
Khriyenko Oleksiy

DISTRIBUTED MOBILE WEB SERVICES BASED ON

SEMANTIC WEB

Master’s Thesis

Mobile computing

22.3.2005

University of Jyväskylä

Department of Mathematical Information Technology

Author: Oleksiy Khriyenko

Contact information: Roninmäentie 1G 23b, 40500 Jyväskylä, FINLAND,

olkhriye@cc.jyu.fi

Title: Distributed mobile web services based on Semantic Web

Work: Master’s Thesis

Pages: 100

Study Program: Mobile computing

Keywords: Semantic Web, mobile web service, service component, mobile agent,

integration environment, information integration, imbedded platform, maintenance,

monitoring, remote diagnostic.

Abstract: The next generation of knowledge management systems will utilize different

methods and techniques from the following communities to achieve the vision of

ubiquitous knowledge: Semantic Web and Web Services, Agent Technologies, Mobility.

To become an intellectual capital, a knowledge asset (Web resource or service) must be

shared; it increases in value while being used. The research work is devoted to a problem

of integration and an effective utilization of the distributed information resources, in

particular for the industry needs in the field of the automated support and maintenance of

field devices. The architecture of a global intelligent system of mobile service’s

components based on a semantic Web-enabled distributed integration environment is

offered. The model of the distributed product maintenance system is developed on the

basis of global intelligent system of mobile semantically annotated Web-services. A Model

of Distributed Industrial Product Maintenance System based on interaction of

heterogeneous distributed mobile Web services is described. Materials of this Master’s

Thesis underlie the papers: “Global Maintenance Network of Mobile Agent-Based Web

Service Components” submitted to International Journal “Knowledge and Information

System” (Springer, ISSN:0219-1377) and “OntoEnvironment: an integration infrastructure

for distributed heterogeneous resources” submitted to PDCN2004 (the IASTED

International Conference on Parallel and Distributed Computing and Networks).

 I

ACKNOWLEDGEMENTS
I am grateful to my supervisors: Ass. Professor (Yliassistentti) Vagan Terziyan from MIT

Department (University of Jyväskylä) and Dr. Jouni Pyötsiä from Metso Corporation for

useful consultations and materials. I would also like to thank my colleagues from the

Industrial Ontologies Group (Vagan Terziyan, Oleksandr Kononenko and Andriy Zharko)

for useful discussions within the scope of this work.

Also, I am thankful to Agora Center and especially to professor Pekka Neittaanmäki for so

important support during the term of writing the Master’s Thesis. Extra, I would like to

thank the leadership of the InBCT project (Agora Center) for provided assistance.

I would like to thank the Kharkov National University of Radioelectronics and the

University of Jyväskylä for the possibility to be a participant of Master’s program.

Especially, I would like to express my deep appreciation to Helen Kaykova and Vagan

Terziyan for their support and useful advices, which are so important for me, and my living

in Finland.

Also, I am thankful to Ritva Weber for so painstaking language check of my Master’s

Thesis.

Finally, I want to dedicate this Master’s Thesis to my parents, who are far from me now,

but always with me in my mind and my heart.

University of Jyväskylä, 22.3.2005

 II

TERMS AND ABBREVIATIONS

ACL Agent Communication Language

AI Artificial Intelligence

AS Agent-Shell

ASP Agent-Shell Platform

DAML DARPA Agent Markup Language

DAML–S DAML-based Web service ontology

FIPA Foundation for Intelligent Physical Agents

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

IIOP Internet Inter-ORB Protocol

KQML Knowledge Query and Manipulation Language

LAN A local area network

MC Maintenance Center

Metadata Data that describes other data. Often deals with the

format or authorship of the underlying data

OIL Ontology Inference Layer

OMG Object Management Group

Ontology A conceptual representation of the entities, meanings,

and relationships within a specific domain of

knowledge. See RDF, W3C, Metadata, OIL, Semantic

Web, DAML

 III

P2P Peer-to-Peer – computing paradigm where each node in

the network can be at the same time client and server

RDF Resource Description Framework

RDFS RDF Schema

Semantic Web A conceptual web built on top of the World Wide Web

in which all identified resources will be machine-

processable

SOAP Simple Object Access Protocol

SW Agent Software Agent

UDDI Universal Description, Discovery and Integration

W3C Worldwide Web Consortium

WAP Wireless application protocol

WSDL Web Services Description Language

WSEL Web Services Endpoint Language

WSFL Web Services Flow Language

XLANG An extension of WSDL

XML Extensible Markup Language

UML Unified Modelling Language

 IV

CONTENTS

1 INTRODUCTION ...1

1.1 VALUE OF THE PROBLEM DOMAIN..1

1.2 THESIS GOAL ..6

1.3 RELATIONS WITH OTHER PROJECTS..6

2 SEMANTIC WEB AND AGENTS APPROACHES IN WEB SERVICE

TECHNOLOGY ..8

2.1 WEB SERVICE INFRASTRUCTURE ..8

2.1.1 Web Service is … ..8

2.1.2 Service Properties and Types...10

2.1.3 Service Architectures...15

2.2 SEMANTIC WEB AND WEB SERVICES..17

2.2.1 SOAP, WSDL, UDDI technologies...17

2.2.2 Semantic Markup of Web Services ...22

2.2.3 Semantic Web-enabled Services..24

2.3 AGENT APPROACH TO WEB SERVICES ..24

2.3.1 Agent Technology..24

2.3.1.1 Software Agents...24

2.3.1.2 How Are Agents Built up?...27

2.3.1.3 Why Agents?..28

2.3.1.4 Multi-agent Systems ..29

2.3.2 Agents and Semantic Web Services ..29

2.3.2.1 The Semantic Layers of Agent-based Web-services Communications...30

2.3.2.2 Active Web-services ..31

2.3.2.3 Agent Standardization..33

2.3.2.4 Agent Environment..34

3 ONTOLOGY-BASED DISTRIBUTED INTEGRATION ENVIRONMENT FOR

HETEROGENEOUS RESOURCES ...36

3.1 ONTOSHELL APPROACH TO THE PROBLEM ...36

 V

3.2 INTERACTION MODELS ...41

3.2.1 Centralized Interaction Model ...41

3.2.2 Decentralized Interaction Model ...42

3.2.3 Hybrid Interaction Model ..42

3.3 MOBILITY ...45

3.4 BUSINESS MODEL ...46

3.4.1 Patterns of Behavior for Elements of OntoEnvironment.............................46

3.4.2 Business Relations between Players ..48

4 MOBILE (MOVABLE) WEB SERVICE BASED ON A SEMANTIC WEB50

4.1 NECESSITY OF MOBILE WEB SERVICES ..50

4.2 EQUIPMENT FOR MOBILE (MOVABLE) WEB SERVICE..52

4.3 SERVICE NETWORKS BASED ON THE AGENT-SHELL PLATFORM APPROACH53

4.4 WHO PROVIDES WEB SERVICES AND FOR WHOM ...57

5 GLOBAL INDUSTRIAL MAINTENANCE NETWORK BASED ON MOBILE

WEB SERVICES ...62

5.1 INDUSTRIAL PRODUCT’S MAINTENANCE ..62

5.1.1 Necessity of Industrial Maintenance..62

5.1.2 Field Devices Maintenance..63

5.1.3 Increasing Information Flow ...64

5.1.4 Existing Industrial Autonomous Maintenance Systems64

5.1.4.1 Neles FieldBrowser Features ...65

5.1.4.2 Central Management of Control Valves ..67

5.1.4.3 Metso Automation’s Field Bus Products ...68

5.2 DISTRIBUTED MOBILE MAINTENANCE SYSTEM FOR SMART-DEVICE70

5.2.1 Service Requestor Is a Smart-Device ..70

5.2.2 Intelligent Distributed Product’s Maintenance ..70

5.2.3 Structure of Maintenance Web Service Platforms (Internal and External

systems) ...73

5.2.4 Human Component in the Distributed System of Mobile Maintenance

Services ...74

 VI

5.2.5 Maintenance Network..76

5.2.6 Maintenance Cases ..77

5.2.6.1 Remote Diagnostic...78

5.2.6.2 Recovery and Predictive Maintenance ..78

5.2.6.3 Preventive Inspection...79

5.2.6.4 Emergency Service ..80

5.2.6.5 Human Resource Execution...81

6 CONCLUSIONS ..83

REFERENCES...86

 VII

1 Introduction

1.1 Value of the Problem Domain

Nowadays, knowledge is one of the most valuable resources of enterprises and an

important production and competition factor. Therefore, in a globalizing and growing

market the optimal usage of existing knowledge represents a key factor for enterprises of

the future.

Knowledge assets are the knowledge regarding markets, products, technologies and

organizations, that a business owns or needs to own and which enable its business

processes to generate profits, add value, etc. Knowledge management is not only about

managing these knowledge assets but also managing the processes that act upon the assets.

These processes include: developing knowledge; preserving knowledge; using knowledge,

and sharing knowledge. Therefore, Knowledge management involves the identification and

analysis of available and required knowledge assets and knowledge asset related processes,

and the subsequent planning and control of actions to develop both the assets and the

processes so as to fulfil organizational objectives.

In knowledge-based industries, especially within the service sector, a company’s primary

assets are intellectual. Such organizations are more dependent upon ideas, concepts, and

expertise than traditional capital assets: manufacturing plants, trucks, warehouses, or

machinery. Knowledge-based assets, or intellectual capital is the sum total and

accumulated value of the company’s shareable knowledge and expertise. For knowledge to

become intellectual capital, it must be shared. Information sharing is critically important,

because intellectual assets, unlike physical assets, increase in value with use; knowledge

and intellect grow when shared. Information stored in archives is useless if it is not

available as raw material for making decisions, improving quality, or enhancing

productivity.

Why is knowledge sharing so important? Expertise often lies in only a few individuals’

heads and their expertise is not always easily accessible. Experts are busy. Newly hired

 1

individuals may not know who the experts are. Companies can be temporarily crippled if

key experts die, retire or resign. Valuable knowledge is in their minds and when they leave,

they take their minds with them. Knowledge sharing takes an expert’s tacit knowledge and

makes it explicit.

Support for information and knowledge exchange is a key issue in the Information Society.

The exponential growth of online information on intranets and the Web leads to

information overload. To cut down on the time wasted in searching and browsing, and

reduce associated user frustration, much more selective user access is needed. This is

possible by automatic meaning-directed or semantic information processing of online

documents.

Knowledge is becoming more and more important in our daily private and business life.

The next generation of knowledge management systems will have to integrate different

methods and techniques from the following different research communities and fields to

achieve the vision of ubiquitous knowledge: Ontologies & Semantic Web, Knowledge

Discovery & Business Intelligence, Mobility, Processes & Groupware [VISION]. Now it

has been widely recognized that knowledge management systems must rely on a common

knowledge structure, ideally in the form of ontology. Ontologies provide a common

language on the human and machine level to enable knowledge exchange. Ontologies are

the key technology used to describe the semantics of information exchange. They provide a

shared and common understanding of a domain that can be communicated across people

and application systems, and thus facilitate knowledge sharing and reuse.

To keep control of the enterprise’s intellectual capital, companies have to organize its

information resources, address knowledge workers’ needs, and prepare for integrated

business applications. In addition to the existing problems with management and the flow

of intellectual capital, enterprises will face two new trends that risk furthering the erosion

of enterprise control of intellectual capital. At a global level, we expect enterprises will

accelerate the offshore sourcing of knowledge work wherever it is convenient and efficient

to do it. At a local level, individual knowledge workers will depend increasingly upon their

personal knowledge networks to increase their own productivity. Both trends will decrease

 2

the level of direct control of intellectual capital by enterprises. To cope, they will need to

improve both intellectual capital management and knowledge management processes

dramatically.

A new age of integration has begun. Gone are the days where integration consisted of

tactical, point-to-point connections between disconnected applications. Today, integration

is a critical and strategic factor in a company’s ability to compete. Nowadays, in time of

the next generation of integration, enterprises have to utilize their in-place ICT assets to

maximize the return on those investments and to streamline business processes. As a result,

they will become more agile, efficient, and responsive – all key elements to success in the

current business atmosphere. A successfully deployed integration network can: provide the

agility for company needs to respond quickly and effectively to capture business

opportunities, simplify the business process and shorten business cycles to drive down

costs, leverage the company’s vast ICT expenditures to realize real return on these

investments [webMethods].

Enterprises are realizing how important it is to "know what they know" and be able to

make maximum use of the knowledge. This knowledge resides in many different places

such as: databases, knowledge bases, filing cabinets and peoples' heads and are distributed

right across the enterprise. All too often one part of an enterprise repeats work of another

part simply because it is impossible to keep track of, and make use of, knowledge in other

parts. In addition, more and more companies are looking towards strategic partnerships and

alliances to gain market share. As a result, it has become absolutely critical to integrate

business processes and applications across the extended enterprise, which includes

employees, customers, partners, and suppliers.

The benefits of the next generation of integration can only be realized with an integration

solution that presents the leading edge of integration technology, a solution that provides

the comprehensive, enterprise class integration capabilities necessary to power an

enterprise [Tommila et al., 2001].

The challenges for today’s enterprise information integration systems are emerging. In

order to manage and use information effectively within the enterprise, three barriers that

 3

increase the complexity of managing information have to be overcome; namely the diverse

formats of content, the disparate nature of content and the need to derive ‘intelligence’

from this content [Sheth, 2003]. Indeed, the next generation of the Web is termed the

Semantic Web, where semantic metadata plays a fundamental role. By annotating

(‘enhancing’) resources with semantic metadata, software can automatically understand the

full context of what the resource (document) means and can make decisions about who and

how these recourses should be used. Metadata describes contextually relevant or domain-

specific information about content based on a custom (e.g., industry-specific or enterprise

specific) metadata model or ontology (is known as semantic metadata).

Integration is the unrestricted sharing of business processes and data among connected

applications and data sources within an enterprise and between trading partners. According

to [iPlanet, 2002], without integration, enterprises are left with stovepipe applications,

inconsistent data, and inefficient business processes. Integration is a must to gain and

retain a competitive edge in today’s business climate. It is not surprising that most

companies plan to spend a large portion of their ICT budget on application integration. To

solve the integration problem, there have been several point solutions in the market. To

build Web services through integration requires an infrastructure that enables end-to-end

business processes. Applications should integrate easily and painlessly. This means a

solution built on standards. We have to make solutions that solve the current integration

problems (integration of traditional applications, Web applications, and Web services) —

as well as pave the way for future Web services.

Web services have the potential to fundamentally transform the way companies do

business. Many companies are only now exploring Web services. The Web services-based

solution provides seamless applications integration as services across the Internet. Web

Services deliver a better integration solution because they are based on open standards,

which are easy to use and widely supported. Web Services are the next logical extension of

enterprise integration, because the technology standardizes communication, description,

and discovery mechanisms. Web Services promise the ability to combine individual

services into more complex, orchestrated services that will provide sophisticated business

 4

process and workflow automation capabilities to the enterprise. However, such

composition and orchestration is still on the drawing board.

It is possible to say, that Web Service adds up to, in the general case, knowledge, in a sense

resource. Today, enterprises are interested exactly in integrating their resources via

services’ integration. Especially when they want to organize partnership, business

combination or diversified group for using open to general use, shared resources for

business keeping in new way, in way of reduction inputs (costs) and effective resource

using. Today, when knowledge resources of business life participants are distributed across

the Internet, necessity of shared resource integration for common using is emerging. Web

Service using covers partially the solutions of this kind of problems. But as before, we

need technologies and solutions, which can make possible distributed resources

integration.

Exactly, one of such solutions is using the System of Platforms for Mobile Agent-carriers

of Web Services (resources), which is based on the OntoShell approach (chapter #3) and

described in chapter #4. It is a system of mobile integration of decentralized resources.

This approach can easily find its use in both individual using of distributed resources and

making system centralized using of decentralized resources, like in the case of making

Industrial OntoHub for cooperative resource using by the members of an enterprise

association.

