
Dmytro Kovtun

MOBILE SERVICES FOR WIRELESS PRIVATE AREA

NETWORKS BASED ON AD HOC CONNECTIVITY

Master’s thesis

Mobile computing

27.12.04

University of Jyväskylä

Department of Mathematical Information Technology

Author: Dmytro Kovtun

Contact Information: e-mail: dmkovtun@cc.jyu.fi

Title: Mobile services for wireless private area networks based on ad hoc connectivity

Work: Master’s Thesis

Number of Pages:

Study Line: Mobile Computing

Department: University of Jyväskylä, Department of Mathematical Information

Technology

Keywords: WPAN, Sensor Network, AD HOC, Short Range Mobile Device, Routing

Protocols, EAI, Application Server, XML, Web-Service

Abstract: Wireless connectivity is not novelty in IT industry already. New technologies

and standards are available to build wireless infrastructure in real market and they

penetrate into our everyday life. More and more various approaches, different mobile

devises are rushing in market to propose and provide diversity of services.

However, among others techniques of wireless connectivity, WPAN is quite new direction

in IT industry which appeared recent years. There some research groups and projects

which are working in the field of private area networks and are aimed to elaborate new

standards and approaches concerning various issues such as connectivity, integration,

routing, power consumption, security, quality of service.

As the result we can see already ready-made products and systems based on wireless ad

hoc connectivity. It is expected rapid development of this technology and implying it into

different market segment. Therefore it assumes the impetuous growing of diversity mobile

services, networks integration issues and elaboration new standards.

This Master Thesis represents the pilot WPAN distributed system which was developed to

show the possibility of utilization of WPAN technology and possible ways of WPAN

 I

integration with distributed environmental. Developed systems covers such aspects as

providing some services with as example of obtaining temperature and lightness, the

possible distributed architecture. Also it given some examples of use-case of what king of

applications might be build upon this architecture.

 II

Acknowledgements
The main practical base of this master thesis was obtained in the Kaustinen research lab of

Chydenius institute. So I would like to thank to all co-workers for their warm and kind

attitude to me. I am very thankful to my master’s thesis supervisors – professor Vagan

Terziyan and professor Ismo Hakala for their help, advises and support during the writing

this Thesis.

I also would like to express my deep gratitude to Vagan Terziyan and Helen Kaikova for

all their invaluable efforts in supporting me during my studding and living in Finland.

 III

Abbreviations

API – Application Programming Interface

EIS – Enterprise Information System

FFD – Full Function Device

GSM – Global System for Mobile communications

GPRS – General Packet Radio Service

HTTP – Hyper Text Transfer Protocol

JSP – Java Server Page

IP – Internet Protocol

LAN – Local Area Network

MAC – Media Access Control

MVC – Model View Controller

RFD – Reduced Function Device

SLIP – Serial Line Internet Protocol

SOAP – Simple Object Access Protocol

TCP – Transmission Control Protocol

UDDI - Universal Description, Discovery and Integration standard

WSDL – Web Services Description Language

WAP - Wireless Application Protocol

 IV

UDP – User Datagram Protocol

WLAN – Wireless Local Area Network

WPAN – Wireless Private Area Network

XML – eXtensible Markup Language

 V

Contents

1 INTRODUCTION ...1
1.1 BACKGROUND...1
1.2 RELATED WORK ..3
1.3 RESEARCH PROBLEM STATEMENT ...3
1.4 CONTRIBUTION OF THE THESIS..4
1.5 LR WPAN PROJECT..4
1.6 STRUCTURE OF THE THESIS ...5

2 WIRELESS PRIVATE AREA NETWORK DOMAIN...6
2.1 GENERAL DESCRIPTION...6
2.2 WPAN COMPONENTS ...7
2.3 NETWORK ISSUES AND TOPOLOGIES..7

2.3.1 Star topology..8

2.3.2 Peer to peer topology ...9

2.4 ROUTING PROTOCOLS ...10
2.4.1 Proactive routing protocols..10

2.4.1.1 Destination Sequenced Distance Vector (DSDV)10

2.4.1.2 Wireless Routing Protocol (WRP)...11

2.4.1.3 Source Tree Adaptive Routing (STAR)...11

2.4.2 Reactive routing protocols ...11

2.4.2.1 Dynamic Source Routing (DSR) ...12

2.4.2.2 Ad Hoc on Demand Distance Vector Routing (AODV)12

2.4.2.3 Temporary Ordered Routing Algorithm (TORA)12

2.4.2.4 Relative Distance Microdiversity Routing (RDMAR)13

2.5 POWER CONSUMPTION ..14
2.5.1 Power-Aware Routing ...14

2.5.2 Transmission Power Control ...14

2.6 CONCLUSIONS...15

3 DISTRIBUTED SYSTEM ARCHITECTURE...16
3.1 HISTORY OF DISTRIBUTED COMPUTING..16
3.2 MULTI-TIER DISTRIBUTED ARCHITECTURE..16

