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Abstract. This paper considers the context sensitive approach to handle interval
knowledge acquired from multiple sources. Each source gives its estimation of
the value of some parameter x.  The goal is to process all the intervals in a con-
text of trends caused by some noise and derive resulting estimation that is more
precise than the original ones and also takes into account the context of the
noise. The main assumption used is that if a knowledge source guarantees
smaller measurement error, then this source is more resistant against the effect
of the noise. This assumption allows us to derive and process trends among in-
tervals and end up to shorter resulting estimated interval than any of the original
ones. A trend decontextualization process and some of its main characteristics
are presented in the case of one trend. Then one way is discussed to formulate
groups of trends and its relation to decontextualization process.

1   Introduction

It is generally accepted that knowledge has a contextual component. Acquisition,
representation, and exploitation of knowledge in context would have a major contri-
bution in knowledge representation, knowledge acquisition, and explanation [3]. It is
noticed in [4] that knowledge-based systems do not use correctly their knowledge.
Knowledge being acquired from human experts does not usually include its context.

Contextual component of knowledge is closely connected with eliciting expertise
from one or more experts in order to construct a single knowledge base [2]. If more
than one expert is available, one must either select the opinion of the best expert or
pool the experts’ judgements [14]. It is assumed here that when experts’ judgements
are pooled, collectively they offer sufficient cues leading to smaller uncertainty.

All information about the real word comes from two sources: from measurements,
and from experts [9]. Measurements are not absolutely accurate. Every measurement
instrument usually has the guaranteed upper bound of the measurement error. The
measurement result is expected to lie in the interval around the actual value. This
inaccuracy leads to the need to estimate the resulting inaccuracy of data processing.
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When experts are used to estimate the value of some parameter, intervals are com-
monly used to describe degrees of belief [14]. Experts are often uncertain about their
degrees of belief making far larger estimation errors than the boundaries accepted by
them as feasible [7]. In both cases we deal with interval uncertainty, i.e. we do not
know exact values of parameters, only intervals where the values of these parameters
belong to. A number of methods to define operations on intervals that produce guar-
anteed precision have been developed in [12], [13], [10], and [1] among others.

In many real life cases there is also some noise which does not allow direct meas-
urement of parameters. To get rid of this noise it is necessary to subtract its value from
the result of measurement. The noise can be considered as an undesirable effect to the
evaluation of a parameter in the context. The subtraction of the noise in this sense has
certain analogy with the decontextualization [11], [8], [5]. When effect of noise is not
known it might be estimated using several coexisting knowledge sources. Some geo-
metrical heuristics were used in [6] to solve this problem without enough mathemati-
cal justification. It is natural to assume that different measurement instruments as well
as different experts possess different resistance against the influence of noise.  Using
measurements from several different instruments as well as estimations from multiple
experts we try to discover the effect caused by noise and thus be able to derive the
decontextualized measurement result.

This paper considers a context sensitive approach to handle interval knowledge ac-
quired from multiple knowledge sources. Each source is assumed to give its evalua-
tion, i.e. an estimated interval to which the value of a parameter x belongs. The goal is
to process all the given intervals in the contexts of trends and derive more precise
estimation of the value of parameter from them. The quality of each source is consid-
ered from two points of view: first, the value of guaranteed upper bound of measure-
ment error, and second, the value of a resistance against a noise. These are assumed to
occur together. The main assumption in this paper is that if a knowledge source guar-
antees lower upper bound of the measurement error, then the source in the same time
is more resistant against the effect of noise. This assumption allows us to derive dif-
ferent trends that result to shorter intervals for the value of the parameter x. These are
then combined to more precise estimation of this value.

In chapter 2 we present our decontextualization process and some of it main char-
acteristics in the case of one trend. Next chapter discusses about one way to formulate
groups of trends and its relation to decontextualization process. Chapter 4 discusses
combining results of several trends into one resulting interval. The last chapter in-
cludes very short conclusion.

