to industrial 
temporal diagnostics using the algebra of uncertain 
temporal relations [7], [6]. The core of our approach is the 
analysis of the temporal relations between the set of 
symptoms (crucial values of important variables) obtained 
from an industrial object. Based on this information we 
build a relations network, where nodes are the symptoms 

and arcs are the temporal relations between them. 
Comparing the derived network with known temporal 
scenarios we estimate the probabilities of possible 
diagnoses. The obtained relational network can be used to 
improve the knowledge base of temporal scenarios. 
 
The paper is organized as follows. In Section 2 we present 
our approach to temporal diagnostics in general. In 
Section 3 we briefly overview the basics of the 
formalisms used. Section 4 discusses how a relational 
network describing the current situation can be obtained 
from the information collected on the industrial object. In 
Section 5 we present an approach to generation and 
recognition of temporal patterns and show how the 
database of temporal scenarios can be updated to improve 
the precision of the diagnostics in future. Finally, in 
Section 6 we present our conclusions and point out some 
directions for further research. 
 
2.  The Approach to Temporal Diagnostics 
 
In this section we will overview the approach to temporal 
diagnostics using the algebra of uncertain temporal 
relations proposed in this paper.  
 
Figure 1 presents the conceptual schema for industrial 
diagnostics using uncertain temporal scenarios.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Conceptual schema for industrial diagnostics using uncertain temporal scenarios 
 
In Figure 1 we can observe a particular industrial object, 
from which we collect information using sensors or other 
electronic measurement equipment. We assume that the 
operation of this particular industrial object is controlled 
and monitored using numerical information possibly 
collected from different sensors or other measurement 
devices attached to the object. This type of information 
may include the measurement of temperature in some 
particular block, measurement of pressure, rotation speed, 
etc. We further assume that we know some symptoms that 

are used in description of failure situations. For example, 
when the temperature in Block A exceeds 100°C the 
steam boiler will blow up, or if the rotation speed of the 
engine exceeds 5000 rotations/minute then most probably 
it will need full rebuild after that. The symptoms need not 
necessarily lead to the immediate failure of the 
mechanism, but preferably should point to the situation 
that is not dangerous at the moment but can come close to 
it if no preventive action is undertaken. For example, 
when the steam pressure in the boiler exceeds the 
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maximum value it will heat the boiler to 150°C, making it 
to blow up after 20 minutes. The symptoms observed are 
marked with timestamps, and using the estimation 
mechanism, which will be discussed in Section 4, a 
network of uncertain temporal relations describing the 
situation at the object is composed. 
 
A database of temporal scenarios of possible failures and 
critical situations at the object is the core of our approach 
to temporal diagnostics. After obtaining the relational 
network from the information gathered at the object we 
try to classify the situation, comparing this network with 
scenarios from the database. Since the relational network 
includes uncertain relations as well as the scenarios within 
the databases, it is often impossible to classify the 
situation precisely. Using our mechanism of scenario 
recognition we estimate probabilities that the situation at 
the object is developing according to different possible 
scenarios. When the diagnosis is clear, we can upgrade 
our knowledge about this case within the database by 
updating the most probable scenario with the relational 
network analyzed. This learning should also take into 
account information obtained from other similar industrial 
objects, where similar situations have taken place. 
 
 
3.  Basic Concepts 
 
In this section we will briefly overview the basic formal 
concepts of the algebra of uncertain temporal relations 
used in our temporal diagnostics approach. The interested 
reader can find further information in [7], [6], and [5]. 
 
There are three basic relations that can hold between two 
points: “before” (<), “at the same time” (=), and “after” 
(>). Let us define a set of these relations as A={<,=,>}. 
There are thirteen Allen’s interval relations [1]  
X={eq,b,bi,d,di,o,oi,m,mi,s,si,f,fi). 
 
An uncertain relation between two temporal primitives is 
represented as a set of probabilities of all basic relations 
that can hold between these primitives [7]. For example, 
ra,b{eαα∈ A} is the uncertain relation between temporal 
points a and b, including the probabilities , , and 

. An uncertain relation RA,B{eχχ∈ X} between 
intervals A and B includes thirteen probabilities of Allen’s 
relations. The sum of all probability values of the basic 
relations within r or R is equal to 1. We suppose that two 
uncertain relations are equal if and only if the 
corresponding probabilities of the basic relations within 
them are equal. When =1 within RA,B{eχχ∈ X} we 
call such RA,B  a totally certain relation (TCR). When all 
the probability values within r or R are equal we call such 
relation a totally uncertain relation (TUR). 