3.2.1 Tires of distributed architecure ..17

3.2.1.1 Client tire ...18

3.2.1.2 Application tire ..19

3.2.1.3 Enterprise tire...19

 VI

3.3 JAVA CONNECTOR ARCHITECTURE...20

4 WEB SERVICES TECHNIQUE..22
4.1 SERVICE-ORIENTED ARCHITECTURES FOR WPAN NETWORKS.............................22
4.2 THE WEB SERVICE TECHNOLOGY STACK ...23
4.3 WEB SERVICES EXPLAINED ..24

4.3.1 Using the Web Services Description Language (WSDL)24

4.3.2 Using Universal Description, Discovery, and Integration (UDDI)25

4.3.3 Using SOAP...26

4.4 CONCLUSIONS...26

5 MOBILE SERVICES..27
5.1 INTRODUCTION ...27
5.2 WPAN SERVICES ARCHITECTURE ...27

5.2.1 WPAN distributed system architecture description.....................................29

5.2.1.1 Physical sensor network connection ..30

5.2.1.2 Datagram encapsulation...31

5.2.1.3 Traffic storage..32

5.2.1.4 Sockets connection ..32

5.2.1.5 WPAN control application...33

5.3 WPAN MOBILE DEVICE SPECIFICATION ..37
5.4 NETWORK STACK PROTOCOL ..39
5.5 PROTOCOL SPECIFICATION ..41

5.5.1 GET command...41

5.5.2 SET command..42

5.5.3 IND command..43

5.5.4 ACK command ..44

5.6 WPAN SERVICES ...45

CONCLUSIONS ..48

REFERENCES...50

APPENDIX A...53

 VII

1 Introduction

1.1 Background

Nowadays the use of different wireless devises is considered as traditional way of our

everyday life. Penetrating into our houses, offices, business mobiles networks show

impressive evolution of wireless communication. As assumed, in 2003 – 2005 the market

of various mobile services will experience of large grow, especially driven by Internet-

based WEB services.

We can point the great achievement in the evolution of mobile networks moving from

second generation (2G) to the third generation (3G) systems. It shows the evolution of

digital mobile cellular systems which mainly based on GSM family standards and

specifications. It covers different aspects such as data rate transition, communication

protocols, data formats and so on.

The next step of improvement of GSM was introduction GPRS and EDGE as transitional

data technologies for the evolution of GSM [2]. GPRS uses packet mode extension, to

support data applications and exploiting the already existing network infrastructure in

order to save the operator’s investments.

From another hand one of the very important aspects of wireless network evolution is

represented by wireless local area networks (WLAN). WLAN systems are family of

standards and technologies that provide high data rate applications and individual links and

represent the attractive way of network communication. These systems represent the

combination of well-elaborated LAN technique and mobile computing.

Whereas many WLANs need the infrastructure network that provides access to other

networks, ad hoc wireless networks do not need any infrastructure. In such systems mobile

node (devise) may act the role of intermediate node during multi-hop transmission of data

from source node to destination node. Such kinds of systems play a complementary role to

extend coverage for low power systems with arbitrary dynamic topology. The main

challenges in design and deployment of ad hoc networks are issues of designing and

 1

development dynamic routing protocols and device’s power consumption. One of the

research groups which are dealing with these questions is MANet [7] working group which

has been formed within Internet Engineering Task Force (IETF) to develop a routing

framework for IP-based protocol in the ad hoc networks [8].

WLANs without need of an infrastructure with the very limited (up to 10-20 meters)

coverage and consisted from tiny devices with low data rate transmission and power

consumption could be as the new direction in wireless connectivity. This new emerging

architecture is indicated as wireless personal area network (WPAN). In practical view such

kind of network is aimed to establish interaction between various mobile and portable

devises such as PDAs, tablet PCs, laptops, digital cameras, cell phones and many others.

Bluetooth technology is the striking example of WPAN implementation.

On the Figure 1.1 is depicted the division of all wireless spectrum and the range of

interaction for particular clusters. It is also showed what standards and technologies could

constitute particular cluster.

