

Ontological Modelling of E-Services to Ensure Appropriate Mobile
Transactions

Vagan Terziyan
Faculty of Information Technology, University of Jyvaskyla, P.O. Box 35, FIN-40351,

Jyvaskyla, Finland, e-mail: vagan@it.jyu.fi

Abstract

The main goal of this paper is to provide simple ontological support to the mobile electronic commerce. The description
of ontology-driven Transaction Monitor (TM) for mobile business applications is considered. The approach is based on
assumption that the transaction management tool can be implemented in a mobile terminal, allowing integration of
different distributed external e-services. We use the ontology-based framework for transaction management so that the
TM will be able to manage transaction across multiple e-services and we consider management of distributed location-
based services as an example of such ontology-based TM implementation. The core of the approach is ontologies.
Ontologies should be "placed" both in mobile terminals and in e-services. They define common multiple clients -
multiple services standards and vocabularies for the use of the names, types, schemas, default values for parameters,
atomic service actions with appropriate structure of their input and output. In our implementation ontologies help to the
TM to deal with multiple services during transactions and simplify appropriate user interface.

1 Introduction

M-commerce refers to e-commerce activities relying on mobile e-commerce transactions.
A mobile e-commerce transaction is any type of business transaction of an economic value that

is conducted using a mobile terminal that communicates over a wireless telecommunications or
Personal Area Network with the e-commerce infrastructure.

Transaction management was first developed in the database management context. In the modern
sense the requirements were set up in the context of relational database management systems. The
main targets of transaction management, concurrency control of the simultaneously running
applications and recovery in the case of crashes, are taken care of automatically by the database
management system. The executions should exhibit "ACID" properties. Atomicity means that either
all the retrievals, updates and deletions within data are performed or all of its effects are aborted.
Consistency means that the transaction program is semantically correct, i.e. it keeps the database in
a consistent state if run alone. Isolation means that the concurrent executions of different
transaction programs should behave towards the user and database as if there were no concurrency
in running them. Durability means that the results of successfully terminated transaction program
executions must persist in the state of database irrespective of the other concurrently running
transactions or system crashes that might destroy the state of the system produced by the
transaction. The results of the earlier studies on transaction management issues are exhaustively
represented in [2] and [7].

There are some differences between e- and m-commerce transactions that should be taken into
account in transaction management [10]:
• the mobile e-commerce environment is hostile in the sense that the customers or merchants

might be traitorous;
• in the mobile e-commerce environment a terminal can easily be stolen and taken in an

unauthorised use;
• the terminals in the mobile e-commerce have much less processor, memory and other resources;
• the security mechanisms are different ;
• existing m-commerce infrastructure is not homogeneous, but rather different from country to

country;

mailto:vagan@it.jyu.fi

• "location invalidation", i.e., transaction becoming invalid due to out-dated location information
is specific to wireless.

Mobile E-commerce transactions are currently being developed in an industry-led consortium
called MeT-forum [5]. The work has produced a public white paper [4] where the opportunities and
risks of m-commerce are discussed. Scenarios (business models) for the m-commerce are currently
being developed.

Location-based services (LBS) are based on the fact that the terminal has a position on the earth
and this is made known to applications running on the infrastructure. The infrastructure can be
running on mobile operator's sphere of control or on some external service provider. A typical
query is: "Where am I now?", "Where is the cheapest restaurant that is 500 m away?", "Send me a
taxi!" There are also another emerging applications [9].

The main goals of this paper are to provide the description of the TM based on assumption that it
is an independent mobile terminal application, which can integrate different distributed external e-
services by managing appropriate transactional processes. For that we use the ontology-based
framework for transaction management so that the TM will be able to manage transaction across
multiple e-services and we consider management of distributed location-based services as an
example of such ontology-based TM implementation.

2 Ontology-based Transaction Monitor

Here we provide some background and the implementation basic for a TM based on ontologies.

2.1 Concept of Ontology-Based Transaction Management
The implementation of the TM we are basing on the assumption that the highest level of control
functions related to transactions will be in hands of a user i.e. they should be implemented at the
mobile terminal. This means that a user will be able to decide when to begin new transaction, when
to stop or cancel it, when to switch from one service to another during the transaction, which values
of parameters to use when submitting queries to a service and so on. Thus TM itself will be placed
in a mobile terminal.

In general case we suppose that a user probably will need to contact several e-services to
perform one transaction. Service better than user knows its recent offerings and the order of actions,
which a user should do to get the service, he needs. This means that all interactions within one
service will be better managed by a service itself. Such set of interactions we will call as a
subtransaction and left the monitoring of it to a service. However we are leaving to a user the right
to cancel active subtransaction and, due to atomicity requirements, return to the state, which was
before the subtransaction started.