<
ba,e =

ba,e
>

ba,e

χ∃ BA,e

The distance (denoted as d) between two uncertain 
temporal relations is a variable belonging to the interval 

[0,1]. When d=0 the uncertain relations compared are 
equal, and when d=1 the relations are totally different. 
The examples of totally different relations are the point 
relations “<” and “>”. One approach to estimate the value 
of d for uncertain relations between temporal points was 
proposed in [2]. In its physical interpretation the approach 
is based on the assumption that the two relations to be 
compared are distributed on a virtual lath, where the basic 
relations within the uncertain ones are assumed to be 
physical objects. For every relation we find out the 
balance point, which in physical interpretation is the 
moment of mass for the physical objects distributed on 
the lath. We assume that the distance between two 
neighbor objects on the lath is equal for all neighbor pairs. 
The module of the mathematical difference between the 
values of the balance points for these two relations is the 
value of the distance between these relations. So, for 
example, the distance between the uncertain relations 

 and  is calculated by formula: BA,R DC ,R
)Bal()Bal(
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A mechanism for reasoning with uncertain temporal 
relations, proposed in [7] and [6], includes three 
operations: inversion, composition, and addition. The 
unary operation of inversion (~) derives the relation RB,A 
when the relation RA,B is known. The binary operation of 
composition (⊗ ) derives the relation RA,C, when there 
exist relations RA,B and RB,C. The binary operation of 
addition (⊕ ) combines two uncertain interval relations 

 and  into a single relation RA,B. The 
multiple operation of addition is an extension of the 
binary addition. This operation combines a number of 
uncertain relations into one relation, i.e.,  

1),( BAR
2),( BAR

RA,B=⊕ ( , ,…, R ). 
1),( BAR

2),( BAR
k),( BA

In the interest of space we omit in this paper the formal 
definitions of these operations, since they can be found in 
the above mentioned references. 
 
 
4. Deriving Uncertain Relations 
 
In this section we show how we compose a network of 
uncertain temporal relations using the information 
collected at the industrial object observed (Figure 2). We 
suppose that an industrial object is monitored using a 
number of sensors or other measurement devices, and we 
know the set of symptoms critical for successful operation 
of the machine. When a particular symptom is observed it 
is marked with a timestamp indicating the time when the 
symptom occurred. Many of the sensors do not 
continuously collect information: for example, we can 
measure the pressure inside the boiler every 10 seconds. 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schema for composing a network of uncertain temporal relations using the  
information from the industrial object 

 
In this case, the timestamp is indeterminate, meaning that 
we do not know exactly at which particular moment of 
time the symptom occurred; instead we are given the time 
interval for the event. When temporal information is 
represented using indeterminate temporal primitives it is 
in most cases impossible to estimate temporal relations 
between them precisely. Instead of that, we derive 
uncertain relations, where the basic relations that can hold 
between two temporal primitives are attached with their 
probabilities. The formal mechanism for performing this 
task is presented in [5]. The mechanism takes as an input 
the information about indeterminate temporal primitives 
like, for example, critical increase of pressure inside the 
boiler during the interval [10 sec., 20 sec.], and produces 
uncertain temporal relations between these primitives. 
After that, we can compose a relational network 
consisting of these primitives and relations. 
 
Formally, let us represent a network of binary uncertain 
temporal relations as a directed graph, the nodes of which 

represent symptoms and the arcs represent temporal 
relations between these symptoms. Formally, we 
represent such a graph as a set V of n variables 
{v1,v2,…,vn} and binary uncertain relations between these 
variables represented as r {eαα∈ A}, where vi,vj∈ V , 

if the variables are temporal points and as 
{eχχ∈ X}, where vi,vj∈ V , if the variables are 

temporal intervals.  

ji vv ,

ji
R vv ,

 
 
5.  Temporal Scenarios: Generation and 

Recognition 
 
In this section we show how to generate and to recognize 
temporal scenarios. Figure 3 presents the situation where 
the information about “Failure 1” is obtained from three 
industrial objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Conceptual schema for generation of temporal scenarios 
 
The three objects in Figure 3 might be located in different 
places, and the information need not be obtained 
simultaneously. This means that, for example, the 
information for Object 1 could be obtained at the factory 

in Helsinki in September, from Object 2 from the factory 
in Jyväskylä in October, and from Object 3 also from 
Jyväskylä in November. We compose relational networks 
N1, N2, and N3 describing “Failure 1” situation. After that, 
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these networks can be composed into a temporal scenario. 
 