Figure 1.1 Wireless spectrum division

Involving wireless connectivity there is other type of networks – sensor networks. A

wireless sensor network consists of number of sensors spread over particular

(geographical) area. As pointed in [9] each sensor has wireless communication capability

 2

and some level of intelligence for signal processing and networking of the data. Sensor

networks are getting spreading in the military, environmental monitoring, traffic control,

security issues and others areas. Sensor network could be exploiting for: determine the

values of some parameters at a given location; detect the occurrence of events of interest

and estimate parameters of the detected events or event; classify a detected objects; track

an object.

1.2 Related work

Related work concerning to the wireless ad hoc connectivity, different aspects of mobile

communication, some issues of sensor networks and their integration, definition of short

range devises can be found in [1], [9], [6].

These works coverers and explain main questions of ad hoc technology itself, challenges

which could be faced during designing and building WPAN networks, trends and

directions for close future in further evolution, review of related technologies which

cooperate with WPAN.

1.3 Research problem statement

The questions which were related to research activity during composing this thesis describe

the problem of sensor networks integration in general. Some questions are related to

technical investigations such as design of stack of network protocols, design of application

protocol, design of physical interface for sensor network.

Another part of question go to problem of sensor networks compatibility, how to manage

particular kind of network, and were considered some question about possible uses cases

for sensor networks.

I would like to point that the question of sensor networks integration and their utilisation is

quite new in the research society and IT industry but this quest could be considered as

main issue in the trend of development.

 3

1.4 Contribution of the thesis

This thesis first of all tries to cover quite new problem which arise from context of wireless

network integration, especially integration of WPAN networks. Since WPAN network

enclosed itself there is need to combine it with legacy systems or infrastructure in

someway. So we fist get the question of integration.

The second point is attempt to show possible utilisation such kind of network to provide

some service based upon their functionality. It was developed pilot WPAN control system

which has functionality to operate on sensor network, send different commands to nodes

and get the result from sensors.

1.5 LR WPAN project

The main research and practical context of this thesis comes from my practical training

which was passed in the term of LR WPAN project in Chydenious Institute, Kokkola. The

LR WPAN project is driven by research team of 6 people who are working in the

Kaustinen research lab.

The main activities of the project consist of:

- Research investigation in the are of wireless communication based on ad

hock connectivity

- Design and implementation ad hoc routing protocols

- Design and development stack of network protocols

- Elaboration of methods for power consumption decrease

- Sensor networks integration

- Design and manufacturing mobile sensor networks nodes

 4

1.6 Structure of the thesis

Chapter 2 introduces some concepts about wireless technologies. In particular is describes

different trends in wireless connectivity, makes a review of various standards, introduce to

the WPAN technology and shows directions and challenges there.

Chapter 3 covers the main idea of distributed computing. It introduces into multi-tires

architecture which used in the pilot WPAN system.

Chapter 4 introduce into WEB services. It shows main standards and parts which constitute

this technology.

Chapter 5 shows the pilot WPAN system as the main result of this thesis. It covers

questions of system’s architecture, network stack protocol and application protocol

specification, describes functionality of the system, and shows some assumption about

practical implementation.

Section “Conclusions” summarizes the context and done work of the Master Thesis.

Section “References” shows all used literature and sources

Section “Appendix A” includes listings of sources codes of developed system.

 5

2 Wireless Private Area Network Domain

2.1 General description

Low rate WPAN is the standard described by the IEEE P802.15 specification and is the

research question of The IEEE P802.15 Low Rate Study Group for Wireless Personal Area

Networks. A Low Rate WPAN can be considered as a simple, low-cost communication

network consisted of different mobile devices which based on the wireless connectivity

with limited power consumption and operating range. The main objectives of an LR-

WPAN are extremely low –cost of mobile devices (up to several $ per unit), ease of

devices installation, reliable data transfer, short-range operation, and a reasonable battery

life, while maintaining and exploiting a simple and flexible communication protocols.

According to [10] some of characteristics of an LR WPAN are:

- Over air data rates of 250 kb/s, 40 kb/s, and 20 kb/s.

- Operational range 10 – 100 meters

- Star or Peer-to-Peer operation.

- Allocated 16-bit short or 64-bit extended addresses.

- Allocation of guaranteed time slots.

- CSMA-CA channel access.

- Fully acknowledged protocol for transfer reliability.

- Low power consumption.

- Energy detection.