This kind of knowledge resource integration can be used in many domains, and especially

in the industrial domain. For example, it is a very important solution for the industrial

product’s maintenance domain, where the integration of distributed knowledge in

maintenance field plays an important role in effective product’s maintenance activities for

sustenance effectiveness of industrial process. In chapter #5, Distributed Industrial

Maintenance System based on the Semantic Web approach and network of platforms for

agent-carriers of mobile service components (knowledge in product’s maintenance

domain) is described.

 5

1.2 Thesis Goal

The goal of the present thesis is: model of the automated intelligent information exchange

and information integration system development; model application for the domain, where

this kind of system is called for nowadays. The task of the work is: development of a

Semantic Web-enabled distributed integration environment, a distributed system of mobile

service components architecture design, principles description of structural component’s

interactions and functioning in such system; considering of existing techniques in the

industrial maintenance domain, model elaboration of an automated intelligent distributed

maintenance system based on the distributed mobile semantically annotated Web Services

architecture, description of the set of maintenance cases; review of the techniques used for

the development of this kind of knowledge integration systems.

1.3 Relations with Other Projects

This idea comes from the OntoServ.Net concept developed by Industrial Ontologies

Group. OntoServ.Net is a large-scale automated industrial environment for assets

management. First of all, we consider the maintenance of assets, but, in general, this

concept can be applied for process control, improvement of operating efficiency, field-

performance diagnostics, plant-level management, etc., as well.

Better maintenance provided by OntoServ.Net considers maintenance information

integration, better availability of operational data and shift from reactive and preventive

maintenance towards predictive and proactive maintenance, which means, first of all,

reduced Total Life Cycle Cost of machines.

OntoServ.Net is a network of industrial partners, which can share maintenance methods

and information developed during the work of a separate machine (device, equipment,

installation). Improved locally, maintenance experience can be shared. Also, it is assumed

that there are special commercial maintenance centers supported either by manufacturers

of machines, or by third parties. Browsing the internal state of a device is extended to an

automatic diagnostics and recovery within a network of a maintenance centers. The role of

 6

maintenance center, firstly, is to organize the gathering and integration of field data and

maintenance methods improvement, and secondly, support its clients by providing better

services (remote diagnostics, consulting) and upgrading local maintenance systems of

devices.

This Master’s Thesis is closely related to the theses of my colleagues from Industrial

Ontologies Group (Oleksandr Kononenko and Andriy Zharko), which also concern the

semantically-enabled resource integration approach. The Master’s Thesis of Oleksandr

Kononenko (“Ontological Support for Industrial Maintenance of Smart-Devices”) concerns

ontology application for information integration in industry. And the work of Andriy

Zharko (“Peer-to-peer ontological discovery of mobile services components in Semantic

Web”) is devoted to a problem of resource (service component) search, discovery and

routing in a peer-to-peer network.

 7

2 Semantic Web and Agents Approaches in Web Service

Technology

2.1 Web Service Infrastructure

2.1.1 Web Service is …

The world of services is evolving towards ‘web-services’, a simple concept where

applications advertise their own capabilities, search for other applications on the web and

invoke their services without prior design. These web-services can reason about their

capabilities to combine services and negotiate. Web Services is a set of standards that are

being designed and specified by the Worldwide Web Consortium (W3C) to foster cross-

platform application-to-application communications. These services provide means of

communication among different software applications involved in presenting information

to the user or allow these applications to be combined in order to perform more complex

operations [Clabby, 2002]. Web Services were supposed to provide a systematic and

extensible framework for application-to-application interaction. However, due to the

complexity of the web-services, there is a flurry of standards and software in competition

and deployment becomes a key issue.

There are a lot of existing definitions for Web Services:

 It is software designed to be used by other software via Internet protocols and

formats (Forrester).

 It is a self-describing component that can discover and engage other web services

or applications to complete complex tasks over the Internet (Sun Microsystems, Inc).

 It is a loosely coupled software component delivered over the Internet via

standards-based technologies like XML and SOAP (Gartner).

 It is a self-describing, self-contained, modular unit of application logic that

provides some business functionality to other applications through an Internet

connection… (UDDI.org)

 8

 It is an Internet-based, modular application that performs a specific business task

and conforms to a particular technical format (IBM).

 It is an application logic that is programmatically available, exposed using the

Internet (Microsoft)

Web-services are flexible, Internet-based applications that allow companies to create new

products and services faster than other existing methods which consist of dynamic

assembly of loosely coupled components (e-services, legacy data…). This is very different

from the traditional hard-wired approach for developing applications. Fixed applications

tend to resist change, whereas web-services assume that change is ever present. Web-

services require research in: explicit representations of e-services and their capabilities;

their re-use in different contexts to form new and dynamic services; the creation of a

heterogeneous and competitive environment; reputation networks, negotiation, contracts

[Bernard, 2002].

Web services are rapidly emerging as important building blocks for business integration.

They are finding important applications in business-to-business, business-to-consumer, and

enterprise application integration solutions. As such, Web services form a critical aspect of

e-business architecture and, in that role; their reliable execution must be assured.

Reliability must be a first-rank consideration for organizations deploying such solutions

[Farrell & Kreger, 2002].

One of the benefits of the Web Services architecture implementation is the cost reduction

for doing business electronically. Web Services allow companies to deploy, implement and

integrate their new solutions faster because of the inculcation of the common application-

to-application communication model. Web Services will enable Internet to become a

global common platform where organizations and individuals will communicate to carry

out various commercial activities and provide value added services [Fensel & Bussler,

2002].

A fundamental aspect of Web service design is interoperability. For a company's Internet

applications to be most effective, Web services must interface seamlessly internally and,

potentially, externally with partners, suppliers, and customers. But, these entities may not

 9

have the same sophistication when developing their Web services, or they may have

different XML representations of the same business data. With this in mind,

interoperability must be designed into the architecture, not left up to chance [Peltz, 2003].

2.1.2 Service Properties and Types

This section is based on materials from [Fethi, 2002].

Generally, a given resource can offer one or more services, and also access one or more

services on another resource. Similarly, a service can access one or more services either on

the local or a remote resource, and may be accessed by one or more services. Each service

within this model can support two kinds of interfaces:

 A functional interface, which defines how the service is to be accessed and

executed.

 A management interface, which defines parameters associated with service

execution, licensing, cost etc. The management interface is used to differentiate

between multiple resources offering a similar type of service, and generally

corresponds to the non-functional attributes of a service.

Based on the functional and management interfaces to a service, we can define a number of

‘roles’ that may be performed as parts of a given service:

1. A Service user can request a service available at a local or remote host. The

service user is responsible for initiating and terminating the service, and dealing

with exceptions locally that are generated from the service.

2. A Service provider can generate service offers, and is responsible for establishing

a service contract with a user. The service provider offers an interface for invoking

a service, along with specification of parameters associated with managing the

service.

3. A Service broker may be used to discover services based on one or more criteria.

The broker acts as an intermediary between a service user and a service provider,

and primarily supports service registration. The broker may also provide a

‘matchmaking’ service to help a user locate a service of interest. We use the term

“broker” as a common intermediate service provider offering services of varying

 10

complexity – ranging from security, service decomposition and service scheduling.

An important part of this role is the provision of a discovery service interface –

which enables a service provider to make itself known to a service user, and for a

service user to identify its requirements. A broker may utilize the following

properties to support discovery:

 Security: service security can vary from access rights (levels) to trust models

that enable only a particular category of users to run the service.

 Cost: service cost can be associated with the management interface of a service,

and correspond to computational time or access time, or access cost. Existing

software tools such as Nimrod provide mechanisms to utilize such a parameter in

selecting a service. Many resource providers at national centers also operate in this

way, providing time on a computational resource or a percentage of a resource for a

particular cost.

 Fairness: every service should be accessible from other services over a particular

period of time. Service fairness issues arise when a particular service is prevented

from being accessed (due to factors other than cost, security or performance issues).

The issue of fairness is more complex when a service agent acts on the behalf of a

service provider.

 Performance: the management interface of a service can be used to support

service performance, and support a broker in discovering a service of interest. A

service may also support additional levels of performance information, derived

from analytical models of the service itself. For instance, if a service is to be run on

a particular host, information about the host can be used to determine possible run

times for a service with a given quantity of data. This information is also made

available to a broker – and certain brokers may only select services, which publish

such information. It is up to the broker to decide how to use this information.

As can be seen from some of the criteria discussed above, a broker undertakes

many complex but related roles. A general system is likely to have many brokers,

each undertaking roles determined by application user demands, and the differences

in representation schemes employed within the system. Results generated by all the

brokers are however coordinated through a central authority – generally the user

 11

application service that initiated a request on the broker. Hence, there may be a

broker to support service registration, a broker to support service discovery based

on performance, service discovery based on cost etc.

4. A Service adapter is used to enable a service provider or user ‘wrap’ a given

software library or application, and make this available as a single service. Many

existing applications in Fortran/C, for instance, would need to be wrapped to

enable them to be made available as a service. A service adapter is also used to

ensure that the service provider, and the service requester respect the activation

policy associated with a service. A service adapter must also ensure that functional

dependencies between the called software libraries that constitute the service are

followed. Hence, a call to a given service may include the execution of an

initialization code, followed by the execution of a numeric solver, followed by the

execution of code to record the results. The service adapter hides this level of detail

from the service user. Service wrapping may be performed at the source code level

(where this is available) or may involve adding an execution shell around an

existing pre-compiled binary. Wrapping from source code is generally much more

complex, as it involves a number of language specific issues, such as ensuring that

type conversion does not modify the accuracy of the produced results. Wrapping

from source code also requires the wrapping tool to have some knowledge of the

structure of the application, also is likely to be a lengthy and error-prone process.

5. Service aggregators/decomposers are specialized brokers, which can decompose

or combine a service request to sub-requests to find better matches for service

providers. It is possible for a popular service provider to be overloaded with

requests, or for there to be no single service provider, which can complete a given

request. Service decomposers enable a given service request to be divided based on

the available service providers, and for the results of these requests to then be

combined before being returned to the user. Service decomposers can utilize

domain specific ontologies to determine alternative service providers of interest,

and enable these requests to be forwarded. The approaches adopted depend on the

representation scheme used to encode the ontology, and the service definitions.

 12

The aggregator/decomposer must use the same representation way as the service

discovery agents – and confirmed through an initial message exchange.

6. Service discovery is the most important part of the process, and is responsible for

finding a match between a service request and a service provider. This

matchmaking can be supported through a number of possible criteria – as discussed

previously – and it is possible for multiple service discovery agents to co-exit. A

user may launch the same query to multiple such agents concurrently. A service

discovery agent may utilize a syntax match, a context match, or a semantic match.

A syntax match would involve an exact textual comparison of the request, with the

advertisement from the service providers. The other two approaches are based on

the availability of a domain or problem specific ontology, which may be used by

the discovery agent to resolve a given request. A “context” match would involve

finding some similarity between the request and service providers that the service

discovery agent is aware of. A context match is based on analyzing other requests

made by the same user previously in order to find a domain context for the current

request. A domain context could enable a discovery agent to forward requests to

particular service providers. A “semantic” match would involve navigating the

domain ontology, or relaxing domain constraints, to find suitable candidates that

could be queried to find the required service.

7. A Service optimizer enables a group of service providers to work collectively to

improve their cost, security, or performance. A service optimizer may be used to

improve the behavior of a resource cluster by sharing of common requests. A

service optimizer may also be used to reserve a single service in advance, or make

a reservation of a group of services, over a particular time frame. The service

reservation mechanism is used to ensure that if a service

aggregation/decomposition is to be performed, and then all sub-services will be

available.

8. A Service execution agent works with the broker and the user application to

launch one or more tasks on the identified computational resources. The service

execution agent primarily acts as an interface to third party resource execution

 13

systems – and does not directly undertake any scheduling on the remote resources

itself.

9. A Reputation Service may be employed by a broker to rate a computational

service. The rating function can be determined by the broker service, or it may be

suggested by the application service needing resources. The rating service is used

to provide each broker with a historical view of the available computational

services, and enable a broker to filter service offers made by these resources. A

broker undertaking service discovery may also query other brokers to determine

similarities in their ratings of a given resource. Similarly, a computational resource

may also wish to advertise its own ratings to a broker – which a broker may wish

to ignore, or aggregate with its own results. To support a Reputation Service, each

broker must be able to monitor the use of a resource by an application service, and

be able to record these results locally. A broker utilizing this service must also be

able to modify its database if a computational service migrates, or modifies its

properties.

10. A Mobile Service is not tied to a particular host, and may be migrated on demand.

Service migration shares many ideas with object migration – in object migration

based on a call-by-value semantics, for instance, the state of an object is sent to a

remote location to create a new instance of the object. The new instance now has a

separate identity, and does not maintain links with the parent. As it is necessary for

the receiving side to instantiate an instance, it must necessarily know something

about the object’s state and implementation – such as whether data members are

private or public for instance. Service migration is defined at a coarser level of

granularity to object migration, and consequently, may only involve the partial

migration of state to the remote host. A service may be an aggregate of a number

of other services, and consequently would require the migration of the complete

dependency graph to the new host. By utilizing a combination of call-by-value and

reference semantics, a mobile service is able to create a new instance at the remote

site of the service.

 14

2.1.3 Service Architectures

The standard Web Service architecture can be described as an interaction of the three main

entities: service provider, service registry and service requestor. Figure 2.1 illustrates this

interaction.

Figure 2.1. Web Services, entities interaction model.

The roles of the Web Services architecture nodes:

 Service Provider is the owner of a specific service. The Service Provider can also

be described as a host that contains access to the service. The Service Provider tries to

advertise its service so that the service requestor can find it. The place where the

advertisement can be published depends on the concrete situation or application

requirements. The standard way implies the Service Provider to publish some kind of a

service description at the Service Registry.

 Service Registry is a searchable entry point where service providers publish their

advertisements or service descriptions.

 Service Requestors are Web-based applications and services that are looking for

interaction with the necessary service to obtain specific information or to fulfill a

specific task. So, a Service Requestor queries the service registry for the specific type

of service. When the necessary information is obtained, the Service Requestor invokes

the service or performs interaction with the service. However, the Service Registry is

an optional entity of the architecture, because the Service Provider can publish service

 15

description at another accessible point or send it directly to the Service Requestor.

Moreover, the Service Requestor can obtain a service description from other sources

besides Service Registry, such as local file, web site, ftp site.

The operations of the nodes in the Web Services architecture:

 Publish – a service description needs to be published so that the service requestor

can easily find it.

 Find – is an operation used by the service requestor to retrieve a service

description and consume it. The Service requestor can retrieve a service description at

design time or runtime from a service description repository, a simple service registry

or a UDDI (Universal Description, Discovery and Integration) node [Kreger, 2001].

The Bind operation enables the service requestor to invoke or initiate interaction with the

service at runtime using the details in the service description to locate, contact and invoke

the service [Kreger, 2001].

Also, a Web Service instance can serve multiple roles simultaneously. In the peer-to-peer

scenario, each peer Web Service instance serves in both the Service Requestor and Service

Provider roles (Figure 2.2).

Figure 2.2. Web Services architecture – Peer-to-Peer derivative pattern.

 16

Of course, we also have to consider the case, where the Service Requestor and the Service

Provider interact directly (Figure 2.3).

Figure 2.3. Web Services architecture – Direct Interaction derivative pattern.

2.2 Semantic Web and Web Services

2.2.1 SOAP, WSDL, UDDI technologies

Web services represent an evolution of the Web to allow applications to interact over the

Internet in an open and flexible way. Important in this approach is the independence of the

interactions from the platform, programming language, middleware, and implementation of

the applications involved. Web services are self-contained, modular applications that are

described, found, and called via a set of standards based on Extensible Markup Language

(XML). Chiefly the World Wide Web Consortium (W3C) is formalizing these standards.

Semantic Web is widely regarded as the next step in the evolution of the World Wide Web.

The main goal of Semantic Web is to make web documents content-explicit to computers.