2   Decontextualization

In this chapter we consider a decontextualization process to improve interval estima-
tion by processing recursively more bounded intervals against less bounded ones.

Let there be n knowledge sources (human beings or measurement instruments)
which are asked to make estimations of the value of a parameter x. Each knowledge
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source i, i=1,…,n gives his estimation as a closed interval [ ]L a bi i, , ii ba <  into

which he is sure that the value of the parameter belongs to.

Definition 2.1. The range of a parameter x is the length 00 ab −  of the interval

[ ]00,baL , which includes all possible intervals [ ]L i na bi i, , , ... , =1  of this parameter

estimation.

 Let us assume that all the knowledge sources are effected by the same misleading
noise in the context of estimation. Of course different knowledge sources are effected
by such a noise in a different way. The main assumption that we use in this paper is
that: if a knowledge source guarantees smaller measurement error (interval estimation
is more narrow), then this source is also more resistant against the effect of noise. This
assumption also means that the estimated value given by more precise knowledge
source is supposed to be closer to the actual value of the parameter x. This assumption
is used when we derive trends of intervals towards the actual value of the parameter x.

Definition 2.2. The uncertainty ui  of an interval [ ]L a bi i,  of parameter estimation is

equal to the length of the interval: iii abu −= ,  i=1,…,n.

To be precise, in a general case the value of uncertainty should be standardized
with the range of the parameter estimated, like the following:

00 ab

ab
u iist

i −
−= , i=1,…,n.

In this paper, however, we use and compare different estimations of the same pa-
rameter within the same range. That is why it is not essential to standardize a value of
uncertainty and we can use the Definition 2.2 working with uncertainty.

Definition 2.3. The quality qi  of interval [ ]L a bi i,  is the reverse of its uncertainty:
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1
, i=1,…,n.
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The above formula for calculating the resulting interval was selected because it
satisfies three main requirements:
•  the resulting interval should be shorter than the original ones,
•  the longer the original intervals are the longer should the resulting interval be,
•  shorter of the two intervals should locate closer the resulting interval than the

longer one.
In the following we will prove that the selected formula fulfills these three main re-

quirements.
The following theorem defines the relationships between the uncertainties of the

original and the resulting intervals.

Theorem 2.1. Let it be that [ ]
[ ]

[ ]L L
a b

L

a bi i

a j bj

res res, ,
,

=   ,  where  ares  and  bres  are as in

the right hand part of  the Definition 2.4.

Then: a) u
u u

u ures
i j

i j
=

⋅
+

;  b) u ures i< ;  c) u ures j< ;  d) q q qres i j= + .

Proof. (a) According to the Definition 2.4:
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Definition 2.2 gives us that:
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Theorem 2.2. Let it be that: [ ]
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where  ares1 , ares2 , bres1 , and bres2  are as in the right hand part of Definition 2.4.
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Theorem 2.3. Let it be that: [ ]
[ ]

[ ]L L
a b

L

a bj j

ai bi

res res, ,
, =

1 1
, and [ ]

[ ]
[ ]L L

a b

L

a bk k

ai bi

res res, ,
, =

2 2  ,

where ares1 , ares2 , bres1 , and bres2  are as in the right hand part of the Definition 2.4.

Let it be that  u uj k< .   Then: u ures res1 2
< .

Proof. Similarly as Theorem 2.2.

2.2 Operating with Several Intervals

The process of decontextualization with several intervals was described in the begin-
ning of this chapter. We describe now this process formally.

Let there be n intervals [ ]L i na bi i, , , ... , =1 , n ≥ 2 , u u i ni i< = −+1 1 1, ,... , .

The resulting interval: [ ] [ ]
[ ]

[ ]
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L

res res
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... ,

=
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2 2 is calculated recursively:
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An example. Let us suppose that three knowledge sources 1, 2, and 3 evaluate the
value of the attribute x to be in the following intervals:

[ ] [ ]L La b1 1 9 12, ,= , [ ] [ ]L La b2 2 6 11, ,= , [ ] [ ]L La b3 3 0 10, ,= .