Mobile terminal should be able to manage situations when the contact with one service inside the
transaction might be necessary to get an information, which is required as an input to deal with
another service within the same transaction. To handle such cases a user should be sure that the Ids
of such cross-parameters are the same for different services. For example, if one service returns to a
user as output parameter "terminal location" and after that a user switches to LBS asking for a map
around his location, then the LBS should recognize the input "terminal location" by the same way
as the first service does.

To make possible to the TM to handle multiple service transactions and standardize e-services
for that, we are presenting the concept of ontology-based transaction management (Figure 1) for
implementation of the TM.

Every client in Figure 1, which in our case is mobile terminal, is equipped with a TM. Monitor
was registered to several services and keeps basic service data about them, e.g. brief description, Id,
contact address, the recent state of the monthly bill for the use of appropriate service and so on.

Client also keeps data about active transaction, e.g. current state of parameters, active
subtransaction, last query and so on.

Every service in Figure 1 is equipped with a Subtransaction Monitor, which allows to a service
to work with multiple clients and know current state of a subtransaction with each of them. This
Monitor manages stored at the service basic data about clients, e.g. logins, passwords, contact
addresses, the recent state of an active subtransaction with this client, recent value of monthly bill of
this client and so on. Monitoring is based on a service tree, which keeps an order of basic service
actions, offered by a service to its clients, and appropriate states of possible subtransactions with
this service.

The core of the approach is ontologies (Figure 1). Ontologies should be placed both in mobile
terminals and in services, which is actually our case, or should be easily accessed by both from a
third party. Ontologies define common multiple clients - multiple services standards and
vocabularies for the use of the names, types, schemas, default values for parameters, atomic service
actions with appropriate structure of their input and output. In our implementation ontologies help
to the TM to deal with multiple services during transactions and simplify appropriate user interface.

Transaction data

Service 1 ********

Service 2 ********

…

Service s ********

Services data

Transaction monitor

Client 1

…

Service 1 ********

Service 2 ********

…

Service s ********

Services data

Transaction monitor

Client r

Parameter 1

Parameter 2

…

Parameter n

Recent value

Recent value

…

Recent value

Transaction data

Parameter 1

Parameter 2

…

Parameter n

Recent value

Recent value

…

Recent value

Service atomic action ontologies

Parameter 1

Parameter 2

…

Parameter n

Parameter ontologies

Ontologies

Name 1

Name 2

…

Name n

Default value / schema 1

Default value / schema 2

…

Default value / schema n

Name of action 1

input parameters

output parameters

Name of action 2

input parameters

output parameters

Name of action k

input parameters

output parameters

…

Service Tree

Client 1 ********

Client 2 ********

…

Client r ********

Clients data

Subtransaction monitor

Service 1

Service Tree

Client 1 ********

Client 2 ********

…

Client r ********

Clients data

Subtransaction monitor

Service s

…

Figure 1. The conceptual scheme of the ontology-based transaction management

2.2 Some basic definitions

Let an action be a single client-server query-response session between the mobile terminal
(hereinafter - terminal) and the e-service provider (hereinafter - service) as following:

),...,,,,...,,(2121 qppppi xxxxxxA +++ ,

where is action's Id; - Ids of p input parameters for the action, which should be

specified at the terminal to create a query; - Ids of q output parameters of
the action, which the terminal receives as the result to its query.

iA pxxx ,...,, 11

qppp xxx +++ ,...,, 21

Subtransaction is a vector of one or more actions between a terminal and the service

 and appropriate states managed by the service with definitely stated final goal
and common memory of parameters:

iSTR

jServ kSS ,...,0

jServkki SLOGOUTSASASASLOGINSSTR]}[],[],...,[],[],[;{: 01322110 − ,

where is an initial state of the subtransaction, means that after performing the

action the subtransaction will come to state , LOGIN and LOGOUT are two obligatory
actions, which are marginal for every service.

00 =S

iA
][1+ii SA

1+iS

Transaction is a vector of one or more subtransactions with the same terminal Term and
possibly different services managed by the terminal, with definitely stated final goal and common
memory of parameters:

lTR f

fTermrl STRSTRSTRTR },...,,{: 21 .

Service tree is a structured set of subtransactions, which a service can offer to his clients and
which is used by a service to manage subtransactions with clients (Figure 2). A subtransaction is
any route in a tree from Login to Logout nodes, which includes at least one action of interest. Action
of interest, toned for every subtransaction in the service tree in Figure 2, is such an action, which
outcome is in particular interest of a customer and has an economic value.

S2A1

S3A2
S4A3

S5A4

S8A5
S9A6

S10A7

S6A4
S7A6

S11A6

S1

LOGIN (begin subtransaction)S0

S0
LOGOUT (end subtransaction)

Figure 2. An example of a Service tree as a collection of subtransactions offered by the Service to its
customers. In the rectangles together with the Id of an action there is also Id of a state, into which an
appropriate subtransaction is coming after performing this action

2.3 Constants, ontologies and variables

In the TM model we consider a group of constants, which are defined by initial settings of the
monitor (See Table 1). The group consists of:

1) basic constants, which define Ids of the terminal and services used, basic screens for the
interface, total numbers of services, actions and parameters, which TM is operating with;

2) service atomic actions ontologies define basic actions with their input and output, from which
every service can be composed, and which are used as a common procedural language between
a client and a service (include always LOGIN and LOGOUT actions ontologies);

3) parameter ontologies describe parameters, which can be used in actions, by providing their Ids,
default values and types (or schemas), and which are actually a common declarative language
between a client and a service.