Semantic Web introduces a way to encode the content of pages in a machine-readable

format and link this content to machine-understandable semantics using ontologies [Ding

et al., 2002], [Fensel & Musen, 2001]. Ontologies will be the key for the semantic web

development [Fensel et al., 2002]. The reason to use ontologies as it was mentioned in

[Fensel et al., 2002] is largely due to what they promise: a shared and common

 17

understanding of a domain that can be communicated between people and application

systems. Thus one of the goals of the Semantic Web is to enable access to heterogeneous

and distributed information all over the Web by enabling software agents to mediate

between the user and the information [Davis, 2002].

The current situation on the Internet is that information is primarily in the form of pages

composed of human-readable information. Semantic Web is aimed to augment this

information with markup that enables machine understanding of the marketed information.

This case faces the need for a markup language that supports defining data models or

ontologies [Shah et al., 2002].

The Web Services framework is also represented by a set of standards: SOAP, WSDL and

UDDI.

 SOAP Simple Object Access Protocol (SOAP) provides a simple and lightweight

mechanism for exchanging structured and typed information between peers in a

decentralized, distributed environment using XML. SOAP does not itself define any

application semantics such as a programming model or implementation specific

semantics; rather it defines a simple mechanism for expressing application semantics

by providing a modular packaging model and encoding mechanisms for encoding data

within modules. This allows SOAP to be used in a large variety of systems ranging

from messaging systems to RPC. SOAP consists of three parts [W3C, 2000]:

 The SOAP envelope construct defines an overall framework for expressing

what is in a message; who should deal with it, and whether it is optional or

mandatory.

 The SOAP encoding rules define a serialization mechanism that can be used to

exchange instances of application-defined data types.

 The SOAP RPC representation defines a convention that can be used to

represent remote procedure calls and responses.

 WSDL Web Services Description Language (WSDL) is an XML format for

describing network services as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information. The operations and

messages are described abstractly, and then bound to a concrete network protocol and

 18

message format to define an endpoint. Related concrete endpoints are combined into

abstract endpoints (services). WSDL is extensible to allow description of endpoints

and their messages regardless of what message formats or network protocols are used

to communicate, however, the only bindings described in this document describe how

to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME

[W3C(a)].

 UDDI UDDI (Universal Description, Discovery and Integration) is an initiative

proposed by Microsoft, IBM and Ariba to develop a standard for an online registry,

and to enable the publishing and dynamic discovery of Web services offered by

businesses. UDDI allows programmers and other representatives of a business to

locate potential business partners and form business relationships on the basis of the

services they provide. It thus facilitates the creation of new business relationships

[Ankolekar et al., 2001].

There are building blocks for services. Figure 2.4 shows the relationship between these

building blocks.

Figure 2.4. Building Blocks. This graphic shows the relationship between SOAP, WSDL,

and UDDI, the building blocks of Web services.

 19

The interface of a Web service is described in an XML format called the Web Services

Description Language (WSDL). A WSDL file contains descriptions of one or more

interfaces and binding information for one or more services [Farrell & Kreger, 2002].

WSDL is the key to managing interoperability. It provides contracts for describing the

interfaces to both new and existing applications. This allows multiple organizations to

standardize on an interface to a service, without having to worry about the underlying

implementation. Another benefit of using WSDL is that it is the focal point for many of the

Web service tools on the market today. Most tools provide a way to automatically generate

client code from an existing WSDL document. This can end up saving developers

development effort because they do not need to write any of the SOAP messaging code

[Peltz, 2003].

The UDDI project, UDDI.org, is defining such a Web services registry. Once a service has

been discovered, and a binding established based on the information in the registry, the

interaction between the calling application and the Web service can begin.

This interaction is the most important aspect of Web services for our discussion. The

invocation of a service involves sending an XML message to the service and receiving an

XML message in return. These XML interactions are governed by another open standard

called SOAP. SOAP defines a message header that describes the message and indicates

which operation in the interface of the service is being invoked. The header is an envelope

that contains an XML message body in which the parameters are passed. SOAP supports

both a remote procedure call and a general XML document-passing paradigm. SOAP

messages must be carried on a communications layer, which most often is the HyperText

Transport Protocol (HTTP) [Farrell & Kreger, 2002].

Of course, SOAP is the layer that implements messaging between Web service

components. As such, SOAP should be a transparent interoperability technology.

Unfortunately, many SOAP implementations vary from the standard by either creating

extended features or by only making a subset of the functionality available. With different

levels of SOAP support, it makes it difficult for true interoperability. Clients wanting to

use Web services that run on different platforms have to be aware of these issues and code

 20

accordingly. If all vendors complied with the standards, the client would not have to be

concerned about the underlying platform used.

Furthermore, interoperability between SOAP implementations can be difficult, as

interpretations of the standard can diverge. But standards creation to resolve SOAP

interoperability issues is being done by a number of working groups, such as SOAP

Builders and WS-I. Today, however, developers are forced to create multiple variants of

Web services to adequately interoperate with partners, which is expensive and labor

intensive.

Also applicable to SOAP, specific Web services platforms may support an older version of

a specification, which may not be interoperable with your clients. Choosing basic data

types such as strings, integers, and standard array types can ease this problem, as the use of

complex data types could limit what types of SOAP clients can talk with your service. The

second best practice is to provide schema definitions for all data types. A schema

definition provides a mechanism for defining the structure and content of an XML

document.

SOAP and WSDL are fundamental technologies for an application to issue a request to a

Web Service. However, they do not provide support for the application to compose

multiple Web Services. With SOAP and WSDL, requests to multiple Web Services are

issued individually, but a set of requests cannot be grouped into a single process flow

across the web. Because of this shortcoming, additional technologies for web business

process specification and management are currently being developed. These include new

languages extending WSDL, for example, IBM’s WSFL/WSEL and Microsoft’s XLANG.

WSFL and XLANG propose language constructs for defining web processes that can

involve requests to multiple Web Services [Mikalsen & Rouvellou, 2001]. However, the

composition of Web Services as achieved with WSFL and XLANG observes no or only

limited forms of reliability. We believe that this restricts their applicability unnecessarily.

In many web systems for electronic commerce, for example, a Web Service composition

must be reliable. Qualities of composition, such as atomicity of processing of a defined set

of Web Services requests, or consistency of data transformations applied to the set of

 21

http://www.soapbuilders.org/
http://www.soapbuilders.org/
http://www.ws-i.org/

composed Web Services, should be well-defined, observable, and guaranteed. For this

purpose, both language (contractual specification) and system infrastructure support is

needed.

Web services represent a new breed of Web applications development [Curbera et al.,

2002], [Clabby, 2002], [WEBSERVICES]. As it was mentioned, the full advantage of the

power of Web services lies in the possibility for the user to dynamically discover and

invoke a Web service. Web Services represent a new kind of web application that is

characterized as self-contained, self-describing, modular applications that can be

published, located, and invoked across the Web.

2.2.2 Semantic Markup of Web Services

As it was mentioned before, Web Services provide a new model of the Web, where

services exchange information on demand to obtain the necessary result and this is

especially important for the industrial community, because this opens a new way to

conduct electronic business in a more efficient way. We can conclude that services need to

efficiently find other services that provide solutions to concrete problems and services

should interoperate to solve complex tasks. An XML-based standard, UDDI, provides a

registry of business and web services [UDDI, 2002]. According to [Ankolekar et al., 2002]

and [Ankolekar et al., 2001], UDDI provides poor search facilities as it relies on pre-

defined categorization through keywords and does not support semantic description of

search and does not implement semantic search of the services’ advertisement. In

[Ankolekar et al., 2002] and [Ankolekar et al., 2001], DAML-S is adopted as a service

description language. DAML-S provides capability to semantically annotate the web

service. The DAML-S service description is richer than the representation of the service

provided by UDDI or WSDL [Ankolekar et al., 2002]. The UDDI description does not

evolve any service capability description. The current version of DAML-S supports

automated web services invocation, composition and interoperation. This is done under the

set of ontologies that specifies a service as a process with inputs and outputs. The DAML-

S ontology provides classes and properties to describe the content and capabilities of the

Web Services [Ankolekar et al., 2002], [Ankolekar et al., 2001].

 22

Structuring of the ontology of services is motivated by the need to provide three essential

types of knowledge about a service (Figure 2.5), each characterized by the question it

answers [DAML, 2002]:

 What does the service require of the user(s), or other agents, and provide for

them? The answer to this question is given in the “profile". Thus, the class Service

presents a ServiceProfile;

 How does it work? The answer to this question is given in the “model." Thus, the

class Service is describedBy a ServiceModel;

 How is it used? The answer to this question is given in the “grounding." Thus, the

class Service supports a ServiceGrounding.

Figure 2.5. Top level of the service ontology.

DAML-S will enable users and agents to automatically discover, invoke, compose, and

monitor the web service. [Ankolekar et al., 2001]. The advantages that UDDI gains when

integrating DAML-S capabilities are described in [Paolucci et al., 2002].

The DAML-S ontology of services provides enough knowledge that can be used by an

intelligent software agent to determine whether the service meets the agent’s demands and

the means by which the service can be accessed (inputs and outputs).

 23

2.2.3 Semantic Web-enabled Services

Figure 2.6 provides a schema of steps of evolution to enrich the existing web infrastructure

with semantically enabled web services. This leads to the integration of semantic web and

web services architectures within one intelligent web.

Figure 2.6. Evolution of the Web.

Semantic Web-enabled Web Services allow tackling the current problems of:

 Finding, extracting, representing, interpreting and maintaining information on the

Web.

 Integrating web applications within a single international model.

 Bringing the web to its full potential.

2.3 Agent Approach to Web Services

2.3.1 Agent Technology

2.3.1.1 Software Agents

The background of SW agent technology lies in the fields of distributed computing and

artificial intelligence (especially distributed AI) [Wooldridge, 2003]. Agent technology is not

however synonym to AI nor expert systems. Unlike many expert systems, agents are

 24

situated in an environment and also act on that environment. Some real-time (typically

process control) expert systems can though be regarded to be agents.

There are a lot of definitions for software agents but none universally accepted so far.

Typical attributes of SW agents are listed later. Researchers of different background and

personal interest emphasize different attributes in their definitions. Definitions vary from

very generic like [Laamanen, 2001]:

 "An agent is a computational process that implements the autonomous,

communicating functionality of an application."

 "Autonomous agents are computation systems that inhabit some complex dynamic

environment, sense and act autonomously in this environment, and by doing so realize

a set of goals or tasks for which they are designed."

What is ever the definition, the main point is that an agent can carry out information-

related tasks without immediate human intervention and supervision. Thus an agent is a

computer system capable of autonomous action in some environment controlling its own

internal state. Agents have an idea how to accomplish tasks. Ideally an intelligent agent

takes always the best possible action in a situation. Some researchers define also that an

agent is autonomous only if it is capable of learning from experience and its behavior is

determined by this experience. This can however be considered too narrow-minded. With

little or no experience at all an agent would act randomly in such a case. It is therefore

reasonable to provide autonomous agents in most cases with an initial knowledge of their

working environment.

From different definitions it is possible to summarize a list of attributes common to SW

agents. Typical attributes of a SW agent [Wooldridge, 2003], [Seilonen, 2001], [Virtej,

1998]:

 Reactivity - an agent senses its dynamic environment and acts based on it. An

agent maintains an on-going interaction with its environment and responds to changes

that occur in it.

 Autonomy – an agent makes decisions over its own actions.

 25

 Proactiviness/Goal-orientedness – an agent takes the initiative and recognizes

opportunities in generating and attempting to achieve goals. It is not driven solely by

events.

 Social-ability/Communication – Agents interact with each other (and possibly

humans); typically by means of communication.

 Cooperation – an agent realizes that some goals can only be achieved by

cooperating with others.

 Learning/Adaptivity – an agents’ ability to learn from history and to adapt to

changes means flexibility and improved performance over time.

 Continuity – an agent acts for an undefined time.

 Mobility – an agent is portable i.e. able to move from one machine to another or

around an electronic network.

 Rationality - Agents will act in order to achieve their goals, and will not act in

such a way as to prevent their goals from being achieved - at least as far as their beliefs

permit it.

It is naturally the application and goal in question that determine which ones of these

attributes dominate in each case. In a typical agent several attributes together make up the

behavior of an agent. Attributes dominating too much may decrease the usability or

performance of the system. For example an agent being too autonomous may in the worst-

case result as an autistic agent. On the other hand social-ability with other agents and

humans must not prevent an agent from having control over its own actions and internal

state.

AI aims to build systems that can (ultimately) understand natural language, recognize and

understand scenes, use common sense, think creatively, etc. all of which are very difficult

tasks. We do not however need to solve all problems of AI to build a useful agent. When

building an agent, we simply want a system that can choose the right action to perform,

typically in a limited domain. A little intelligence goes a long way [Ojala, 2001].

 26

Agents are best suited for applications that are modular, decentralized, changeable, ill-

structured and complex. Humans must specify the task but we want to tell agents what to

do without telling them how to do it.

2.3.1.2 How Are Agents Built up?

This section is based on materials from [Ojala, 2001].

Programming has progressed from procedures and functions to abstract data types and

object oriented practices and lately to agent oriented practices. Agents are sometimes

thought to be just objects by another name because an object:

 Encapsulates some state.

 Communicates via message passing.

 Has a method, corresponding to operations that may be performed on this state.

To certain degree these characteristics resemble those of agents. Main differences in agents

are however:

 Agents are autonomous; agents embody a stronger notion of autonomy than

objects, and in particular, they decide for themselves whether or not to perform an

action on request from another agent.

 Agents are smart; capable of flexible (reactive, pro-active, social) behavior. The

standard object model has nothing to say about such types of behavior.

 Agents are active; a multi-agent system is inherently multi-threaded, in that each

agent is assumed to have at least one thread of active control.

SW agents can be built in many different ways using different architectures. The right

choice for agent architecture depends on many things like application (i.e. the problem in

question) and agent environment. In most cases the agent environment is inaccessible, so

that the agent cannot obtain complete, accurate, up-to-date information about the state of

the environment. The physical world is also non-deterministic, so agents’ actions have no

single guaranteed effect; there is no certainty about the state that will result from

performing an action. Furthermore, the physical world is a highly dynamic environment,

 27

other processes operating on it, and which hence changes in ways beyond the agent's

control.

Main types of agent architectures are:

 Deliberative (symbolic/logical) agents. An agent architecture that contains an

explicitly represented, symbolic model of the world. Sensor data is used to update this

model. Makes decisions (for example about what actions to perform) via symbolic

reasoning.

 Reactive agents. Most everyday activities consist of routine actions and not of

abstract reasoning. Some agents decide what to do without reference to their history;

they base their decision-making entirely on the present, with no reference at all to the

past. Perception from sensors is mapped to primitive actions. These agents work best

where everything can be computed beforehand.

 Hybrid agents. The best properties of both combined.

2.3.1.3 Why Agents?

This section is based on materials from [Wooldridge, 2003], [Seilonen, 2001], [Breger,

2003].

SW agent technology creates many new possibilities for example in forms of self-

organizing modules and dynamic creation of solutions that have an adequate reaction to

unforeseen events. Agent-based solutions will also be highly modular and easy to maintain.

In general it can be said that SW agent technologies make new services and applications

possible while old services and applications can be realized easier, faster and cheaper.

Some ongoing trends that have driven the evolution of computing towards SW agents are:

 Ever more delegation to computers

 Ever more distributed systems

 Ever more intelligent systems

 Ever more human-oriented views

 28

2.3.1.4 Multi-agent Systems

This section is based on materials from [Parunak, 1998], [Pitkänen & Shuling, 1998].

In multi-agent systems agents should inter-operate for giving solutions and for solving

some specific problems. Individual agents may be identical or different from each other.

Typically agents are heterogeneous in such a way that each agent has incomplete

information or incomplete capabilities for solving the problem. In typical distributed

systems there are interface agents, task agents and information agents. Agents however

work towards a single global goal or separate goals that interact. Coordination and

planning may be organized in a centralized as well as a distributed way. Communication in

multi-agent systems is usually based on common protocols although interaction may also

happen through environment only. Even the coordination of agents can be handled

indirectly via environment. Most noteworthy characteristics of multi-agent systems are:

 Number of agents in a system (number of different kind or number of

individuals). This may change as agents are created, destroyed, fused into single ones

or single agent may divide into multiple ones.