Formally, we consider k networks N1, N2,…, Nk of 
uncertain temporal relations defined by the set of nodes 
V={v1,v2,…,vn}, which is the same for each network, and 
the sets of uncertain temporal relations R1, R2,…, Rk given 
for each network. These sets of relations are such that an 
element of one set is not necessarily included in other 
sets, for example, a relation rb,c∈ R1, but rb,c∉ R2.  
 
We suppose that an uncertain temporal scenario is a 
network of uncertain temporal relations defined by the set 
of nodes V={v1,v2,…,vn}, the set of relations  
R=R1∪  R2∪ …∪ Rk, where the relations within R are 
obtained by multiple operation of additon of the 
corresponding relations between the same variables from 
all the sets R1,  R2,…, and Rk according to the algorithm 
presented in Figure 4. 
 
1. for i=1 to n do 
2.   for j=i+1 to n do 
3.      if (∃ ∈ R1) or…or (∃ r ∈ Rk) then 

ji
r vv , ji vv ,

4.       begin 
5.         for g=1 to n do 
6.            if not (∃ r ∈ Rg) then Reasoning(r , Rg) ji vv , ji vv ,

7.            // if “Reasoning” = False then ( ∈ Rg)=TUR 
ji

r vv ,

8.            ( ∈  R) = ⊕  ( r ∈  Rt), where  t=1,..k  
ji

r vv , ji vv ,

9.       end 
10.    else go to line 2 
 

Figure 4. Algorithm for generating temporal scenarios 
 
Within the procedure “Reasoning” in line 6 of the 
algorithm from Figure 4, we obtain the set 

, where V ⊆  V, which is a set of 
nodes derived using Dijkstra algorithm and representing 
the shortest path in the graph from vi to vj as 

j . There is at least one 

element in the set V , otherwise the relation between vi 
and vj is present in the set Rg. After that, using the 
operation of composition we derive the relation r . 

{ }k21 vvvV ′′′=′ ,..,,

iv →′→′→ 21 vv

′

→ v′→ kv...
′

ji vv ,

 
The complexity of the main body of the algorithm in 
Figure 4 is O(n2), where n is the number of nodes in the 
graph. Within the procedure “Reasoning” we apply 
Dijkstra algorithm, the complexity of which basically 
depends on its programming realization. In this way, the 
overall worst-case complexity of the algorithm is O(n4). 
  
Let the network N1 in Figure 3 be defined by the set of 
symptoms V={a,b,c,d} and the set of temporal relations 
between them R1={ra,b, rb,c, ra,c, rd,c}. Network N2 is 
defined by the set V and R2={ra,b, ra,c, rb,d}. Finally, the 
network N3 is defined by the set V and R2={ra,b, rb,d}. In 

this case, the temporal scenario S in Figure 3 will be 
defined by the set V={a,b,c,d} and the set of relations  
R= R1∪  R2∪ R3={ra,b, rb,c, rb,d, ra,c, rd,c}. 
  
Recognition of temporal scenarios is performed as 
follows. Let us suppose that a relational network N is 
defined by the set of nodes V={n1, n2,.., nk} and a set of 
relations between them Rn. Let us also suppose that an 
uncertain temporal scenario S is defined by the same set 
of nodes V={n1, n2,.., nk} and a set of relations between 
them Rs. We suppose that the sets Rn and Rs are equal at 
the symbolic level of representation of relations, for 
example, both sets can include the relations ra,b, rb,c, rb,d, 
ra,c, and rd,c. At the same time, each of these relations is 
defined by the set of probability measures for the basic 
relations that can hold between two particular temporal 
primitives.  
 
The distance between the relational network N and the 
scenario S is calculated by formula: 

∑

∑

=

== m

i
i

m

i
ii

w

dw
D

1

1
SN, , 

where wi - the weight of i-th relation in the scenario S, 
di – the distance between two i-th relations from Rn and 
from Rs. In practice, the relations within Rn and Rs are 
initially different. Therefore, before we calculate the 
distance value D we should include the additional 
relations within Rn (if needed) in the following way. If a 
relation, which is present within set Rs is absent within set 
Rn we try to derive it within the network N as it is in 
“Reasoning” procedure in Figure 4. If this procedure fails 
then we assign the value TUR for this relation. 
 