Table 1. Basic constants and ontologies of the TM

ID of the Constant Dimension Value
Basic constants:
TERMINAL_ID 1 From settings

TOTAL_NUMBER_OF_SERVICES 1 From settings

TOTAL_NUMBER_OF_ACTIONS 1 From settings

TOTAL_NUMBER_OF_PARAMETERS 1 From settings

SERVICE_ID TOTAL_NUMBER_OF_SERVICES From settings

SCREEN_FRAME 16 From settings

Service atomic action ontologies:
ACTION_ID TOTAL_NUMBER_OF_ACTIONS From settings

INPUT_PARAMETERS_FOR_ACTION TOTAL_NUMBER_OF_ACTIONS ×
TOTAL_NUMBER_OF_PARAMETERS

From settings

OUTPUT_PARAMETERS_FROM_ACTION TOTAL_NUMBER_OF_ACTIONS ×
TOTAL_NUMBER_OF_PARAMETERS

From settings

Parameter ontologies:
PARAMETER_ID TOTAL_NUMBER_OF_PARAMETERS From settings

PARAMETER_DEFAULT_VALUE TOTAL_NUMBER_OF_PARAMETERS From settings

PARAMETER_TYPE/SCHEMA TOTAL_NUMBER_OF_PARAMETERS From settings

In the TM model we consider three groups of variables:

1) control variables (Table 2) have sense only for a TM and are used to manage different states of
the terminal during going-on transactions, subtransactions and actions;

2) working variables (Table 3) are used to manage parameters' states and provide common
memory for different subtransactions, which can be run with different services.
PARAMETER_CANCEL_ SUBTRANSACTION_VALUE is used to guarantee atomicity of a
subtransaction (if for some reason a subtransaction cannot normally be finished, then the value
of each parameter from the very beginning of the subtransaction will be restored);

3) billing variables (Table 4) are used to manage billing data in the TM. The terminal will collect
bills separately for every service adding online price for appropriate service actions to it, when it
is requested.

Table 2. Control variables of the TM

ID of the Control Variable Dimension Initial Value
CURRENT_STATE_OF_TRANSACTION 1 0

CURRENT_STATE_OF_SUBTRANSACTION 1 0

LIST_OF_AVAILABLE_ACTIONS TOTAL_NUMBER_OF_ACTIONS 0

ACTIVE_ACTION_ID 1 0

ACTIVE_PARAMETER_ID 1 0

ATOMICITY_PROTECTOR 1 0

Table 3. Working variables of the TM

ID of the Working Variable Dimension Initial Value
PARAMETER_RECENT_VALUE TOTAL_NUMBER_OF_

PARAMETERS
PARAMETER_DEFAULT_VALUE

PARAMETER_CANCEL_SUBTRANSACTION
_VALUE

TOTAL_NUMBER_OF_
PARAMETERS

PARAMETER_DEFAULT_VALUE

SCREEN 1 Screen 1

Table 4. Billing variables of the TM

ID of the Billing Variable Dimension Initial Value

BILL_RECENT_VALUE TOTAL_NUMBER_OF_SERVICES 0

PRICE_FOR_LAST_ACTION 1 0

2.4 Actions: query-response sessions

Service action in our model is a single query-response session. Formats of service queries, which a
mobile terminal can submit to a service and appropriate responses are given in Figure 3 (a-b). Being
a part of a subtransaction this query-response session change a subtransaction state from one to
another, according to a service tree. There are also control actions possible to be used to protect the
subtransaction atomicity (like "cancel query" or "repeat response", etc.).

a) Service Query:

Terminal Servicequery

CURRENT_STATE_OF_SUBTRANSACTION ACTIVE_ACTION_ID

PARAMETER_ID1 /PARAMETER_RECENT_VALUE1/ …

TERMINAL_ID

PARAMETER_IDp /PARAMETER_RECENT_VALUEp/

INPUT_PARAMETERS_FOR_ACTION

b) Service Response:

Terminal Serviceresponse

CURRENT_STATE_OF_SUBTRANSACTION

ACTIVE_ACTION ID PARAMETER_ID1 /PARAMETER_RECENT_VALUE1/ …

PARAMETER_IDq /PARAMETER_RECENT_VALUEq/

SERVICE_ID

LIST_OF_AVAILABLE_ACTIONS

PRICE_FOR_LAST_ACTION…

OUTPUT_PARAMETERS_FROM_ACTION

Figure 3. Formats for query (a) and response (b) of a service action in terms of constants, ontologies and
variables.