 Communication means (medium, addressing, persistence, locality).

 Communication protocols (direct, voting, negotiation, speech acts).

 How agents are configured in relation to one another (set in advance or agents

able to discover new relationships and configure themselves).

 How agents coordinate their activities as the system runs.

2.3.2 Agents and Semantic Web Services

Agents, as well as many other technologies around the semantic web, have shown an

increased maturity through standards and open-source. These improvements have been

very self-centered and led to the creation of silos. Time has come to integrate these

improvements into an ecosystem, bringing a larger picture towards active web-services that

is capable of serving each individual user personally.

 29

2.3.2.1 The Semantic Layers of Agent-based Web-services Communications

Web-services require more infrastructures to realize all of their potential benefits than their

existing static counterparts. There is a clear trend towards an explicit representation of

web-services and the addition of semantic communications to the existing syntactic ones.

We give below a short description of the extension of communication technologies towards

semantics (see Figure 2.7) [Bernard, 2002].

Figure 2.7. Communication technology stack.

 30

Dialogues and Interaction protocols define message interactions between agents at the

conversation level, that is, when two or more agents agree to exchange messages using a

specific interaction protocol. The interaction protocol shows the messages that each agent

can send and receive at each stage of the conversation. Interaction protocols can be simple,

such as requesting an agent to complete an action and the agent agreeing or refusing; or

complex, such as an auction or a call for proposals; Communicative acts define standard,

application-independent methods for passing semantic messages between agents. A

communicative act is a verb-utterance providing context for the contents of a message, for

example, request, inform, etc. Communicative acts are application-independent, as

opposed to services or actions, which are application-dependent, and can be reused across

a wide range of application environments. Technically, an Agent Communication

Language (ACL) provides a standard way of representing meta-information that can be

associated with a message, such as the sender, receiver, the ontology used to express the

message content, etc.; Content languages are used to express the actual content of a

message. Some services may use a simple, fixed syntactic and semantic representation,

although a number of agent-based systems use content languages such as predicate logic

and constraint choice languages; Ontology is a vocabulary of terms and their definitions

and relations that are applicable in the current problem domain. Ontologies supply the

basis of semantics, by describing in a formal system the domain of discourse for a

particular application, such as information retrieval or financial services.

2.3.2.2 Active Web-services

When looking towards the future of web-services, we predict the breakthrough will come

in the form of access to services. Added intelligent capabilities through semantic reasoning

will be a secondary factor. Agents bring the most crucial capability to turn the entire web-

services from the existing dormant mass of information where users need to surf and

browse, into a dynamic set of capabilities deployed around and serving the user. Agents

represent this great opportunity towards a new and completely different computing model,

freeing humans from numbers of chores imposed by the contemporary Internet where users

are sometimes enslaved by computers.

 31

 In particular, agents will turn the web-services into proactive entities working as peers to

serve the end-user, representing him/her and defending his/her interests in a competitive

world where services are negotiated and composed dynamically. Agents introduce an

unparalleled level of autonomy into future systems so that users can delegate high-level

tasks in a generic manner. Therefore Agents need to get: mission statements, the definition

of domains of competence, and a definition of autonomy through policies to be applied in

these domains. These domains and policies need to support reasoning as they might be

overlapped in real life; for example, the policies of multi-national companies have to

comply with the policies of the nations in which these companies operate. These domain

and policies mechanisms permit deployment and dynamic adaptation to any situation. In

particular, they allow web-services to combine without prior design, negotiate end-to-end

contracts to insure the final result of composed web-services, and monitor their execution

on behalf of the user. Some initial experimentation on automatic generation of contracts

show encouraging results towards contractual web-services [Rodrigez & Sallantin, 1998].

Agents will become the trusted intelligent interface between man and machine, allowing

communications through speech acts and representing the interest of the user in any web

transaction at any time, like a trusted friend or lawyer. Hence agent interfaces need to

evolve towards ease of use, ease of delegation and monitoring of tasks, increased privacy,

personalization and security, and user habits being acquired through learning. See

overview on subject in [Dickinson, 2001].

Agents can now migrate to slim wireless appliances, and evolve in a multitude of micro

worlds, typically the cells of wireless phones, malls, schools, a community of friends; and

discover the resources and represent their user. This technology needs to be rolled out on a

large scale to test the deployment capabilities as well as the usability of the technology in a

mass market.

Now that agents have a foundation for interoperability, are getting deployed, the agent

community has to reassess its position with regard to other initiatives, such as UDDI,

SOAP, DAML, OIL and the semantic web, each of which is bringing answers to the

problems initially addressed by the agent community. It is clear that these questions were

 32

not specific to agent technology and needed generic solutions of their own. Therefore the

agent community needs to evolve from its insular agent -centric vision towards an agent-

integrated ecosystem of technologies, embracing all relevant standards into an operational

and deployable world. This evolution defines the charter for the Agentcities Task Force, an

organization leveraging the efforts of the Agentcities around the world towards this freely

accessible ecosystem for experimentation on the future active web-services [Bernard,

2002].

2.3.2.3 Agent Standardization

This section is based on materials from [Seilonen, 2001], [Breger, 2003], [Wooldridg,

2003], [FIPA, 2000], [Laamanen & Helin, 2001].

Standardization is always important from the interoperability and reusability point of view,

having thus also an important effect on the extended use of any new technology. On the

other hand standardization is always a compromise and the standardization process itself

can be very slow. Therefore there is also a possibility that the standardization process itself

is the obstacle preventing a broad use of a new technology. In the area of SW agent

standardization the main problems are lack of consistent theory and definitions.

In this area the standardization work done by FIPA (Foundation for Intelligent Physical

Agents) is by far the most important. FIPA was established 1996 and has nowadays over

60 member companies world-wide, almost equally represented in Asia, Europe and

America with a strong representation of telecommunication and software companies. The

FIPA standards follow an open process. FIPA meets quarterly for a one-week period in

which Technical Committees and Work Groups develop the specifications. Members are

invited to participate as well as anybody who wants to contribute to the technical progress

of the work. Anybody can send technical proposals, comments or even submit work-plans

to FIPA. In between meetings, the work progresses via email reflectors and sometimes

through ad-hoc meetings. Information on FIPA specifications, proposals, meetings,

registrations, activities…. and the standards themselves are accessible from the web site.

 33

FIPA work is mainly done on a quite generic level. For example the FIPA abstract

architecture specification is supposed to provide a framework in which services necessary

to support the end-to-end interoperability of agents are specified. This abstract architecture

permits many different realizations. Standards currently available (FIPA97, FIPA98 and

FIPA2000) include guidelines to build multi-agent platforms:

 Agent system architecture, agent and system design (Agent UML)

 Agent management (creation, deletion, migration of agents)

 Agent communication (high abstraction level, knowledge sharing, interaction

protocols, Agent Communication Language, Knowledge Query and Manipulation

Language (KQML))

 Agent message structure and message transport (transport protocols IIOP, HTTP,

WAP)

 Agent security, agent mobility

Agent UML is a result of the cooperation of FIPA and the Object Management Group

(OMG). Up to now results include mechanisms to model interaction protocols (protocol

diagrams and extending UML state and sequence diagrams in various ways), extension of

class diagrams to model agents behavior and specification of ontologies. Agent UML is a

part of the FIPA2000 specification and some extensions are part of the upcoming UML

release. This kind of cooperation is very important but unfortunately only a good starting

point, not much more.

2.3.2.4 Agent Environment

The Agentcities Network [AGENTCITIES] (hereafter referred to just as the Network)

represents the first attempt to build an open, global and standards-based agent environment

for research and future commerce on the Internet.

The objective of the Network is to bring together technologies from both agent and AI

research (such as agent communication languages [Finin et al., 1992][FIPA, 2001(a)],

conversation protocols [Burmeister et al., 1993][FIPA, 2001(b)], ontologies [Fensel, 2001],

coordination [Wooldridge & Jennings, 1994], negotiation [Laasri et al., 1992] and open

 34

systems theory found in the current Agentcities Network Architecture recommendation

[AGENTCITIES, 2002]) with industry-led technology initiatives (such as Web Services

[W3C(b)], JXTA [JXTA], XML [W3C(c)] and RDF and RDFS [W3C(d)]) to create a

global, open, dynamic environment that enables:

 Rich, flexible communication between software entities deployed within it.

 Software entities to trade automatically with each other in a dynamic and flexible

way without the constant intervention of humans.

 35

3 Ontology-based Distributed Integration Environment for

Heterogeneous Resources

3.1 OntoShell Approach to the Problem

How to make semantically enabled resources, and more important, how to transform

already existing heterogeneous resources to semantically enabled? To provide

autonomous integration of heterogeneous resources over the Web, we need to describe

them in a common way based on a common ontology. For example, in the domain of

industrial product maintenance, we distinguish such resources as: smart devices, which can

be considered as services because of their alarm or control systems (or some other software

interface); set of diagnostic services or classifiers; platforms, which are represented by

clusters or collections of various resources; humans, which can be considered as some

special services; large enterprise information systems; etc. An ontology-based annotation

must comprise not only a resource’s description (parameters, inputs, outputs), but also

many other necessary aspects, which concern their goals, intentions, interaction aspects,

etc. “Ontology-based” means that we have to create all of the resources’ Ontologies before.

Concerning this problem, we propose an OntoShell approach to an Ontology-based

universal integration environment development (Figure 3.1).

Figure 3.1. OntoShell approach.

 36

Such an environment allows resources (services) to be designed and developed

independently of other resources (services). This approach implies integration of

heterogeneous resources (based on a specific standard) via attuned OntoShells, which

interact with one another based on a common Ontology-based standard (environment-

mediator) (Figure 3.2).

Figure 3.2. OntoEnvironment – “environment-mediator”.

OntoShell is a software shell, which carries an ontology-based semantic description of a

resource and plays the role of mediator (which knows a resource’s goals and needs). This

shell is configured for a concrete resource based on an ontology, which contains the

resource’s description. That is why it is important to elaborate on the details of an

ontology.

The structural schema of one such OntoShell is showed in Figure 3.3. If we need to

transform an existing resource to a semantically enabled one, then we have to develop

mechanisms for accessing that resource. Since the resources are developed according to

 37

different standards for both content (WSDL, C/C++ DLL, Java classes or applications,

SQL Server, DCOM, CORBA, etc.) and transport protocols (TCP, HTTP, RMI, etc.) we

need to design and develop respectively resource (services) transformation modules

(OntoAdapters) for semantic, content and transport levels. They will be construction

blocks, for OntoShells, and will be defined depending on resource’s description (Figure

3.2). There are RCA modules for resource adaptation on the content level and RTA

modules for resource adaptation on the transportation level (Figure 3.3).

A new generation of push services, which have an interface to interact with OntoShells,

will also be based on this environment. If we have to cope with existing push services, we

can develop transformation modules only for services, which are defined to configure a

service’s output interface. They are similar to RCA and RTA modules, but they work in

the opposite direction (Figure 3.3).

A human executes an initial description of a resource via the visual user interface (VUI)

(Figure 3.3) based on a common ontology and dynamically changeable windows. This

process extensively plays a role in resource adaptation on a semantic level, and also gives

necessary information to a linker module (L) (Figure 3.3) for the selection of construction

blocks for concrete resources.

An OntoShell’s configuration is performed via the same visual interface, which indicates

its active features (interaction methods). Such OntoShells may be organized into a cluster,

which also can be nested within another OntoShell, since an OntoShell can be considered a

resource and has to be represented within the ontology.

 38

Figure 3.3. OntoShell’s structural schema.

L – linker;

P – packer/unpacker;

R – registration module;

F – forwarding module;

RH – request handler module;

RM – RelationManager;

AA – Advertising Agent;

MM – MobilityManager;

EC – external connection (transportation) module;

VUI – visual user interface (semantic adaptation level);

RCA – block of resource content adaptation level;

RTA – block of resource transport adaptation level (internal connection to the resource);

 - resource and OntoShell description;

 - description list of cluster’s members or neighbours in P2P interaction model;

- demountable construction block.

The work of a registration module (R – shell’s registration into the environment), request

handler module (RH) and forwarding module (F – includes a description search engine of

necessary resource) depends on the respective shell’s configuration (inter-shell interaction

 39

architecture, class of internal resource, etc.) and the class of the request. Such classification

of requests is described using an ontology for requests, very much like an interaction

language between OntoShells. A packer/unpacker module (P) simply provides packing and

unpacking for a message. But physical massage transportation is performed by an external

connection module (EC), which is a demountable construction block, because there are

many methods for interaction on the transport level between OntoShells. This block is

hence a block at the transport adaptation level for OntoShells.

So, we observe the modular approach to constructing a universal resource integration

environment based on OntoShells. We can nest resources to arbitrary levels via such shells

for modeling a multilevel cluster architecture (Figure 3.4). Resource clusters will reduce

the cost of resource searches. Such amalgamation into clusters may be organized according

to various principles, such as:

 Membership in a concrete domain;

 Location on the concrete server;

 Geographical location (in cases, when a human is a resource, or a resource is a

movable device, for example).

Interaction between OntoShells can be organized via either a centralized or decentralized

(P2P) interaction architecture depending on an environment’s interaction architecture, to

which a resource will be embedded in.

Figure 3.4. Multilevel cluster architecture.

The main element of this OntoEnvironment is an OntoShell. As was mentioned, an

OntoShell is a mechanism for making an ontological description and providing

interoperability for the resources. So, we have the environment with many OntoShells,

 40

which can interact with each other via the common language. But it is not enough, because

these OntoShells need the interaction, advertising and registration mechanisms, possibility

to be mobile (movable), etc. That is why an OntoEnvironment is set of the OntoShell-

enabled elements (services) (Figure 3.5), such as:

 OntoAdapter for the resources;

 OntoShellContainer;

 OntoMeetingPlatform;

 OntoMobilityService.

Figure 3.5. Elements of an OntoEnvironment.

3.2 Interaction Models

3.2.1 Centralized Interaction Model

For each shell in the cluster, the “mother-shell”, which represents a cluster of adapted

resources, is highlighted. During the registration of an OntoShell with its “mother-shell”,

the change (addition) of the cluster’s description to a summary “daughter-shells“

description is made. This registration list with descriptions of all internal resources is

duplicated for each “daughter-shell“. Discharge is organized in the same way. In this case,

the search of the necessary resource in the cluster may be organized by each “daughter-

shell“ or “mother-shell” (in case of need). Resources, which are registered not at one

cluster, but at many clusters, have a more comprehensive list of the accessible resources

 41

and provide additional possibility to search resources in a through level way out of the

cluster (Figure 3.6). Such additional opportunity can speed up the resource search.

Figure 3.6. Through level search.

3.2.2 Decentralized Interaction Model

In such architecture, there is no registration at the “mother-shell”, but there is an initial

tune up for an OntoShell with the indication of the “neighbor-shells” list. The further

changing of the list is carried out during the resources’ interaction (“life”). This list may be

supplemented with a resource, which was used (was useful) and in a similar way may be

lessened with a useless one.

3.2.3 Hybrid Interaction Model

Concerning the centralized interaction model each OntoShell has a mechanism for

registration to a shell, which represents a cluster – an aggregate of OntoShells. Thus, the

whole interaction will be realized via a “mother shell” – OntoShellContainer (that is

requests for searching of the necessary resource and advertising yourself in the “mother

shell”, which results in further discovery of a registered resource). In such case we have a

need to realize a special demountable (adapter) module for the OntoShell representation in

the role of the OntoShellContainer for a cluster. Such demountable module has to be

configurable in detail (especially in a business model realization). It has to be responsible

 42

for the observance of registration agreements, the quality of the provided search service,

etc.

We may consider two main reasons for cluster organization:

 Cluster organization is chosen in order to decrease useless traffic during the

search of a resource. In this case, a cluster is organized in a hierarchical relation of

“class-subclass” type based on the resource ontology. In point of fact, a “mother shell”

may register only elements which are its subclasses. An example of such clusterization

is presented in Figure 3.7.