- Link quality indication.

 6

- 16 channels in the 2450 MHz band, 10 channels in the 915MHz band,

and 1 channel in the 868MHz band.

As pointed in draft standard specification [10] there are two different device types that can

participate in an LR-WPAN network, a full function device (FFD) and a reduced function

device (RFD). Devices related to the FFD type can operate in three various modes serving

either as a PAN coordinator, a coordinator or a device. An FFD can communicate with

RFDs or other FFD devices, while an RFD can only talk to an FFD. An RFD is intended

for applications that are extremely simple, such as a light switch or temperature sensor;

they do not have the need to get and end large amounts of data and may only associate with

a single FFD at a time.

2.2 WPAN components

Different mobile devices with wireless communication can constitute WPAN networks,

but from structural point of view they can be classified as an RFD or an FFD type as

pointed in section 2.1. Two or more devices within a personal communicating area and on

the same physical channel constitute a WPAN. However, a network shouldl include at least

one FFD, operating as the PAN coordinator. Usually PAN coordinator has more important

role in the WPAN network and as the rule it has PC connection interface that allow being a

sink for that network. All ingoing and outgoing communication for WPAN network is

fulfilled through the PAN coordinator in such case.

2.3 Network issues and topologies

WPAN networks can have both static and dynamic topologies, but mostly mobile WPAN

networks are formed dynamically. According to descriptions in [1] nodes in WPAN

networks which exploit ad hoc connectivity are free to move in arbitrary way and organize

themselves in random topology therefore such kind of network’s wireless topology may

change rapidly in time and unpredictably.

Due the dynamic topology of WPAN networks we face the main challenge of WPAN

technology – the data routing and ways to resolve this task. Routes between nodes in an ad

 7

hoc network could exploit different routing protocols and may include as single hop as

multiple hops. Ad hoc networks with multi- hop communication is called as ‘‘multi-hop

wireless ad hoc networks’’. Nodes which placed beyond the range of communication need

to use intermediate nodes to transfer the data hop by hop. This principle of dynamic multi-

hop topology is depicted on the Figure 1.2

C
 C

B B

A
A

Figure 1.2 Dynamic multi-hop ad hoc topology

From point of typology’s shape and depending of applications requirements, the LR-

WPAN may have and operate in ether of two kinds of topologies: the star or peer to peer

topology.

2.3.1 Star topology

The communication networks which based on star topology are conducting between

network’s devices and single central network controller called PAN coordinator. A PAN

coordinator may also have a specific application but it can be used to initiate, terminate or

route communication around the network [1]. In the sensor networks such central network

controller plays the role of sink for the whole network or its part.

 8

PAN coordinator

Figure 1.3 Star topology

Usually PAN coordinator drives all ingoing and outgoing network traffic and the main

loading, that’s why it may has permanent power supply, while the other devices have most

likely the battery power. Some examples of applications which use star topology include

home automation, PC peripherals, toys and games, and telemedicine [10].

2.3.2 Peer to peer topology

The same approach of PAN coordinator is used in peer to peer topology but unlike star

topology any device can establish communication one to other as long as they are in the

range of communication. Peer to peer topology allows designing and implementing more

complex network formation to solve more wide range of tasks. These tasks could relate to

applications such as industrial control and monitoring, wireless sensor networks, asset and

inventory tracking, intelligent agriculture, and security would benefit from such a network

topology as exampled in [10]. A peer-to-peer network can be ad hoc, self-organizing and

self-healing. Also it may use multiple hops communication to route data from source to

destination on the network.

PAN coordinator

Figure 1.4 Peer to peer topology

 9

2.4 Routing protocols

The nature of WPAN networks, the limitation of its resources put on strict conditions for

designing and efficient implementation reliable routing strategy and since that is being

very challenging task. Routing strategy has to fit limited resources, use intelligent

behaviour and at the same time being reliable and adaptive to the dynamic topology of

WPAN networks. At the same time with this, routing strategy has to provide sufficient

level of QoS up to request of various applications and users.

In the solutions of choosing routing strategy it is used three approaches and types of

routing protocols: table driven routing or proactive routing in which all routes are already

stored and are ready for use; source initiated on-demand routing or reactive routing in

which a route is discovered only when there is data packet to be routed; hybrid routing –

the combination of proactive and reactive routing strategies.