An example of two service actions performed is shown in Figure 4.

Query 1:

LOGIN login /vagan/ password /1234/0501234567

"Client 0501234567 …

… has made LOGIN query to server.

For that the client entered his login…

…and password."

S0

…of active subtransaction…

… being in S0 state …

Response 1:

LOGIN LOGIN_REPLY /OK/ S1MMM-2001 A1

"Server MMM-2001 reports …

…that during active subtransaction …

…your LOGIN action…

…was OK !

Now you come to state S1 ,…

…after which the only action you may choose is A1."

Query 2:

A10501234567

"Client 0501234567 …

… has made A1 action (query) to server.

For that the client entered
requested input parameters.

S1

…and being in S1 state of it…

… during active subtransaction…

Input parameters for action A1

Response 2:

A1 S2MMM-2001 A2,

"Server MMM-2001 reports …

…that during active subtransaction…

…your action (query) A1
has been processed and…

Now you come
to state S2 ,…

…after which the actions you
may choose are A2, A3 and A4."

Output parameters from action A1

…following outcomes are obtained.

A3, A4$1

Price for outcomes is $1 .

Figure 4. An example of two performed actions (client-server query-response sessions) between the
Terminal and the Service. These are first two actions of the subtransaction according to the Service Tree
from Figure 2

3 Ontology-based Transaction Monitor for m-commerce location-

based services

Here we consider the implementation of the ontology-based TM to manage transactions for
location-based services. We consider the model example of two services, LBS and positioning
service, across which the TM will perform transactions. For that we will define necessary model
ontologies and show basic stages of transactional process with the Monitor.

3.1 Constants and ontologies for the LBS model example

We will consider the following basic constants and the subset of parameters, actions and
appropriate ontologies to describe the LBS-type services as presented in Table 5 and Figures 5a-d.

Table 5. Constants and ontologies for the LBS

ID of the Constant Value
Basic constants:
TERMINAL_ID From settings
TOTAL_NUMBER_OF_SERVICES 2
TOTAL_NUMBER_OF_ACTIONS 3
TOTAL_NUMBER_OF_PARAMETERS 9
SERVICE_ID [1] POSITIONING_SERVICE
SERVICE_ID [2] LOCATION_BASED_SERVICE

Service atomic action ontologies:
ACTION_ID [1] LOCATE_BY_ID
ACTION_ID [2] LOCATE_BY_ADDRESS
ACTION_ID [3] GET_MAP
INPUT_PARAMETERS_FOR_ACTION [1,*] TERMINAL_ID
OUTPUT_PARAMETERS_FROM_ACTION [1,*] LATITUDE

LONGITUDE
ALTITUDE

INPUT_PARAMETERS_FOR_ACTION [2,*] STREET_NUMBER
STREET_NAME
CITY_NAME
STATE/PROVINCE_NAME
COUNTRY_NAME

OUTPUT_PARAMETERS_FROM_ACTION [2,*] LATITUDE
LONGITUDE

INPUT_PARAMETERS_FOR_ACTION [3,*] LATITUDE
LONGITUDE

OUTPUT_PARAMETERS_FROM_ACTION [3,*] MAP

Parameter ontologies:
PARAMETER_ID [1] LATITUDE
PARAMETER_DEFAULT_VALUE [1] 0 [or optional: latitude of Jyvaskyla RW Station]
PARAMETER_TYPE/SCHEMA [1] 32-bit signed integer
PARAMETER_ID [2] LONGITUDE
PARAMETER_DEFAULT_VALUE [2] 0 [or optional: longitude of Jyvaskyla RW Station]
PARAMETER_TYPE/SCHEMA [2] 32-bit signed integer
PARAMETER_ID [3] ALTITUDE
PARAMETER_DEFAULT_VALUE [3] 0 [or optional: altitude of Jyvaskyla RW Station]
PARAMETER_TYPE/SCHEMA [3] 32-bit signed integer
PARAMETER_ID [4] STREET_NUMBER
PARAMETER_DEFAULT_VALUE [4] 16
PARAMETER_TYPE/SCHEMA [4] 2-byte unsigned integer
PARAMETER_ID [5] STREET_NAME
PARAMETER_DEFAULT_VALUE [5] HANNIKAISENKATU
PARAMETER_TYPE/SCHEMA [5] ASCII text
PARAMETER_ID [6] CITY_NAME
PARAMETER_DEFAULT_VALUE [6] JYVASKYLA
PARAMETER_TYPE/SCHEMA [6] ASCII text

PARAMETER_ID [7] STATE/PROVINCE_NAME
PARAMETER_DEFAULT_VALUE [7] CENTRAL_FINLAND
PARAMETER_TYPE/SCHEMA [7] ASCII text
PARAMETER_ID [8] COUNTRY_NAME
PARAMETER_DEFAULT_VALUE [8] FINLAND
PARAMETER_TYPE/SCHEMA [8] ASCII text
PARAMETER_ID [9] MAP
PARAMETER_DEFAULT_VALUE [9] Map around Jyvaskyla Railway Station
PARAMETER_TYPE/SCHEMA [9] GML file