The intervals are already in ascending order according to their uncertainties. The
resulting interval is derived by the recursive procedure above:
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 [ ] [ ] [ ]L L La b a bres res res res, , . , .= =
3 3

110769 12 6559 .

The resulting interval with the original ones is shown in Fig. 1.
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a2 b2

a3 b3

ares bres

a1 b1

x0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. The resulting interval and the original ones in the example

One can see that the resulting interval has no common points with two of the three
original intervals. This happens because the decontextualization process takes into
account the trend caused by noise in the estimation context.

3   A Trend Classification

In this chapter we consider one classification of trends into seven different groups of
trends. This classification is used to group together intervals based on the relations of
their endpoints.

Definition 3.1. There are seven groups of trends named as trends with direction dirk

and power powk (marked Lk
dir powk k ) as presented in Table 1. Each pair of inter-

vals [ ] [ ] [ ]L L L i ja b a b a bi i j j, , ,, ,∈ ≠
0 0

, belonging to the same group Lk
dir powk k 

keep the sign of ∆ ∆a b+ , ∆a , and ∆b  where ∆ ∆a a a b b bj i j i= − = −,   . The

direction of a trend group: left (‘l’), center (‘c’), right (‘r’), and the power of a trend
group: slow (‘<’), medium (‘=’), or fast (‘>’) are defined in the Table 1.

Table 1. Trends of uncertainty

Trend Direction→ left central right

Power ↓ Restrictions ∆ ∆a b+ > 0 ∆ ∆a b+ = 0 ∆ ∆a b+ < 0

slow
)0(

)0(

>∆
<∆

b

anda
Ll< Lc< Lr <

medium
)0(

)0(

=∆
=∆

b

ora
Ll = does not exist Lr =

fast
)0(

)0(

<∆
>∆

b

ora
Ll> does not exist Lr >
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In Fig. 2 there are three examples of trend groups with left direction and power: slow
(a), medium (b), and fast (c).

a3 b 3

a4 b4

a1 b1

x

a2 b2

a)

   

a3 b3

a4 b 4

a1 b 1

x

a2 b2

b)

   

a3 b3

a4 b4

a1b1

x

a2 b2

c)

Fig. 2. Left trend groups L L Ll l l< = >, ,

It is easy to show that the step of decontextualization gives resulting interval that
belongs to the same group of trends as the original intervals participating the process.

4   Deriving a Resulting Interval in the Case of Several Trends

In a common case it is possible that several different trends can be derived from the
same set of intervals. In this chapter we discuss one way of deriving resulting interval
when there exist several trends among the original intervals.

Definition 4.1. Let us suppose that the set L of interval opinions [ ]L i na bi i, , , ... =1  is

divided into m trends L k mk , , ... = 1 . The support Sk  for the trend Lk  is calculated

as follows: 
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, Ni is the number of different trends that includes the opinion [ ]L a bi i, .

Definition 4.2. Let the set of original interval opinions [ ]L L i na bi i
= =, , , ... , 1  con-
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Thus the resulting interval is expected to be closer to the result of those trends that
have more support among the original set of intervals.
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5   Conclusion

This paper discusses one approach to handle interval uncertainty in estimation of some
domain parameter. The case is considered when the estimation is made by multiple
knowledge sources in a context of a trend caused by possible noise. The approach is
based on an assumption that if a knowledge source guarantees less measurement error,
then this source in the same time is more resistant against the effect of possible noise.
In this paper we discussed one way to decontextualize knowledge given under mis-
leading noise when this basic assumption holds. We defined different groups of trends
among estimated intervals. We introduced one way how to take into account several
trends that exist among the original intervals when one resulting interval is produced.
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