Figure 3.7. “Class-subclass” clusterization model.

Since the organization of such clusters will be carried out spontaneously and shells of

some level may not register in the “mother shell”, the relations between the shells

cannot be considered a totally centralized architecture.

 Cluster organization is chosen to build a closed set of functioning resources. It

may be used for the organization of a cluster, which covers a concrete domain with a

set of different resources without relation to the same class (for example a maintenance

platform with a set of services such as: main maintenance service, device alarm

service, set of classifiers, etc.). In this case, a “mother shell”, which represents some

cluster, provides search and interaction organization for the registered resources. But it

cannot represent all of them in a height level cluster as one element, because the

aggregate of descriptions is not a subclass’s description of some height level class.

There is only one way to go out to the height level cluster. This way is registration in

 43

clusters, subclasses of which are separate elements of the concerned cluster. Such

cluster organization is represented in Figure 3.8.

Figure 3.8. “Closed system” clusterization model.

Turning back to the impossibility of whole hierarchical clusters’ nesting, which covers all

levels of a “class-subclass” type ontology, we cannot provide a guaranteed resource search

via the “mother shells”. Also, search in a cluster-tree, formed on the some level, provides

both centralized top-down search and non-effective bottom-up rise at the same time.

For resolving these two main problems we may introduce an additional possibility of

interaction between the elements of an OntoEnvironment without “mother shell”. We may

say that it is a P2P interaction model for an OntoEnvironment. The main idea is that each

OntoShell keeps its own “record book”. This “record book” has to contain a list of useful

resources. In that way each shell (resource) can use its own “record book” directly.

Replenishment and modification of a resource’s “record book” are executed during

interaction establishment with other resources. Such direct interaction model is represented

in Figure 3.9.

Figure 3.9. Direct interaction model.

 44

Some variants for resource search in the hybrid interaction model are:

1. Interaction organization via OntoShellContainer (“mother shell”)

2. Records exchange during interaction between resources.

3. Using OntoMeetingPlatforms – places, where shells (more precisely, their

Advertising Agents) can meet each other and exchange their “record books” (fill up

them).

4. Using special search services.

During of each records exchange case (cases 2 and 3) a negotiation mechanism may be

used.

OntoMeetingPlatform is a service, which provides a possibility for a shell’s publicity

agent (PublicityAgents) to meet other agents and exchange records in their “record books”.

This service may be placed into an OntoShell or may be elaborated like a service of a new

generation in the OntoEnvironment and supplied with the same interaction interface like

the OntoShells. Such OntoMeetingPlatforms may be attached to some class of service

classification tree in the ontology and cover a specific resource domain. Such relation to

the concrete domain may be fixed on OntoMeetingPlatform’s annotation (description) and

used by OntoShells’ PublicityAgents.

Since the amount of records will increase very fast, we have a need to supplement the

OntoShell structure with a “record book’s” management block – RelationManager. Thus,

we insert two additional elements in the OntoShell for the management of relations. There

are RelationManager and PublicityAgent blocks. These blocks have to be configurable.

RelationManager has to be responsible for the rectification of the “record book” depending

on useless and useful records. PublicityAgent has to be responsible for visiting necessary

OntoMeetingPlatforms, negotiation with other agents for exchange of the records, etc.

3.3 Mobility

Considering distributed environments for resources, the necessity of resource mobility

emerges in a number of cases. In other words, we have a need to move a resource with its

necessary “equipment” from one machine (computing system) to another. The realization

 45

of such movement is a duty of a special service - OntoMobilityService, which will provide

mobility in OntoEnvironment. Thus, a party (player), in case of need to provide mobility

for resources, has to supply its computing system with such specific service.

To be a player of a mobile environment, elements of OntoEnvironment have to be supplied

with a MobilityManager module. This module has to be configured in conformity with a

policy system (concerning mobility). A resource can be configured to be both a movement

initiator and an available resource for move. All resources of a mobile environment, which

support an OntoMobilityService and accordingly support mobility, have to provide

necessary data for this service, such as: location, final point of destination, residence time,

etc. Thus, we have a need to design a respective ontology for messages between elements

of a mobile environment and an ontology concerning the behavior and relations of these

elements.

3.4 Business Model

Concerning the use of the discussed distributed integration environment based on the

OntoShell approach, we have to consider the use of it in a business environment. In such

environment service providers are interested in a frequent use of their services, that is why

advertising and search service play such an important role in this environment. Also, in

such business environment there must be some mediation elements, which provide

necessary services for the players.

3.4.1 Patterns of Behavior for Elements of OntoEnvironment

OntoShell. From the moment it begins to exist, an OntoShell needs to advertise its

resources. For the realization of this goal we may consider two ways: registration in a

“mother shell” and delivery responsibility in OntoShell advertising; itself advertising

during the life cycle and visiting OntoMeetingPlatforms. In case of need to interact with

some resource (if it does not locate in its “record book”) an OntoShell has to use a search

process via the “mother shell” or a special search service. Also, an alternative solution is to

stay on an OntoMeetingPlatform with the goal of meeting the another necessary resource

 46

or finding reference to it. During the establishment of a link with environment element for

records exchange (from “record book”) or registration in a cluster, some negotiation

mechanism is used. Thus, various aspects of behavior have to be configured beforehand

via a respective software visual interface module. Such configuration plays an important

role especially in the business environment, where “service” means “money”.

OntoMeetingPlatform. We may consider two ways of OntoMeetingPlatforms providing. If

they are provided in a centralized way, then they will be advertised in one central point.

But if they are provided without centralization, then they will need to advertise themselves

in the same way like OntoShells. In a general case, an OntoMeetingPlatform as a resource

in an OntoShell plays its (OntoShell’s) role. It may register in a cluster, visit other

OntoMeetingPlatforms, use search services, etc.

OntoShellContainer. OntoShellContainer is a more complicated behavior mechanism

especially in Business Environment, where it plays a role of a commercial mediation

element. Loose configuration of such element may result in negative profit. From the

moment of OntoShellContainer emergence in the same way as an OntoShell, it needs to

advertise itself. Then in the role of “mother shell” an OntoShellContainer has two main

goals:

 Advertising of the “daughter shells” via advertising itself.

 Supplying with a search mechanism.

By registering in a cluster an OntoShell shares its “record book” with an

OntoShellContainer in exchange for advertising service. This information allows executing

more effective search and allows removing useless ascent (bottom-up rise) by cluster-tree

during a search, which has been described in chapter #3.2.3. In case of a further refresh of

the OntoShell’s “record book”, the OntoShell may proceed with sharing it with the

OntoShellContainer (“mother shell”), because depending on the amount of new records

(references) the OntoShellContainer shows preference for this particular OntoShell in

advertising in case there are several OntoShells. Thus we have a competition between

“daughter shells”. In the same time, we have a competition between OntoShellContainers.

It may lead to the use of the OntoMeetingPlatforms or special search services for

 47

increasing the quality level of service. In case of need, all elements of a mobile

OntoEnvironment use OntoMobilityService.

3.4.2 Business Relations between Players

In the business model we may highlight a set of players, such as:

A – provider of OntoShells, OntoShellContainers and OntoMeetingPlatform;

B – OntoAdapters’ blocks developers;

C – Owner of an OntoShell with resource;

D – Owner of an OntoShellContainer;

E – Owner of an OntoMeetingPlatform;

F – Owner of some search service.

Figure 3.10. Inter-players interaction.

Figure 3.10 shows business relations between players. Detailed description of these

relations will be presented below:

1 – Player “A” is a customer of player “B” for adaptation modules development

(OntoAdapter’s modules).

2 – Player “A” supplies an OntoShell with the necessary adaptation modules to player “C”

for the inculcation of its resource in the OntoEnvironment.

3 – Player “A” supplies an OntoShellContainer to player “D” for cluster organization.

4 – Player “A” supplies an OntoMeetingPlatform to player “E”.

 48

5 – Player “C” pays player “F” in case of need to search a necessary resource.

6 – Player “C” pays player “F” in case of need to find someone or refresh its “record book”

during its stay on an OntoMeetingPlatform.

7 – An OntoShell registers itself in an OntoShellContainer based on some agreements and

in that way it advertises itself for further discovery. Additionally an OntoShellContainer

provides a search service for the registered OntoShells. And player “C” pays player “D”

namely for that search service.

8 – In a similar manner like in case #5, an OntoShellContainer may have a need to search

some resource for guaranteeing a high-level quality of its services (in that way, it increases

its competitiveness). In case of use of a search service, player “D” pays player “F”. In the

same time player “F” plays a role of player “C” and may have a need to register in an

OntoShellContainer (case #7), then player “F” pays player “D”.

9 – Player “D” pays player “E” for the use of an OntoMeetingPlatform by an

OntoShellContainer. On the other hand, an OntoMeetingPlatform is a service, which needs

to advertise itself. In that case, the OntoMeetingPlatform may be registered in the

respective OntoShellContainer.

10 – Player “F” pays player “E” for the use of an OntoMeetingPlatform with a goal to

supplement the resource database of the search service. On the other hand, the

OntoMeetingPlatform may use the search service to find necessary resource (another

OntoMeetingPlatform, OntoShellContainer). In that case, player “E” plays a role of player

“C” and pays player “F” (case #5).

11 - In a similar manner like an OntoShell, an OntoShellContainer may register itself in

another OntoShellContainer for advertising and additionally for search via a “mother

shell”. So, in that case, player “D” pays player “D” namely for that search service.

12 – An OntoMeetingPlatform may visit another necessary OntoMeetingPlatform in case

of need to advertise itself for concrete resources. Then player “E” pays another player “E”.

13 – One player “F” plays a role of player “C” in case of need to use a search service with

a goal to supplement its resource database and increase its quality. Then this player “F”

pays another player “F”.

14 – If we consider a business environment, we have a great many of commercial services,

which need a payment for their services. Then player “C” pays another player “C”.

 49

4 Mobile (movable) Web Service based on a Semantic Web

4.1 Necessity of Mobile Web Services

Why Mobile (movable) Web Services? First of the reasons is the utilized capacity of the

server (which provides a service), shortage of resources when it should serve a huge stream

of online queries. That problem concerns a service provider, and can be solved by means

of service reproduction and distribution of its copies to other servers in the Web. In this

case it is possible to decrease the utilized capacity of the concrete source (Figure 4.1). That

will also improve service discovery among a large amount of the services.

Figure 4.1. Decreasing the utilized capacity of the concrete source.

Side by side with a provider a service requestor also needs Mobile (movable) Web

Services. Imagine a situation, when a client of a service needs to use this service very often

as such or as a part of a more complicated transaction involving several services (Figure

4.2).

 50

Figure 4.2. Remote service’s activities.

In this case we have frequent use of the network for service access. Besides, we cannot

guarantee such important characteristics like:

 Minimal service execution time.

 Guaranteed, permanent connection with service.

 Guaranty of confidentiality and secure private information exchange.

In this case, it would be more effective to place all frequently used services at the client

side (Figure 4.3). Of course, in this case we need to take into account the storage capacity

of a client.

Figure 4.3. Local service’s activities.

 51

Another important concern is that Web service is often a business unit, which is being paid

for its service. This means that a service that is transferred to a client side should keep

business interests of its creator (owner). So we have here “self-interested” movable

services. In this case, the mobility of services plays a very important role allowing

“inviting” a service to a client side (platform) to serve locally.

4.2 Equipment for Mobile (movable) Web Service

Who and how will provide mobility of services? One solution to this problem might be the

implementation of “Agent-Shell Platforms”.

Agent-Shell Platform (ASP) is an environment for a number of (mobile) Agent-Shells,

which are assumed to be carriers of different Web Services (Figure 4.4). “Platform

Steward” represents ASP. Concerning the OntoShell approach, previously mentioned in

chapter #3, “Platform Steward” is represented by the OntoShellContainer (“mother shell”

of the second type (section #3.2.3). “Platform Steward” provides connection with a

network of other ASPs (OntoShellContainers), registration of new agents on the platform,

shares information with local agents. In the context of ASP, which supports agents’

migration between platforms, “Platform Steward” is rated like a cluster supplied with

OntoMobilityService (section #3.3). P2P management tools for information movement via

the network equip the platform.

 Figure 3.4. Agent-Shell’s Platform.

 52

Agent-Shell (AS) is the carrier of a web service (resource). In the context of the OntoShell

approach, Agent-Shell is an OntoShell. It contains a mechanism of interaction with the

platform and other agents, service engine. But why is it an agent? When we equip an

OntoShell with a behavior mechanism, a goal, a set of mechanisms for participation in

business environment, then it will become an agent. An agent, like a service representative,

has to be responsible for the business interests of its service. An agent has to support

service policy and certification. The mobility of the service and its agent-based

implementation provides a possibility to a Web Service to learn during the execution on a

service requestor site.

4.3 Service Networks based on the Agent-Shell Platform Approach

Considering both decentralized and centralized approaches to the management of our

service network, it is possible to pick out following service network types:

 Centralized platforms – centralized agents. Each platform registers its services

(provides descriptions) at some central (mediator) platform of the network. This

platform (“Network Center”) gets direct requests for services from clients and its

“Platform Steward” decides to which platform forward this request. Similarly, when a

local platform steward gets a forwarded request, it analyzes the request and decides to

which agent (service) on the platform to forward it to serve (Figure 4.5).

Figure 4.5. Centralized Platforms – centralized agents.

 53

 Centralized platforms – decentralized agents. In this case, like in the previous one,

the central point of the network selects the platform, which is assumed to be able to

serve the request, but inside the platform, which finally gets the request, the right

servant will be found based on a peer-to-peer (P2P) (semantic) search within the

platform (Figure 4.6).

 Figure 4.6. Centralized Platforms – decentralized agents.

 Decentralized platforms – centralized platform’s agents. This case is similar to the

first one, but interoperation between platforms is based on a peer-to-peer semantic

service discovery (Figure 4.7).

 Figure 4.7. Decentralized Platforms – centralized agents.

 54

 Decentralized platforms – decentralized agents. This is the case, when peer-to-

peer interaction is considered within both: network of platforms as a whole and locally

within each platform (Figure 4.8).

 Figure 4.8. Decentralized Platforms – decentralized agents.

In a typical case we have compound services, which combine a set of distributed (atomic)

service components into one service to provide more complex service for requestors. This

complex service when created “on the fly” decides, which of its sub-services (up to

components) corresponds to a request and how they should interact to resolve it. Outputs

provided by some components could themselves be considered as requests for some other

components etc. like in multiagent systems.

Thus atomic service components are organized in a HAS_PART – PART_OF hierarchy

from a service as a whole (abstract object) via (sub) services (abstract objects) up to

concrete components, which form a “MegaHybrid” structure of a service network (Figure

4.9). Interaction between elements on each level may be organized in either centralized or

decentralized way.

 55

Figure 4.9. MegaHybrid network structure.

Let’s consider the case, when such complex service receives a request and provides

another request as an output of one of its components. Assume that there are no other

components in its platform, which can resolve this request. In such case the service queries

the network. As a result, such service will be found, and the request will be resolved.

Evidently, it would be better for the service to accumulate its own set of links to services,

which satisfy the requirements, and use them in violation of the standard search scheme in

case of need. Then we will have a direct interaction between services (peer-to-peer

interaction), not only between elements on some level, but also in the “vertical” and the

“horizontal” plane of the service network hierarchy (Figure 4.10). In this context, simpler

services would de considered like mobile (movable) components of the more complex

services and they may be moved on the complex service side, in case of need.

Figure 4.10. “Via-Level” Peer-to-Peer interaction.

 56

4.4 Who Provides Web Services and for Whom

Nowadays there is already a large amount of existing Web Services. They differ not only

by types of service, but also by types of concrete physical objects that provide and

consume the service. While previously services were meant to be consumed by humans,

now industry needs services for another group of customers like various software

applications and even smart industrial field devices. On the other hand, both humans and

artificial objects (software or devices) can finally provide the service, which was

discovered in the Web.