Locate by ID

Terminal ID

Latitude Longitude

OUTPUT_PARAMETERS
_FROM_ACTION

ACTION_ID

INPUT_PARAMETERS_
FOR_ACTION

Altitude

Locate by address

Country_Name

Latitude Longitude

OUTPUT_
PARAMETERS_
FROM_ACTION

ACTION_ID

INPUT_PARAMETERS
_FOR_ACTION

State/Province_Name

City_Name

Street_Name

Street_Number

Get map

Map

Latitude Longitude

OUTPUT_
PARAMETERS_
FROM_ACTION

ACTION_ID

INPUT_
PARAMETERS_
FOR_ACTION

Get Info

point_address

point_of_interest

OUTPUT_
PARAMETERS

_FROM_ACTION

ACTION_ID

point_phone

point_info

OUTPUT_
PARAMETERS

_FROM_ACTION

a) "LOCATE_BY_ID" b) "LOCATE_BY_ADDRESS" c) "GET_MAP" d) "GET_INFO"

Figure 5. Action ontologies for the LBS

3.2 Service trees for the LBS model example

We are considering two services: positioning service and location-based service (LBS). Suppose
that the positioning service performs two actions - locating the mobile terminal based on its ID or
locating a user based on a street address (i.e. transfer submitted street address to the coordinates).
Based on location coordinates, the LBS can deliver an appropriate Map to a user's terminal and, if
user selects an appropriate point of interest on this map, the LBS delivers appropriate information
about selected point to a user's terminal. The appropriate service trees for positioning service and
LBS can be presented as it shown in Figures 6 (a) and (b) 11 respectively.

S1Locate by ID

S1LOGINS0

S0LOGOUT

S1Locate by Address

S2Get map

S2Get info

S1LOGINS0

S0LOGOUT

a) Possible service tree of the Positioning Service b) Possible service tree of the Location
Based Service

Figure 6. Possible service tree of the services involved

3.3 Transaction sequence diagram for the LBS model example

Assume that a user of the terminal, which is equipped by the TM, is a registered user of the two
above-mentioned services (Positioning Service and LBS).

Consider following scenario. A user (tourist), being in some new for him area, needs to find
information about one of a nearest hotels and find the route how to reach it. Assume also that a user
is standing in such a place that he is able to see his street address. Let the address be "43 Nokatu,
Jyvaskyla, Finland". First the tourist uses the address to get his coordinates from positioning service
and then uses the coordinates to get map around his location from LBS. LBS provides requested
map showing available points of interests on it (including hotels). The user selects one of nearest
hotels from the map and makes request to LBS to deliver information about it. Finally the LBS
delivers requested information about selected point including necessary contact details.

Example scenario of the use of the TM to get necessary information by managing transactions
across two services are shown in Figure 7 in the form of sequence diagrams.

Terminal
Location-

Based Service
Positioning

Service

Login (user_ID, password)

Login (Login - OK)

Get map (coordinates)

Get map (map)

Locate by address (address)

Locate by address (Coordinates)

Login (user_ID, password)

Login (Login - OK)

Get info (point of interest)

Get info (point information)

Logout (user_ID)

Logout (Logout - OK)

Logout (user_ID)

Logout (Logout - OK)

Figure 7. Sequence diagrams for the LBS example

Notice that these are the model examples and for commercial implementation these scenarios as
well as TM functionality can be optimised and further developed.

If we consider the whole cycle of actions from sending address of current location until getting
information about desirable hotel as a entire terminal-based transaction. It consists of two
subtransactions, first one with Positioning Service and second one with LBS. The goal of first
subtransaction is to get coordinates of current location and the goal of second subtransaction is to
get information about the hotel. In Figure 8 the actions (query-response pairs described in XML)
are shown related to the subtransaction with Positioning Services. In Figure 9 the actions related to
the subtransaction with LBS are presented with similar description.

<Query
 Query_ID="01-03-2002_12:33:57"
 Type="Service"
 To_Service="Positioning_Service"
 From_Terminal="0501234567"
 Terminal_State="S0"
>
 <Action ID="LOGIN"/>

<Input_Parameters>
 <Parameter ID="user_ID” Type="text” Value="vagan"/>
 <Parameter ID="password” Type="text” Value="4321"/>
</Input_Parameters>

</Query>

Terminal Positioning Service

“Login” Query

<Response
 Response_ID="01-03-2002_12:34:42” Type="Service” To_Query="01-03-2002_12:33:57”
 To_Terminal="0501234567” From_Service="Positioning_Service” Terminal_State="S1"
>
 <Action ID="LOGIN"/>
 <Output_Parameters>