In many situations it is necessary to know to which 
temporal scenario the network N belongs, or if it is 
impossible to know then how close to every scenario the 
network is. Using the measure of distance between a 
temporal scenario and a relational network we can 
calculate the distances between N and every temporal 
scenario, as it is shown in Figure 5. 
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Figure 5. Conceptual schema for scenario recognition 
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The derived values can be represented as percentage 
values of similarity of the network N with every scenario. 
 
 
6.  Conclusions 
 
In this paper we proposed an approach to industrial 
temporal diagnostics using algebra of uncertain temporal 
relations. Uncertain relations are represented using the 
probabilities of the basic relations. Using the information 
obtained from the industrial object observed we compose 
a relational network with uncertain temporal relations 
between symptoms. The derived network is compared 
with temporal scenarios of critical situations at the object, 
and the probabilities of possible scenarios are estimated.  
 
The main advantage of temporal diagnostics is that it 
considers not only a static set of symptoms, but also the 
time during which they were monitored. This often allows 
having a broader view on the situation, and sometimes 
only considering temporal relations between different 
symptoms can give us a hint to precise diagnostics. 
 
Experiments using the implementation of the formalism 
with artificial settings were carried out. As one of the 
direction for further research we consider experiments 
with real industrial datasets.  
 
 
REFERENCES 
 
[1] J. Allen, Maintaining knowledge about temporal 
intervals, Communications of the ACM, 26 (11), 1983, 
832-843. 
 
[2] H. Kaikova, S. Puuronen, Reasoning temporal 
sequence from multiple temporal sequences, Proc. Intern. 
Conf. on Computational Intelligence for Modeling, 
Control & Automation: Intelligent Image Processing, 
Data Analysis & Inform. Retrieval, IOS Press, 
Amsterdam, 1999, 215-220. 
 

[3] A. Lowe, R. Jones, M. Harrison, Temporal pattern 
matching using fuzzy templates, Journal of Intelligent 
Information Systems, 13 (1-2), 1999, 27-45. 
 
[4] W. Nejdl, J. Gamper, Model-based diagnosis with 
qualitative temporal uncertainty, Proc. 10th Conf. on 
Uncertainty in AI, Seattle, 1994, 432-439. 
 
[5] V. Ryabov, Uncertain relations between indeterminate 
temporal intervals, Proc. 10-th Intern. Conf. on 
Management of Data, Tata McGraw-Hill Publishing 
Company Limited, New Delhi, India, 2000, 87-95. 
 
[6] V. Ryabov, Handling uncertain interval relations, 
Proc. 2-nd IASTED Intern. Conf. on AI and Applications, 
ACTA Press, Anaheim, Calgary, Zurich, 2002, 291-296. 
 
[7] V. Ryabov, S. Puuronen, Probabilistic reasoning about 
uncertain relations between temporal points, Proc. 8-th 
Intern. Symposium on Temporal Representation and 
Reasoning (TIME’01), IEEE Computer Society Press, Los 
Alamitos, California, 2001, 35-40. 
 
[8] P. Struss, Knowledge-based diagnosis - an important 
challenge and touchstone for AI, Proc. 10th European 
Conf. on AI, Vienna, August 3-7, 1992. 
 
[9] A. Tawfik, E. Neufeld, Model-based diagnosis: a 
probabilistic extension, A. Hunter, S. Parsons (Eds.) 
Applications of uncertainty formalisms (Lecture Notes in 
Artificial Intelligence 1455, Springer, 1998), 379-396. 
 
[10] J. Wainer, S. Sandri, Fuzzy temporal/categorical 
information in diagnosis, Journal of Intelligent 
Information Systems, 13 (1-2), 1999, 9-26. 
 
[11] D. Wilson, A. Greig, J. Gilby, R. Smith, Some 
problems in trying to implement uncertainty techniques in 
automated inspection, A. Hunter, S. Parsons (Eds.) 
Applications of uncertainty formalisms (Lecture Notes in 
Artificial Intelligence 1455, Springer, 1998), 225-241. 
 

 
 