So, in this case we have two big classes of service-users and service-providers (Figure

4.11):

 Human component

 Software component

 smart-devise

 compound (complex) service

Figure 4.11. Between-component interactions.

 57

The evolution of the Semantic Web technology allows the description of Web Services

based on a service domain ontology. Now we have a new phase in the Web Service

evolution, when autonomous service interoperability plays a main role. However, the

human component is still left and will stay in the Web Service environment both as

service-consumer and service-provider, because many of the services provided by humans

cannot be provided by software components.

Let’s discuss both sides of human participation in the environment of Semantic Web

Services:

 Human components as consumers of a new Web Service generation.

 Human component as providers of Semantic Web enabled Web Services.

A human component, when it is a user of a semantically annotated service, cannot and

does not need to know the ontological service’s description and specific query languages.

He has to know exactly what he wants. To provide such “simple” interface between a

human component and a network of Web Services, Agent-mediator is used. Agent-

mediator is something like user-wrapper or layer between the human component and the

services network, which knows how to handle both user queries and Web Services formal

descriptions (Figure 4.12).

Figure 4.12. Agent-mediator - intelligent layer between Software and Human

components.

 58

The main requirement to such user-wrapper is the provisioning of a simple, friendly human

user-interface:

 Simple mechanism to choose the necessary type or class of service;

 Dynamic interface provision when filling the desired service’s characteristics;

 Service’s result representation in a human understandable form.

To satisfy this kind of requirements we have to describe the nodes in the ontology both in a

software understandable and a human understandable form. Information representation in a

human readable form generates a new problem. This problem is the heterogeneity of

human languages. In this situation there are at least three choices:

 Having the ontology nodes’ description in many languages (more storage space

needed). Human component uses the description in his language (Figure 4.13).

Figure 4.13. Multi- linguistic node’s description.

 Implementing translation services for information adaptation (Figure 4.14).

 Figure 4.14. Information adaptation via translation service.

Such service may be based on an Ontology Personalization concept. An Ontology

Personalization means development of the support mechanism for a double-sided

ontology. Each player will be able to create a personal ontology, in other words it can

describe each object from the common ontology (or often used part of it) in terms of

 59

the own presentation way (language, terms, etc.) Thus, we have a double-sided

ontology. From one side there is a common ontology, which is used by any

semantically enabled resources (elements of an OntoEnvironment). And from other

side there is a personal ontology in a concrete player understandable form. In this case

we need some mechanism for terms interpretation (translation) from both sides of a

double-sided ontology. The goal of such an OntologyInterpreter is a two-forked

interpretation of the terms on the input and output of the human user interface (Figure

4.15). It is in a sense a dictionary of an ontology.

Figure 4.15. OntologyInterpreter – ontology personalization module.

A special tool for a personal ontology creation must supply such an

OntologyInterpreter. It is not obligatory to create a whole personal ontology if player

use just part of it, which concerns to the special domain of the player’s activities.

Especially it has a sense in the case of a small storage space, for example in a personal

mobile device. And in case of overrunning available part of an ontology, an ontology

swap-in mechanism can be used (Figure 4.16).

Figure 4.16. Ontology Caching – swap-in mechanism

 60

 Using information visualization methods, different from language description:

 Graphical (visual) representation of information.

 Multimedia (video and audio) data representation.

Above methods may be used jointly. Of course, we have to take into account that the

human component may use different devices for accessing the information. It may be a

stationary device with more functional capability or a mobile device with limited

resources.

This kind of relation between information type, access device type and information

representation format for human interface can be semantically annotated. For that it is

reasonable to elaborate an appropriate ontology.

What is the role of a human as a service provider within a network of semantically

annotated Web Services? In fact, a service represented by a human component, it is the

same Web Service as others and is described in the same way as other Web Services. Just

like the human component in the service consuming case, in the service providing case a

human component interacts with a network of other Semantic Web services via Agent-

mediator (Figure 4.12).

A mobile agent-carrier of a Web Service represents it whenever it moves. However in the

case of human service, the agent-carrier can hardly be movable within a network, because

its burden – “human-service” can be attached to some location and cannot be moved to the

service consumer side. In such context, the burden of this agent-carrier is a human

provider-interface. In other words, an agent-mediator for such case is a combination of

Agent-Sell, which is carrier of service, and human provider-interface. Human provider-

interface should not only adapt formalized information for the human component, but at

the same time has to make the opposite, i.e. formalize information from the human

component in a software understandable form.

 61

5 Global Industrial Maintenance Network based on Mobile

Web Services

5.1 Industrial Product’s Maintenance

5.1.1 Necessity of Industrial Maintenance

Tougher competition in the industrial markets has forced plants to become more cost-

effective: they must produce products at ever decreasing costs. As a result, production and

maintenance personnel must increasingly be able to identify which maintenance operations

are truly necessary and how to schedule them without significant production disturbances.

 Ensuring operations at low costs sets many challenges for maintenance operations. Larger

maintenance jobs, for example, should be planned according to need rather than at pre-de-

termined intervals. And spare parts inventories should be kept low but also sufficiently

large to ensure the right parts are available when needed. Automation provides the bridge

between process and business management with real time access to valuable information.

Innovative solutions and services in industrial domain improve product quality, process

performance and environmental compliance, in addition to lowering operating costs.

Comprehensive maintenance systems play a key role in the maintenance of process

equipment, field instrumentation, power supply, automation and information networks as

well as automation applications. These maintenance systems aim at optimized maintenance

for the entirety of a plant's life cycle. In a multi-dimensional and widely dispersed paper-

producing company like Metso Oy (www.metso.com), many people in different divisions

and in different places have specific expertise and experience. Bringing that diverse

knowledge together is essential to effectively solve many problems that involve process

control, quality control and paper process technology.

Ensuring reliable operations at minimum costs is a major challenge for today’s

maintenance operations. For instance, scheduling large upgrades should be based on real

need rather than on standard intervals.

 62

5.1.2 Field Devices Maintenance

The maximization of productivity, usability and safety can be regarded as the main goal of

automation in general. Other important aspects in the process industry are an increasing

demand for quality and flexibility and emphasizing environmental aspects. Maintenance

plays a very important role in achieving these goals.

One quite commonly used sales argument for smart (with embedded intelligence) field

devices has been advanced diagnostics and preventive/predictive maintenance capabilities.

In most cases these devices only give the possibility to perform maintenance rather than

providing complete solutions for it. The challenge is, therefore, to develop a diagnostic

system that automatically follows up the performance and maintenance needs of field

devices offering also easy access to this information. Modern smart field devices with

advanced on-line diagnostics provide a lot of diagnostic information during the field device

lifetime. Effective management and analysis of this information is a key to success in

future field device management [Pyötsiä & Cederlöf, 1999], [Ojala, 2001].

The development of more intelligent condition monitoring techniques provides automation

of domain expert knowledge used in tasks of condition monitoring and fault predictions,

eliminating human presence from the “problem-solution” chain and provides integration of

maintenance experience, making it available and reusable world wide.

As a natural result of the life cycle cost kind of thinking, field device maintenance

strategies are changing from corrective and preventive practices towards predictive

maintenance. This helps performing maintenance functions better based on the actual need.

As a result of this evolution, production losses caused by poor performance and

unnecessary process down time are expected to decrease. As a bonus, also maintenance

costs will decrease. In order to be successful in predictive maintenance a lot of new

diagnostics information is needed during the field device lifetime and the importance of

field device diagnostics will grow to a new extent. Modern smart field devices have great

potential in meeting these challenges [Riihilahti & Ojala, 2000].

 63

5.1.3 Increasing Information Flow

This section is based on materials from [Riihilahti & Ojala, 2000], [Nikunen et al., 2001],

[Pyötsiä & Cederlöf, 1999], [Pyötsiä & Cederlöf, 2000].

Processes tend to grow in size and complexity. At the very same time information flow

from smart field devices increases continuously. Today smart field devices can collect

huge amounts of information about device performance and operation. An increased

amount of diagnostics information itself is however not a target. On the contrary, there is a

danger that the information flow coming from smart field devices increases the complexity

and workload of operators and maintenance people rather than simplifying it. Therefore,

the management of this information flow is the key to success. This huge amount of raw

information must be interpreted automatically because the plant staff cannot manage all the

available information from different devices. Measuring critical values of the field devices

and concluding the need for maintenance with the help of long-term statistics and an

automatic analysis is the answer.

It is also very important that the diagnostic system is easy-to-use and results are easy-to-

interpret. System users in a plant do not want to have yet another application interface to

learn. That is why this diagnostics concept should utilize as much as possible the existing

tools. In fact a user-friendly diagnostic system should not be visible to the user at all as a

separate user interface. The system only notifies the user when needed.

Process equipment condition monitoring and maintenance operations have the primary

goal of ensuring process reliability and high capacity utilization in a cost-efficient and

environment-friendly way. In this regard, it will be better to develop new solutions to assist

proactive maintenance from individual field units to entire processes.

5.1.4 Existing Industrial Autonomous Maintenance Systems

This section is based on materials from [METSO, 2002], [METSO, 2003], [FIELD

BROWSER].

 64

Previously, when the communication between field devices and control system was just

analog signals, there was no possibility to acquire any diagnostics or operational

information from the field devices, even if they were 'smart'. The operational information

of a smart device can reduce maintenance costs and unnecessary process shutdowns, thus

increasing plant throughput via increased control loop and field device operation

knowledge.

A complete field device management and condition monitoring system consists of two

software packages, Neles FieldBrowser™ and Valve Manager™. Neles Field-Browser™

is a maintenance tool to monitor the condition of the field devices continuously on-line.

When Neles FieldBrowser detects some exceptional event on the field device, the

maintenance staff of the factory is alerted. Valve Manager can be used to diagnose and

configure the situation. These actions are taken when a field device is diagnosed for faults

and needs to be repaired. A database viewer module enables to view diagnostic data with a

web browser.

5.1.4.1 Neles FieldBrowser Features

The Neles FieldBrowser automatically monitors the condition and performance of the field

devices on-line without any upsets to the process. Data such as trends diagnostis (travel

deviation, load factor and valve travel), counters, error messages, etc. can be monitored. If

one of the limits is exceeded or something unexpected happens, the Neles FieldBrowser

(Figure 5.1) will notify you.

 Automatic condition monitoring and messaging.

 Automatic diagnostics data reading and analysis.

 Automatic alert monitoring for HART device.

 Simple 3-level alert priority: "OK-Warning-Alarm"

 Install and forget Neles FieldBrowser.

When a field device is about to fail or the performance is reduced, you will be

automatically notified by e-mail or short message to your pager or mobile phone. You can

 65

also use your favorite Internet browser to check the status of all field devices. The status of

thousands of field devices can be viewed within just a few seconds.

Figure 5.1. Neles FieldBrowser.

Remotely or locally

 Alerts via e-mail.

 Alerts via mobile or pager.

 Device status and diagnostic data via Inter/Intranet.

 Alerts for external database (ODBC)

 Diagnostics data sending via e-mail.

The diagnostics data retrieved from field devices can be automatically sent everywhere in

the world as an E-mail attachment file. Check the performance from the office, home or

leave it to Metso Automation. This feature allows you to analyze the alarm and preplan

corrective actions.

 66

5.1.4.2 Central Management of Control Valves

Metso Automation Valve Manager for HART Multiplexer Networks is a user-friendly and

powerful tool to configure, diagnose and perform control valve calibrations and tests from

a single workstation. Hazardous environments can be avoided because the valve

diagnostics and configuration can be performed from a clean operator or maintenance

room (Figure 5.2).

 Valve diagnostics data reading.

 Graphical diagnostics trends window.

 Diagnostics database.

 Valve configuration, configuration database.

 Valve testing, test result viewing, test database.

 On-line device variable monitoring and logging.

 Remote configuration of control valve characteristics.

 Process & valve info database.

 Three Security levels for users.

 Thousands of valves can be connected on-line.

 Simultaneous operation with Neles FieldBrowser

Figure 5.2. Central management of Control Valves.

 67

5.1.4.3 Metso Automation’s Field Bus Products

A field bus (of one type or another) can be found across the whole plant structure. From

Ethernet, through industrial LAN to control networks and discrete devices, it can bring a

broad range of generic advantages. Field buses can also bring significant benefits to

manufacturing systems in process control.

Field bus is an important technology in Metso’s Future Care concept. Future Care is a

long-term partnership providing technology know-how and resources to complement the

plant owner’s capabilities throughout the life cycle of the process and equipment. The

integration of the plant assets and production information, which the field bus will ensure,

is a key element in strengthening the plant competitiveness.

While the purchase of an asset or technology can be relatively simple, obtaining the best

performance from it is more difficult. Future Care tools and solutions are designed to build

long term knowledge out of the information the field bus devices provide. This knowledge

is used to improve process performance, drive down maintenance costs and minimize

shutdown time.

Smart-Pulp PA

Easy access for calibrating or reading diagnostics data is essential for most of the analytical

transmitters in the pulp and paper industry. Often grade changes or unexpected process

disturbances can cause headaches for operators.

For example, consistency transmitters on multi-grade machines may require several recipes

to be configured into the transmitter memory for successful consistency control.

Field-bus-based solutions can provide calibration windows on the operator’s monitor for

recipe changes and diagnostics by clicking the mouse. This is a real benefit when real-time

data is needed for decision-making.

Metso Automation has launched the first Profibus-based consistency transmitter, Smart-

Pulp PA, to the market. The Foundation Fieldbus version will be launched soon. Those

who are familiar with the analogue version of Smart-Pulp will not see any difference in

 68

operating the transmitter. The same functionality is still available but users get data more

easily than before.

ND800 FF/PA

The ND800 Intelligent Field bus Positioner has evolved from Metso Automation’s high

integrity positioner platform. To ensure the optimum solution for specific applications,

Metso Automation has developed ND800 for both Foundation Fieldbus H1 and Profibus

PA. On-line valve diagnostics are continuously stored throughout the life of the device.

The ND800 Intelligent Field bus Positioner utilizes sophisticated software to continuously

receive accurate data related to the performance and condition of the field device. Essential

on-line valve diagnostics maximize runtime performance, and can reduce valve

maintenance expenditure by up to 50%.

The performance trends of the valve and its impending need for servicing are closely

monitored and maintenance can be planned for when it is truly necessary. Unlike some

other device vendors, Metso’s Foundation Fieldbus device includes both AO and PID

function blocks as standard. The AO control block application includes scaling and

reversing options, while the PID control block application has advanced features including

set-point ramp speed plus a derivation filter and selector. The closed loop response speed is

easily adjustable and multiple tuning options are provided. The device can be used either

as a basic device or a link master, allowing control in the field.

The ND800 Intelligent Field bus Positioner is just one element in an evolving dimension of

process care solutions that promise to bring unprecedented process stability and efficiency.

Metso is playing an active role in developing open architecture device management

software that provides the ability to integrate all products regardless of the protocol being

used. By applying these latest technological developments to its long-established product

reliability, Metso Automation is raising process plant efficiency to a new level.

 69

5.2 Distributed Mobile Maintenance System for Smart-Device

5.2.1 Service Requestor Is a Smart-Device

As was previously mentioned, there are two big classes of services’ users – human

components and software components. The class of software service requestors is extended

with a new group of service users – smart devices. They should be able to access Web

services in case of need. The semantic-enabled description of services is important to

facilitate automated search and use of services by smart-devices.

5.2.2 Intelligent Distributed Product’s Maintenance

This is the state of the product maintenance domain today (Figure 5.3):

 Every product is supported by some maintenance center;

 Maintenance is performed by humans, with poor automation (most of solutions

cover only a part of the automation problem);

 Communications between centers are minimal, if they exist at all.

Figure 5.3. Maintenance today.

 70

As site wide condition monitoring solutions are already widespread, the next logical step is

breaking out from the site-oriented view and gaining the benefits of more large-scale

solutions. If all information available in different industrial sites could be collected and

analyzed together, significant improvements could be made to the accuracy of the analysis

[Ojala, 2001]. A global maintenance web service network, which provides condition

monitoring, fault prediction and recovery maintenance activities, integrates the

maintenance experience from industrial sites. This scenario leads to a situation where the

information management of tens of thousands of field devices is both distributed and

centralized at the same time.