<Parameter ID="login_reply” Type="binary” Value="OK"/>
 </Output_Parameters>

 <Price_for_Action Currency="EURO" Value="0.0"/>
 <Bill_Recent_Value Currency="EURO" Value="0.0"/>
 <Actions_Allowed>

<Action ID="LOGOUT"/>
<Action ID="LOCATE_BY_ID"/>
<Action ID="LOCATE_BY_ADDRESS"/>

 </Actions_Allowed >
</Response>

Terminal Positioning Service

“Login” Response

<Query
 Query_ID="01-03-2002_12:34:53"
 Type="Service"
 To_Service="Positioning_Service"
 From_Terminal="0501234567"
 Terminal_State="S1"
>
 <Action ID="LOCATE_BY_ADDRESS"/>
 <Input_Parameters>
 <Parameter ID="street_number” Type="integer” Value="43"/>
 <Parameter ID="street_name” Type="text” Value="Nokatu"/>
 <Parameter ID="city_name" Type="text” Value="Jyvaskyla"/>
 <Parameter ID="country_name” Type="text” Value="Finland"/>
 </Input_Parameters>
</Query>

Terminal Positioning Service

“Locate by Address” Query

<Response
 Response_ID= "01-03-2002_12:35:14” Type= "Service"
 To_Query= "01-03-2002_12:34:53” To_Terminal= "0501234567"
 From_Service= "Positioning_Service” Terminal_State= "S1"
>
 <Action ID="LOCATE_BY_ADDRESS"/>
 <Output_Parameters>
 <Parameter ID="latitude" Type="integer" Value="54321"/>
 <Parameter ID="longitude" Type="integer" Value="98765"/>
 </Output_Parameters>

<Price_for_ActionCurrency="EURO" Value="0.23"/>
<Bill_Recent_Value Currency="EURO" Value="0.23"/>
 <Actions_Allowed>

<Action ID="LOGOUT"/>
<Action ID="LOCATE_BY_ID"/>
<Action ID="LOCATE_BY_ADDRESS"/>

 </Actions_Allowed >
</Response>

Terminal Positioning Service

“Locate by Address” Response

<Query
 Query_ID="01-03-2002_12:35:20"
 Type="Service"
 To_Service="Positioning_Service"
 From_Terminal="0501234567"
 Terminal_State="S1"
>
 <Action ID="LOGOUT"/>
 <Input_Parameters>
 <Parameter ID="user_ID” Type="text” Value="vagan"/>
 </Input_Parameters>
</Query>

Terminal Positioning Service

“Logout” Query

<Response
 Response_ID= "01-03-2002_12:35:25” Type= "Service"
 To_Query= "01-03-2002_12:35:20” To_Terminal= "0501234567"
 From_Service= "Positioning_Service” Terminal_State= "S0"
>
 <Action ID="LOGOUT"/>
 <Output_Parameters>
 <Parameter ID="logout_reply” Type="binary” Value="OK"/>
 </Output_Parameters>

 <Price_for_Action Currency="EURO" Value="0.0"/>
 <Bill_Recent_Value Currency="EURO" Value="0.23"/>
 <Actions_Allowed>
 <Action ID="LOGIN"/>
 </Actions_Allowed >
</Response>

Terminal Positioning Service

“Logout” Response

Figure 8. XML-based query-response sessions with Positioning Service in the LBS example

<Query
 Query_ID="01-03-2002_12:35:47"
 Type="Service"
 To_Service="Location_Based_Service"
 From_Terminal="0501234567"
 Terminal_State="S0"
>
 <Action ID="LOGIN"/>
 <Input_Parameters>
 <Parameter ID="user_ID” Type="text” Value="vagan"/>
 <Parameter ID="password” Type="text" Value="1234"/>
</Input_Parameters>
</Query>

Terminal Location-Based Service

“Login” Query

<Response
 Response_ID= "01-03-2002_12:36:01” Type= "Service"
 To_Query= "01-03-2002_12:35:47” To_Terminal= "0501234567"
 From_Service= "Location_Based_Service” Terminal_State= "S1"
>
 <Action ID="LOGIN"/>
 <Output_Parameters>
 <Parameter ID="login_reply” Type="binary" Value="OK"/>
 </Output_Parameters>

 <Price_for_Action Currency="USD" Value="0.0"/>
 <Bill_Recent_Value Currency="USD" Value="0.0"/>
 <Actions_Allowed>
 <Action ID="LOGOUT"/>
 <Action ID="GET_MAP"/>
 </Actions_Allowed >
</Response>

Terminal Location-Based Service

“Login” Response

<Query
 Query_ID="01-03-2002_12:39:07"
 Type="Service"
 To_Service="Location_Based_Service"
 From_Terminal="0501234567"
 Terminal_State="S1"
>
 <Action ID="GET_MAP"/>
 <Input_Parameters>
 <Parameter ID= "latitude” Type= "integer” Value="54321"/>
 <Parameter ID= "longitude” Type= "integer” Value="98765"/>
 </Input_Parameters>
</Query>

Terminal Location-Based Service

“Get Map” Query

<Response
 Response_ID= "01-03-2002_12:41:34” Type= "Service"
 To_Query= "01-03-2002_12:39:07” To_Terminal= "0501234567"
 From_Service= "Location_Based_Service” Terminal_State= "S2"
>
 <Action ID="GET_MAP"/>
 <Output_Parameters>
 <Parameter ID= "map” Type= "GML” Value= "GML Data"/>
 </Output_Parameters>

 <Price_for_Action Currency="USD" Value="0.15"/>
 <Bill_Recent_Value Currency="USD" Value="0.15"/>
 <Actions_Allowed>
 <Action ID="LOGOUT"/>
 <Action ID="GET_MAP"/>
 <Action ID="GET_INFO"/>
 </Actions_Allowed >
</Response>

Terminal Location-Based Service

“Get Map” Response

<Query
 Query_ID="01-03-2002_12:50:12"
 Type="Service"
 To_Service="Location_Based_Service"
 From_Terminal="0501234567"
 Terminal_State="S2"
>
 <Action ID="GET_INFO"/>
 <Input_Parameters>
 <Parameter ID= "point_of_interest” Type="text” Value="Alba_Hotel"/>
 </Input_Parameters>
</Query>

Terminal Location-Based Service

“Get Info” Query

<Response
 Response_ID= "01-03-2002_12:51:04” Type= "Service” To_Query= "01-03-2002_12:50:12"
 To_Terminal= "0501234567” From_Service= "Location_Based_Service” Terminal_State= "S2"
>
 <Action ID="GET_INFO"/>
 <Output_Parameters>
 <Parameter ID="point_address" Type="text" Value="Mattilaniemi A1"/>
 <Parameter ID="point_phone" Type="text" Value="0509876543"/>
 <Parameter ID="point_info” Type="text” Value="Rooms available:
 single (60 EURO), double (80 EURO)"/>
 </Output_Parameters>
 <Price_for_Action Currency="USD" Value="0.10"/>
 <Bill_Recent_Value Currency="USD" Value="0.25"/>
 <Actions_Allowed>
 <Action ID="LOGOUT"/>
 <Action ID="GET_MAP"/>
 <Action ID="GET_INFO"/>
</Actions_Allowed >
</Response>

Terminal Location-Based Service

“Get Info” Response

<Query
 Query_ID="01-03-2002_12:58:03"
 Type="Service"
 To_Service="Location-Based_Service"
 From_Terminal="0501234567"
 Terminal_State="S2"
>
 <Action ID="LOGOUT"/>
 <Input_Parameters>
 <Parameter ID="user_ID” Type="text” Value="vagan"/>
 </Input_Parameters>
</Query>

Terminal Location-Based Service

“Logout” Query

<Response
 Response_ID= "01-03-2002_12:58:55” Type= "Service"
 To_Query= "01-03-2002_12:35:20” To_Terminal= "0501234567"
 From_Service= "Location_Based_Service” Terminal_State= "S0"
>
 <Action ID="LOGOUT"/>
 <Output_Parameters>
<Parameter ID="logout_reply" Type="binary" Value="OK"/>
 </Output_Parameters>

 <Price_for_Action Currency= "USD” Value= "0.0"/>
 <Bill_Recent_Value Currency= "USD” Value= "0.25"/>
 <Actions_Allowed>
 <Action ID="LOGIN"/>
 </Actions_Allowed >
</Response>

Terminal Location-Based Service

“Logout” Response

Figure 9. XML-based query-response sessions with Location-Based Service in the LBS example

4 Related work

According to MeT "Consistent User Experience" framework [3] the user interface should allow to
people to transfer their knowledge and skills from one application to any other application.
Consistency of visual interface and terminology helps people to learn and then easily recognize the
"language" of the interface. The TM, due to implementation of the concept of ontology-based
transaction management, offers such a consistent standardize user interface with multiple services.

E-speak is an open software platform designed specifically for the development, deployment,
intelligent interaction, and management of globally distributed e-services [12]. E-Speak makes
services capable to interact with each other on behalf of their users, and compose themselves into
more complex services. The E-Speak Service Engine [12] actually is a TM software that performs
the intelligent interaction of e-services. The TM in the hands of user is a good example of an E-
Speak engine, which expands the E-Speak internet-based framework to wireless.

OntoWeb [6] - Ontology-based information exchange for knowledge management and electronic
commerce is the IST Project Thematic Network of 64 academic and industrial partners inside and
outside Europe. The goal of the OntoWeb Network is to bring together researchers and industrials
promoting interdisciplinary work and strengthening the European influence on Semantic Web
standardisation efforts such as those based on RDF and XML. The implementation of the concept
of ontology-based transaction management for mobile terminal allows expanding a target for the
Semantic Web framework also to m-commerce.