From a variety of Maintenance Services we may choose 3 main types:

 Product-based Maintenance Service. There are services, which provide all types

of maintenance activities for specific products.

 Profile-based Maintenance Service. These services are specialized on specific

maintenance activities for a wide class of products.

 Location-based Maintenance Service. This type of services combine Maintenance

Services based on a location where products are used.

Actually each node related to a maintenance center may combine all of these three types of

maintenance. The next step of maintenance improving implies (Figure 5.4):

 Products’ connection through one maintenance center to a maintenance network

formed by maintenance services;

 Automated interaction between product and network for maintenance query;

 Discovery and utilization of maintenance resources and services within the whole

network;

 Experience accumulation of service providers during interaction with clients.

 71

Figure 5.4. Maintenance tomorrow.

As a result, every Maintenance Center in the Maintenance Network provides specific

services. When a problem appears, the Maintenance Center with the most relevant

knowledge for resolving that request must be found in the Maintenance network.

Experiences are accumulated independently by each Maintenance Center during

interaction between Maintenance Agents (agents which represent maintenance service) and

client points with a possibility to be integrated together when needed.

Field agents are already considered to be useful for condition monitoring. Intelligent agents

have found their place also in distributed web-services. The next step would be to embed

smart-agents to the maintenance system for enabling machines to communicate and

cooperate with each other. In case of mobile service agents, some Maintenance Service

agent or agents can be selected for the specific emergency situation, based on the online

diagnostics, and can be moved to the embedded platform to help the host agent to manage

it and to carry out the predictive maintenance activities.

 72

5.2.3 Structure of Maintenance Web Service Platforms (Internal and External

systems)

In the beginning of its lifecycle, each field device is registered to a fixed Maintenance

Center, which is the responsible point for this device. Exactly that Maintenance Center is

like a bridge, which ties together the field device and the Network of Maintenance Centers

(Maintenance Network). For interaction between the field device and the maintenance

service in our global maintenance web service network based on service platforms, we

have to provide service platforms to both the field device and the Maintenance Center

(Figure 5.5, Figure 5.6).

Figure 5.5. External System – Maintenance Center.

As we see, a Maintenance Center (Figure 5.5) is a Maintenance Service based on Web

service Platform. A “Therapist” agent represents this Maintenance Service. It has a set of

subordinate agents. These are “Diagnostic” and “Recovery” agents, which represent two

classes of services: Maintenance Diagnostic Service and Maintenance Recovery Service.

 “Therapist” agent: classifies input data by classes of maintenance diagnosis and

checks conformity of incoming requests with the profiles of local agents;

 “Diagnostic” agent: returns the diagnosis given device condition parameters;

 “Recovery” agent: performs remediation given diagnoses.

All of these agents can learn and accumulate experience during their work.

 73

Figure 5.6. Internal System – Field Device.

A field device local maintenance service (Figure 5.6 is based on an internal (embedded)

service platform. Such platform can also host “Therapist”, “Recovery” and “Diagnostic”

agents like an external service platform, however these agents have weaker knowledge and

abilities than the agents in a Web-based service platform naturally having less experience

and resources. Specific for a local device-based platform is a “WatchDog” agent (service).

This agent is usually provided by the field device manufacturer. Its goal is to monitor some

subset of critical system state parameters, detect relevant changes and query the internal

“Therapist” agent for the Maintenance Service. The “Therapist” agent examines the

condition of the device and makes decisions about further actions. If a problem is detected,

an action can be:

 Allowing local agents to be used for recovery (if appropriate);

 Requesting support from the Maintenance Network;

 Calling the maintenance center for the Emergent First Aid maintenance;

 Requesting for human intervention.

5.2.4 Human Component in the Distributed System of Mobile Maintenance Services

Despite intense efforts to fully automate the maintenance activities, human involvement is

still important. In the existing system of field device monitoring, information about device

condition state is delivered to a human at the control panel, for further analysis and

decision-making. In the proposed maintenance system, such a component like control

 74

panel exists also. This panel represents information about all processes, which take place

within devices. This kind of a panel may be represented as a Maintenance Process

Monitoring Service. This service, represented by a human, is a bridge between services

that are responsible for interaction with field device (e.g. WatchDog), and maintenance

services (diagnostic, recovery, etc.). The human can influence the processes in the field

device via this service. Communication with the human component will be enabled via

both the wire and wireless communications (Figure 5.7).

Figure 5.7. Human Monitoring Service.

Certainly a Maintenance System cannot perform without human resource execution

especially in cases when a maintenance activity involves physical actions over a field

device. Maintenance Crews can be located both in immediate proximity to a field device or

in a remote Maintenance Center in a physical world and it is represented by human

components (Figure 5.8). A human component like an agent component can provide

services such as “diagnostic” and “recovery” however as it was mentioned above humans

need adaptive interface to the Semantic Web environment.

 75

Figure 5.8. Human Maintenance Crew Service.

5.2.5 Maintenance Network

Knowledge integration is an important requirement in industry as a whole and particularly

in the product maintenance domain. Actually, the network of Maintenance Centers (in a

common case, it is a network of Maintenance Services) provides such integration. Existing

knowledge, which was previously isolated and inaccessible, now may be shared and reused

based on a distributed environment of mobile (movable) semantically annotated services.

Maintenance Network services can be provided not just by the product’s producers, but

also by other knowledge providers in that domain. In this context we have to consider such

questions as: how to launch a system of knowledge (service, experience) certification and

how to manage business processes related to the utilization of commercial services.

Network services have to be certified by a respectable and trusted certification instance for

both: to perform specific maintenance activities for different products or to perform wide

spectrum of maintenance activities for specific products. A certification system is a basis

for guaranteed maintenance quality (Figure 5.9).

 76

Figure 5.9. Network of certificated Maintenance Services.

Generally “Therapists” agents perform interactions in the Maintenance Network.

Requirements to a “Therapist” agent as to a transaction manager include:

 Matchmaking between received service queries and profiles of the service

components (agents) available at the platform;

 Targeted forwarding of the query to other platforms at the network, if the request

cannot be served locally;

 Enabling peer-to-peer semantic search in the Maintenance Network.

5.2.6 Maintenance Cases

Let’s consider five types of product maintenance services and appropriate interaction

scenarios between Field Device and Maintenance Center platforms:

Service 1: Remote diagnostic

Service 2: Recovery and predictive maintenance

Service 3: Preventive inspection

Service 4: Emergency service

Service 5: Human resource execution

 77

5.2.6.1 Remote Diagnostic

Remote diagnostic is a case, when some monitored parameters of a device differ from a

normal state, however the local maintenance center does not have enough expertise to

make a diagnosis itself. In this case the request with parameters will go from an internal

platform to the Maintenance Center (MC). As a result, MC returns the diagnosis back to

the internal platform. However if the requests for diagnosis for similar cases are sent very

often, then it is considered to move an appropriate diagnostics agent, which is expert in this

repeating problem, permanently or for a certain time period to operate locally in the

internal (embedded) platform (Figure 5.10).

 Figure 5.10. Remote diagnostic.

5.2.6.2 Recovery and Predictive Maintenance

Assume that a local maintenance centre makes a diagnosis, but cannot recover the situation

itself (e.g. there is no qualified “Recovery” agent). In this case, the internal platform sends

a request with parameters and diagnosis to the Maintenance Center (MC). As a result, MC

sends the appropriate “Recovery” agent to the internal platform, which can resolve the

problem. This agent can accumulate experience during its work at the internal platform. If

similar requests are sent very often, then it is also considered to send an experienced agent

to the embedded platform for a permanent “job” if internal resources allow (Figure 5.11).

 78

Figure 5.11. Recovery and predictive maintenance.

5.2.6.3 Preventive Inspection

erts in all necessary

fields for preventive inspection, to the internal platform (Figure 5.12).

Case 1: Sometimes, when the Internal System requires preventive inspection, it sends this

type of request and all necessary state data to the Maintenance Center. As a result, the MC

sends its decisions from a set of “Diagnostic” agents, which are exp

Figure 5.12. Remote preventive inspection.

 79

Case 2: The Internal System requests preventive inspection from the Maintenance Center

and send the parameters. As a result, the “Therapist” in the MC gathers a group of agents

(experts in the necessary fields) for preventive inspection and sends this brigade of

“Diagnostic” agents to the Internal System. Locally they inspect Product and can reveal

some troubles (Figure 5.13).

Figure 5.13. Local preventive inspection.

5.2.6.4 Emergency Service

There is “First Aid” maintenance. If the diagnosis shows necessity of the emergency works

(in critical states), the “Therapist” in the MC calls a group of “Recovery” agent(s) on-duty,

using as much as possible the maintenance resources of its own MC, and sends this brigade

to the Internal System as soon as possible. Also, it must continue to look for better experts

for this problem in the Maintenance Network (Figure 5.14).

 80

Figure 5.14. Emergency service.

5.2.6.5 Human Resource Execution

There is a case of maintenance activities with people involved. If the “Recovery” agents

cannot provide appropriate maintenance activities without human participation, then the

“Therapist” checks the possibility of the local (human) Maintenance Crew to execute this

type of activities or makes request for human advise to the Maintenance Network. The

search is based on the profile of the required Maintenance Crew. Actually, some

Maintenance Centers probably do not have their own crews. One of the important factors

for a Maintenance Crew of humans to be taken into account is its location (Figure 5.15).

 81

Figure 5.15. Human resource execution.

 82

6 Conclusions
Nowadays the world is overcrowded by information, which is decentralized and non-

shared for a wide circle of users, who need this information. Making the knowledge

(information) available satisfies not only the users’ requirements, but also it allows saving

resources (money, human resources, etc.), which are expended for resources doubling.

Thus the Semantic Web approach based on the creation and using of common ontologies is

the more suitable solution for integration and shared using of information, knowledge,

services (in one's own way they provide those information and knowledge) and, typically

case resources. Using an ontology provides the context for creating accurate semantic

metadata, which is the key to providing actionable information and business insight within

the framework of information integration. The value of metadata has been long recognized,

from data integration to application integration. It is only through semantic metadata that

both humans and software can start to associate meaning with documents. This approach is

accentuated especially now, when a new type of users like smart-device has appeared.

They also need access to information and using of Web Services.

Nevertheless, resources and services (as a subclass of resources) are distributed via the

Internet. Together with detached resources, there are modular resources, which are

components of other more complex resource. Especially an approach to services (as a

mobile components) is very good solution for organizing a shared using of this kind of a

resource. Using of mobile resources (services) finds an application in various domains,

when different services and sharable semantically annotated distributed resources are used.

Particularly, this approach has a place in the industrial context, under organizing of

corporative association (coalition) for shared using of common resources (services in

context of the foregoing material) with the purpose of cost minimization and industrial

process optimization. Organizing in a sense Industrial OntoHub (in the context of between-

corporative cooperation), which accumulate information about stocked distributed shared

resources, splendidly combine with the mobile resource’s (service’s) components approach

and using network of platforms for mobile agent-carriers.

 83

The emerging agent technology gives new opportunities to introduce mobility for

resources (services), which in point of fact are represented by mobile agents. The agents

are best suited for applications that are modular, decentralized, and changeable. The agent

approach provides a useful means of integration and coordination of services.

In this work I consider an infrastructure of distributed Web service components, which can

be discovered on the Web based on semantic annotations, move to any target platform

carried by mobile agents and perform their tasks locally and cooperatively. The challenge

to use agents allows not only mobility of service components but also their learning while

performing tasks locally. I am implementing this concept for automated monitoring and

maintenance of field devices. A Model of Distributed Industrial Product Maintenance

System based on interaction of heterogeneous distributed mobile Web services is

described.

Resources and services (as subclass of resources) are heterogeneous and need to be

preliminarily adapted via a common ontology. According to this problem, I propose an

OntoShell approach to the creation of an Ontology-based universal integration

environment. It allows transforming all resources (already existing and being developed) to

semantically enabled resources for their integration. I propose both a centralized and a

decentralized (P2P) interaction models for the components of this integration environment.

Also, I consider a business model of such environment construction.

Now there is a new phase in the Web Service evolution, when autonomous service

interoperability plays a main role. However, the human component is still left and will stay

in the Web Service environment both as service-consumer and service-provider, because

many of the services provided by humans cannot be provided by software components. We

have a need to enable human presence in Semantic Web environment considering human

to be a resource, not just a user in Semantic Web. Being naturally proactive, human can

communicate with other resources and application acting as a web service. I consider a

problem of a human representation in such environment of a resource-to-resource (service-

to-service) communication, and propose approach to a resolving of this problem.

 84

I consider services as mobile components to enabling effective integration of distributed

resources. Mobile resources (services) are expected to be applied in domains where

sharable semantically annotated distributed resources are utilized, i.e. for Semantic Web

applications, particularly in the industrial context. Field devices having an explicit physical

contact to industrial processes are extremely important players to solve the productivity

and quality tasks. It is very important to develop intelligent diagnostic solutions for

automated monitoring and analysis of the field device needs. Effective utilization of

existing and distributed knowledge in maintenance domain is one of emerging industry

concerns. A Model of Industrial Maintenance System utilizes the Semantic Web

technology (ontological description and semantic annotation of service components); a

mobile agents approach with agents that are carriers of resources (services). Such system

of mobile components integration (in the general case) provides a comprehensive approach

to integration within an enterprise, as well as between trading partners, suppliers, and

customers, by offering the latest technology and open standards. It provides organizations

with the possibility to create a cost-effective, extended enterprise by using an integration

solution to get more return on information assets from existing ICT investments.

This system may be a reusable and strategic corporate asset, readily available to provide

the next generation integration capability required to construct complex business

processes.

It can help enterprises realize the benefits of the next generation of integration:

 Reduced total cost of integration

 Shortened reaction times: shortened development cycles translate to the time to

deployment. This will allow an enterprise to be nimble and responsive in ways they

never thought possible.

 Competitive differentiation: the system allows creating integrated; cross-

functional business processes streamlined with intelligent workflow to effectively

differentiate enterprise.

 Future profit: New technologies can be assimilated without the need for changes

to the integration network or significant investments in additional software. And these

new technologies will be able to interact with existing ICT assets.

 85

REFERENCES

[AGENTCITIES] The Agentcities Network. URL: http://www.agentcities.net/

[AGENTCITIES, 2002] Agentcities Network Architecture Recommendation, ACTF-

REC-00001, 2002.

[Ankolekar et al., 2001] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin,

S.A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara,

H. Zeng, DAML-S: Semantic Markup For Web Services, URL:

http://www.semanticweb.org/SWWS/program/full/paper57.pdf,

2001.

[Ankolekar et al., 2002] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin,

D. McDermott, S.A. McIlraith, S. Narayanan, M. Paolucci, T.R.

Payne, K. Sycara, DAML-S: Web Service Description for the

Semantic Web, URL: http://www-2.cs.cmu.edu/~terryp/Pubs/

ISWC2002-DAMLS.pdf, 2002.

[Burg, 2002] B. Burg, “Agents in the World of Active Web-services” Hewlett-

Packard Laboratories, 1501 Page Mill Road, MS 1U-16, Palo-

Alto, CA 94304, URL: http://www.hpl.hp.com/org/stl/maas/

docs/HPL-2001-295.pdf, 2002.

[Breger, 2003] Breger Michael, Agent Technology @ Siemens,

URL:http://www.cs.helsinki.fi/u/hhelin/opetus/oat/, 2003.

[Burmeister et al., 1993] B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic

configurable cooperation protocols for multiagent systems.

From Reaction to Cognition --5th European Workshop on

Modeling Autonomous Agents in a Multi-Agent World

(MAAMAW'93), 1993.