DAML-S [1] - semantic markup for Web services is one of the Semantic Web community efforts
to enable not only content but also services on the Web. It will enable users and software agents to
automatically discover, invoke, compose, and monitor Web resources offering services, under
specified constraints. The DAML-S coalition is developing ontology of services, service profiles
and appropriate process model. The use of DAML (DARPA Agent Markup Language) supposes
that artificial agents will do most of future transactions across multiple web services. The mobile
terminal-based TM is one step towards agent based future of e-services in a mobile environment.

5 Conclusion

In this paper we assume that TM is an independent mobile terminal application, which can integrate
different distributed external e-services by managing appropriate transactional processes. For that
we use the ontology-based framework for transaction management so that the TM will be able to
manage transaction across multiple e-services and we consider management of distributed location-
based services as an example of such ontology-based TM implementation.

Another possible approach, which was described in [8] was based on the assumption that some
specific terminal-based application is already exists, which supports certain transactions with
certain services. In that case the TM was used as a tool to guarantee basic transactional properties of
that transactions, i.e. protect the application's data from terminations related to the specifics of a
mobile device. TM in this case will be fully controlled by the application.

With the increasing market of electronic commerce it becomes an interesting aspect to use
autonomous mobile agents for electronic business transactions. Being involved in money
transactions, supplementary security features for mobile agent systems have to be ensured. In [11]
architecture was presented for a mobile agent system which offers fault tolerance for the whole
agent system at a high level. This architecture pretends to guarantee security for the host as well as
security for the agent. To handle these issues for mobile agents we use various encryption
mechanisms and a novel method was applied for mobile agent systems by using distributed
transactions in the architecture. Due to this security architecture an agent will be enabled to carry
out money transactions.

All three approaches seem to be reasonable to integrate to be used in the appropriate context.

Acknowledgements

The economic support of the Multimeetmobile project by the National Technology Agency of
Finland (TEKES), Nokia, Hewlett Packard Finland, and Yomi Vision under contract 40599/99 is
highly appreciated. Useful discussions and suggestions from Prof. J. Veijalainen and other
colleagues from the Multimeetmobile project team are also highly appreciated.

References

1. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci, T.

Payne, K. Sycara, H. Zeng, DAML-S: Semantic Markup for Web Services, May 2002, available in:
http://www.daml.org/services/daml-s/2001/05/daml-s.html.

2. P. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Database Systems,
Addision-Wesley, 1987.

3. MeT Consistent User Experience, Version 1.0, 21 February 2001, available in: http://www.
mobiletransaction.org.

4. MeT Overview White Paper, Version 2.0, 29 January 2001, available in: http://www.
mobiletransaction.org/pdf/White%20Paper_2.0.pdf.

5. Mobile Electronic Transactions Forum, available in: http://www.mobiletransaction.org/.
6. OntoWeb: Ontology-Based Information Exchange for Knowledge Management and Electronic

Commerce, 2000, available in: http://www.ontoweb.org.
7. C. Papadimitriou, The Theory of Database Concurrency Control, Computer Science Press, 1986.
8. V. Terziyan, J. Veijalainen, M-Commerce Transaction Model Implementation at a Mobile Terminal,

Multimeetmobile Project Report, TITU, Univ. of Jyvaskyla, 9 May 2001, 56 pp.
9. V. Terziyan, J. Veijalainen, H. Tirri, Mobile e-Commerce Transaction Model, Multimeetmobile Project

Report, TITU, Univ. of Jyvaskyla, 18 December 2000, 48 pp.
10. J. Veijalainen, Transactions in Mobile Electronic Commerce, LNCS, Vol. 1773, Springer, 1999, pp. 208-

229.
11. H. Vogler, T. Kunkelmann, M.-L. Moschgath, Distributed Transaction Processing as a Reliability

Concept for Mobile Agents, 6th IEEE Workshop on Future Trends of Distributed Computing Systems
(FTDCS '97), October 29-31, 1997.

12. What is E-Speak? Product Information, 2001, Hewlett Packard Company, available in: http://www.e-
speak.hp. com/product/overview.shtm.

http://www.daml.org/services/daml-s/2001/05/daml-s.html
http://www.mobiletransaction.org/
http://www.mobiletransaction.org/
http://www.mobiletransaction.org/pdf/White Paper_2.0.pdf
http://www.mobiletransaction.org/pdf/White Paper_2.0.pdf
http://www.mobiletransaction.org/
http://www.ontoweb.org/
http://www.e-speak.hp.com/product/overview.shtm
http://www.e-speak.hp.com/product/overview.shtm

	Ontological Modelling of E-Services to Ensure Appropriate Mobile Transactions
	Introduction
	Ontology-based Transaction Monitor
	Concept of Ontology-Based Transaction Management
	Some basic definitions
	Constants, ontologies and variables
	Actions: query-response sessions

	Ontology-based Transaction Monitor for m-commerce location-based services
	Constants and ontologies for the LBS model example
	Service trees for the LBS model example
	Transaction sequence diagram for the LBS model example

	Related work
	Conclusion