 86

http://www.agentcities.net/
http://www.semanticweb.org/SWWS/program/full/paper57.pdf
http://www-2.cs.cmu.edu/~terryp/Pubs/ ISWC2002-DAMLS.pdf
http://www-2.cs.cmu.edu/~terryp/Pubs/ ISWC2002-DAMLS.pdf
http://www.hpl.hp.com/org/stl/maas/ docs/HPL-2001-295.pdf
http://www.hpl.hp.com/org/stl/maas/ docs/HPL-2001-295.pdf
http://www.cs.helsinki.fi/u/hhelin/opetus/oat/

[Clabby, 2002] J. Clabby, Web Services Executive Summary, URL: http://www-

106.ibm.com/developerworks/webservices/library/ws-gotcha/

?dwzone=webservices, 2002.

[Curbera et al., 2002] F. Curbera, M. Dufler, R. Khalaf, W. Nagy, N. Mukhi, S.

Weerawarana, Unravelling the Web Services Web: An

introduction to SOAP, WSDL and UDDI, Internet computing,

March/April, 2002.

[DAML-S, 2002] “DAML-S: Semantic Markup for Web Services”, The DAML
Services Coalition 2002, URL: http://www.daml.org/services/
daml-s/0.7/daml-s.pdf

[Davis, 2002] J. Davis, D. Fensel, and F. van Harmelen, Towards the Semantic

Web: Ontology-Driven Knowledge Management, Wiley, 2002.

[Dickinson, 2001] Dickinson, The Interface as agent: a comparative review of

human-agent interaction. In review, 2001.

[Ding et al., 2002] Ying Ding, Dieter Fensel, Michel Klein, Borys Omelayenko,
The semantic web: yet another hip?, Data and knowledge
Engineering, 2002.

[Farrell & Kreger, 2002] J. A. Farrell, H. Kreger, Web services management approaches,

IBM Systems Journal, Vol. 41,

URL:http://www.research.ibm.com/journal/sj/412/farrell.html,

No. 2, 2002.

[Fensel, 2001] D. Fensel. Ontologies: A silver bullet for Knowledge

Management and E-Commerce. Springer 2001

[Fensel & Bussler, 2002] D. Fensel, C. Bussler, The Web services modelling framework

WSMF, URL:http://www.cs.vu.nl/~dieter/wese/wsmf.paper.pdf,

2002.

[Fensel & Musen, 2001] Dieter Fensel, Mark A. Musen, The Semantic Web: a brain for

humankind, Intelligent Systems, IEEE, March/April 2001.

[Fensel et al., 2002] Dieter Fensel, Frank van Harmelen, Ying Ding, Michel Klein,

Hans Akkermans, On-To-Knowledge: Semantic Web Enabled

 87

http://www-106.ibm.com/developerworks/webservices/library/ws-gotcha/ ?dwzone=webservices
http://www-106.ibm.com/developerworks/webservices/library/ws-gotcha/ ?dwzone=webservices
http://www-106.ibm.com/developerworks/webservices/library/ws-gotcha/ ?dwzone=webservices
http://www.daml.org/services/ daml-s/0.7/daml-s.pdf
http://www.daml.org/services/ daml-s/0.7/daml-s.pdf
http://www.research.ibm.com/journal/sj/412/farrell.html
http://www.cs.vu.nl/~dieter/wese/wsmf.paper.pdf

Knowledge Management

URL:http://home.broadpark.no/~rhenge/rob/papers/2002_otk_ie

ee.pdf, 2002.

[Fethi, 2002] Fethi A. Rabhi, School of Information Systems University of

New South Wales, Sydney 2052 (Australia) and Sergei

Gorlatch, Technical University of Berlin Sekr, FR 5-6,

Franklinstr. 28/29 D-10587 Berlin (Germany), “Patterns and

Skeletons for Parallel and Distributed Computing”,

URL:http://www.cs.cf.ac.uk/User/David.W.Walker/papers/root.

pdf, October 2, 2002

[FIELD BROWSER] “Field browser system for Control Valve maintenance”, 9 FB 20

Issue 4/99, URL:http://www.strauja.lt/vt/pdf/9FB20EN.pdf

[Finin et al., 1992] Finin, T. et al. Specification of the KQML Agent

Communication Language. The DARPA Knowledge Sharing

Initiative, External Interfaces Working Group. 1992

[FIPA, 2000] The FIPA Standard for Interoperating Software Agents. The

Foundation for Intelligent Physical Agents, URL:

http://www.fipa.org/, 2000.

[FIPA, 2001(a)] FIPA ACL Message Structure Specification, FIPA00061, 2001.

URL: http://www.fipa.org/specs/fipa00061/

[FIPA, 2001(b)] FIPA Interaction Protocol Library Specification Specification,

FIPA00025. URL: http://www.fipa.org/specs/fipa00025/, 2001

[iPlanet, 2002] “iPlanet Application Server Enterprise Connector for CICS”,

URL: http://docs-pdf.sun.com/806-5504/806-5504.pdf”, 2002.

[JXTA] The JXTA Project. URL: http://www.jxta.org/

[Kreger, 2001] Heather Kreger, IBM Software Group, Web Services Conceptual

Architecture, URL:http://www-

 88

http://home.broadpark.no/~rhenge/rob/papers/2002_otk_ieee.pdf
http://home.broadpark.no/~rhenge/rob/papers/2002_otk_ieee.pdf
http://www.cs.cf.ac.uk/User/David.W.Walker/papers/root.pdf
http://www.cs.cf.ac.uk/User/David.W.Walker/papers/root.pdf
http://www.strauja.lt/vt/pdf/9FB20EN.pdf
http://www.fipa.org/
http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00025/
http://docs-pdf.sun.com/806-5504/806-5504.pdf
http://www.jxta.org/
http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf,

2001.

[Laamanen, 2001] Laamanen Heimo, FIPA Agent Framework, URL:http://aut-

pc29.hut.fi/kurssit/as-116-

140/sem_a01/FIPA_agent_framework.pdf, 2001.

[Laamanen & Helin, 2001] Laamanen Heimo, Heikki Helin, Software Agent Technology,

FIPA Agent Framework, URL:

http://www.cs.helsinki.fi/u/hhelin/opetus/oat/, 2001.

[Laasri et al., 1992] B. Laasri, H. Laasri, and V. Lesser. A generic model for

intelligent negotiating agents. International Journal on

Intelligent Cooperative Information Systems, 1992

[METSO, 2002] Metso Automation's Customer Magazine Vol. 1, 2002

“Automation for the pulp & paper, energy, hydrocarbon and

chemical industries, and rock and minerals processing”, URL:

http://www.metsoautomation.com/automation/magazinebank.nsf

/Resource/wwwAutom1_2002all/$File/wwwAutom1_2002all.p

df, 2002.

[METSO, 2003] Metso Automation Customer Magazine Vol. 10, Issue 1, 2003,

“Automation. Metso Future Care is here today”, URL:

http://www.metsoautomation.com/Automation/magazinebank.ns

f/Resource/wwwAu103/$File/wwwAu103.pdf, 2003.

[Mikalsen & Rouvellou, 2001] Thomas Mikalsen, Isabelle Rouvellou, Reliability of Composed

Web Services From Object Transactions to Web Transactions,

Stefan Tai, IBM T.J. Watson Research Center, New York, USA,

URL:http://www.research.ibm.com/AEM/pubs/

web_services_oopsla2001.pdf, 2001

[Nikunen et al., 2001] J. Nikunen, M. Salmenperä, H. Koivisto, Global Condition

Monitoring Network, Automaatiopäivät 2001.

 89

http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
http://aut-pc29.hut.fi/kurssit/as-116-140/sem_a01/FIPA_agent_framework.pdf
http://aut-pc29.hut.fi/kurssit/as-116-140/sem_a01/FIPA_agent_framework.pdf
http://aut-pc29.hut.fi/kurssit/as-116-140/sem_a01/FIPA_agent_framework.pdf
http://www.cs.helsinki.fi/u/hhelin/opetus/oat/
http://www.metsoautomation.com/automation/magazinebank.nsf/Resource/wwwAutom1_2002all/$File/wwwAutom1_2002all.pdf
http://www.metsoautomation.com/automation/magazinebank.nsf/Resource/wwwAutom1_2002all/$File/wwwAutom1_2002all.pdf
http://www.metsoautomation.com/automation/magazinebank.nsf/Resource/wwwAutom1_2002all/$File/wwwAutom1_2002all.pdf
http://www.metsoautomation.com/Automation/ magazinebank.nsf/Resource/wwwAu103/$File/wwwAu103.pdf
http://www.metsoautomation.com/Automation/ magazinebank.nsf/Resource/wwwAu103/$File/wwwAu103.pdf
http://www.research.ibm.com/AEM/pubs/ web_services_oopsla2001.pdf
http://www.research.ibm.com/AEM/pubs/ web_services_oopsla2001.pdf

[Ojala, 2001] M. Ojala, SW agent technology in global field device

management, URL: http://www.automationit.hut.fi/julkaisut/

documents/seminars/sem_a01/Ojala.pdf, 2001.

[Paolucci et al., 2002] M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, Importing

the Semantic Web in UDDI, URL:http://www-

2.cs.cmu.edu/~softagents/papers/Essw.pdf, 2002.

[Parunak, 1998] H. Parunak, Practical and Industrial Applications of Agent-

Based Systems, 1998.

[Peltz, 2003] C. Peltz, Applying Design Issues and Patterns in Web Services,

URL: http://www.devx.com/enterprise/Article/10397/0/page/1,

7 January 2003.

[Pitkänen & Shuling, 1998] Pitkänen Hannu, Zhang Shuling, Introduction to agent theory

and review on agent applications in robotic and automation

systems, URL:http://www.automation.hut.fi/edu/340autumn98/

[Pyötsiä & Cederlöf, 1999] J. Pyötsiä, H. Cederlöf, Advanced Diagnostic Concept Using

Intelligent Field Agents, ISA Proceedings, 1999.

[Pyötsiä & Cederlöf, 2000] J. Pyötsiä, H. Cederlöf, Remote Wireless Presence in Field

Device Management, ISA Proceedings, 2000.

[Riihilahti & Ojala, 2000] J. Riihilahti, M. Ojala, On-line Diagnostics for Maintenance of

Smart Field Devices, ISA Proceedings 2000.

[Rodrigez & Sallantin, 1998] J.M. Rodrigez, J. Sallantin, A system for Document

Telenegotiation (negotiator agents), COOP'98: 3rd International

Conference on the Design of Cooperative Systems, Cannes,

France, May 26-29, 1998, pp. 61-66.

[Seilonen, 2001] Seilonen Ilkka, Introduction to agent technology,

URL:http://aut-pc29.hut.fi/kurssit/as-116-

140/sem_a01/Introduction.pdf, 2001.

 90

http://www-2.cs.cmu.edu/~softagents/papers/Essw.pdf
http://www-2.cs.cmu.edu/~softagents/papers/Essw.pdf
http://www.devx.com/enterprise/Article/10397/0/page/1
http://aut-pc29.hut.fi/kurssit/as-116-140/sem_a01/Introduction.pdf
http://aut-pc29.hut.fi/kurssit/as-116-140/sem_a01/Introduction.pdf

[Sheth, 2003] A. Sheth, Semantic Metadata For Next-Gen Enterprise

Information Integration: Gaining Industry-Specific

Understanding of Heterogeneous Content, DM Review

Magazine, April 2003, URL: http://www.semagix.com/pdf/DM-

Review-Final.pdf, 2003.

[Tommila et al., 2001] T. Tommila, O. Ventä, K. Kostinen, “Automation technology

review 2001: Next Generation Industrial Automation – Needs

and Opportunities”, URL:

www.vtt.fi/tuo/projektit/ohjaava/ohjaava1/atr_2001.pdf, 2001.

[UDDI, 2002] UDDI. The UDDI Technical White Paper, URL:

http://www.uddi.org/, 2002.

[Virtej, 1998] Virtej Iuliana, Software agent concepts and technologies,

URL:http://www.automation.hut.fi/edu/340autumn98/virtej/virte

j.htm, 1998.

[VISION] VISION project – description. “Next generation knowledge

management”, EU project IST-2002-2.1.2, URL:

www.cognit.no/home_multi/html/VISIONProjectDescription.pd

f, 2002.

[W3C(a)] W3C org, WSDL (Web Services Description Language)

URL:http://www.w3.org/TR/wsdl.

[W3C(b)] W3C Web Services Activity. URL:

http://www.w3.org/2002/ws/, 2002.

[W3C(c)] W3C Extensible Mark-up Language (XML) Activity. URL:

http://www.w3c.org/XML/

[W3C(d)] W3C Resource Description Framework (RDF) Activity. URL:

http://www.w3c.org/RDF/

[W3C, 2000] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May

2000 URL:http://www.w3.org/TR/SOAP/, 2000.

 91

http://www.semagix.com/pdf/DM-Review-Final.pdf
http://www.semagix.com/pdf/DM-Review-Final.pdf
http://www.vtt.fi/tuo/projektit/ohjaava/ohjaava1/atr_2001.pdf
http://www.uddi.org/
http://www.automation.hut.fi/edu/340autumn98/virtej/virtej.htm
http://www.automation.hut.fi/edu/340autumn98/virtej/virtej.htm
http://www.cognit.no/home_multi/html/VISIONProjectDescription.pdf
http://www.cognit.no/home_multi/html/VISIONProjectDescription.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/2002/ws/
http://www.w3c.org/XML/
http://www.w3c.org/RDF/
http://www.w3.org/TR/SOAP/

[webMethods] “The webMethods Integration Platform. Delivering the

Enterprise Dial-tone”, webMethods: The Business Integration

Company,

URL:www.webmethods.com/PDF/EDT_Brochure_HIGH.pdf,

2002.

[WebServices] URL: http://www.webservices.org.

[Wooldridge, 2002] M. Wooldridge, An Introduction to Multiagent Systems, John

Wiley & Sons, 340 pp.

[Wooldridge, 2003] Wooldridge Mike, Multiagent Systems,

URL:http://www.cs.helsinki.fi/u/hhelin/opetus/oat/, 2003.

 92

http://www.webmethods.com/PDF/EDT_Brochure_HIGH.pdf
http://www.webservices.org/
http://www.wiley.com/
http://www.wiley.com/
http://www.cs.helsinki.fi/u/hhelin/opetus/oat/

	Introduction
	Value of the Problem Domain
	Thesis Goal
	Relations with Other Projects

	Semantic Web and Agents Approaches in Web Service Technology
	Web Service Infrastructure
	Web Service is …
	Service Properties and Types
	Service Architectures

	Semantic Web and Web Services
	SOAP, WSDL, UDDI technologies
	Semantic Markup of Web Services
	Semantic Web-enabled Services

	Agent Approach to Web Services
	Agent Technology
	Software Agents
	How Are Agents Built up?
	Why Agents?
	Multi-agent Systems

	Agents and Semantic Web Services
	The Semantic Layers of Agent-based Web-services Communicatio
	Active Web-services
	Agent Standardization
	Agent Environment

	Ontology-based Distributed Integration Environment for Heter
	OntoShell Approach to the Problem
	Interaction Models
	Centralized Interaction Model
	Decentralized Interaction Model
	Hybrid Interaction Model

	Mobility
	Business Model
	Patterns of Behavior for Elements of OntoEnvironment
	Business Relations between Players

	Mobile (movable) Web Service based on a Semantic Web
	Necessity of Mobile Web Services
	Equipment for Mobile (movable) Web Service
	Service Networks based on the Agent-Shell Platform Approach
	Who Provides Web Services and for Whom

	Global Industrial Maintenance Network based on Mobile Web Se
	Industrial Product’s Maintenance
	Necessity of Industrial Maintenance
	Field Devices Maintenance
	Increasing Information Flow
	Existing Industrial Autonomous Maintenance Systems
	Neles FieldBrowser Features
	Central Management of Control Valves
	Metso Automation’s Field Bus Products

	Distributed Mobile Maintenance System for Smart-Device
	Service Requestor Is a Smart-Device
	Intelligent Distributed Product’s Maintenance
	Structure of Maintenance Web Service Platforms (Internal and
	Human Component in the Distributed System of Mobile Maintena
	Maintenance Network
	Maintenance Cases
	Remote Diagnostic
	Recovery and Predictive Maintenance
	Preventive Inspection
	Emergency Service
	Human Resource Execution

	Conclusions
	REFERENCES