2.4.1 Proactive routing protocols

Proactive routing protocols use approach in which each node keeps routing information to

every neighbouring node in the same network. The information about route is usually kept

in the different routing tables. These tables are periodically updated and/or if the network

topology changes. The difference between proactive-family protocols exists in the way the

routing information is updated, detected and the type of information kept at each routing

table [2].

2.4.1.1 Destination Sequenced Distance Vector (DSDV)

DSDV - is based on the classical Bellman-Ford routing algorithm. Each node in this

protocol maintains routing tables of all destinations and number of hops to each

destination. It uses full dump or incremental packets to reduce network traffic generated by

route updates. The full dump packet carries all the available routing information and the

incremental packet carries only the information changed since the last full dump [2].Only

improvement which is implemented in this protocol is avoidance of routing loops in a

 10

mobile network of routers. With this improvement, routing information can always be

readily available, regardless of whether the source node requires route or not.

2.4.1.2 Wireless Routing Protocol (WRP)

WRP exploits a path-finding algorithm with the exception of avoiding the count-to-infinity

problem by forcing each node to perform consistency checks of predecessor information

reported by all its neighbours. Each node according to this protocol keeps 4 tables -

Distance table, Routing table, Link-cost table and Message retransmission list table. Link

changes are propagated using update messages sent between neighboring nodes. This

protocol avoids count-to-infinity problem.

2.4.1.3 Source Tree Adaptive Routing (STAR)

STAR - the protocol which based on the link state algorithm. Each router maintains a

source tree, which is a set of links containing the preferred paths to destinations [2]. This

protocol does not require periodic routing updates nor does it attempt to maintain optimum

routes to destinations.

2.4.2 Reactive routing protocols

The family of reactive routing protocols were designed to reduce that overheads and

drawbacks of proactive protocols by maintaining information for active routes only. In [2]

pointed that it means that routes are determined and maintained for nodes that require

sending data to a particular destination.

Reactive routing protocols can be divided into two main groups: sources routing and hop-

by-hop routing. In Source routed on-demand protocols each data packets carry the

complete source to destination address and each intermediate node which takes part in

transition forwards this packets according to the packet’s destination [2]. Therefore these

intermediate nodes do not need maintain the up-to-date information of routing to forward

the packet correctly to the destination.

 11

Group of hop-by-hop protocols uses the method when packet holds addresses of

destination and next hop only. Thus during packet transmission every intermediate node

uses its own routing table to determine the path to the destination. The advantage of this

strategy is that routes are adaptable to the dynamically changing of topology of network.

There are number protocols which constitute the reactive routing protocols have been

designed to increase the performance of routing strategy are:

2.4.2.1 Dynamic Source Routing (DSR)

DSR belongs to source group routing protocols. For this protocol, mobile nodes are

required to maintain route caches that contain the source routes of which the mobile is

aware. Entries in the route cache are continually updated as new routes are learned. There

are 2 major phases of the protocol - route discovery and route maintenance Route

discovery uses route request and route reply packets. Route maintenance uses route error

packets and acknowledgements.

2.4.2.2 Ad Hoc on Demand Distance Vector Routing (AODV)

AODV uses routing algorithm which based on the DSDV algorithm and the improvement

is on minimizing the number of required broadcasts by creating routes on an on-demand

basis. A path discovery is initiated when a route to a destination does not exist. Broadcast

is used for route request. Link failure notification is sent to the upstream neighbors and this

algorithm requires symmetric links

2.4.2.3 Temporary Ordered Routing Algorithm (TORA)

TORA is highly adaptive, loop-free, distributed routing algorithm based on the concept of

link reversal. It is proposed to operate in a highly dynamic mobile networking

environment. It is source initiated and provides multiple routes for any desired source/

destination pair. This algorithm requires the need for synchronized clocks. There are three

basic functions of the protocol, namely route creation, route maintenance and route

erasure.

 12

2.4.2.4 Relative Distance Microdiversity Routing (RDMAR)

RDMAR - This type of routing estimates the distance, in radio loops, between two nodes

using the relative distance estimation algorithm. It is source initiated, having features found

in ABR. This routing protocol limits the range of route searching in order to save the cost

of flooding a route request message into the entire wireless area.

The summarizing of the various features of both reactive and proactive routing protocols is

listed in the follow tables.

Table 2.1 Proactive routing protocols

Protocols RS Tables # Frequency of
updates

HM Critical
nodes

Features

STAR H 1 and 5
list

Conditional No No Employes LORA and/or ORA.
Minimize CO

WRP F 4 Periodic Yes No Loop freedom using predecessor
info

DSDV F 2 Periodic and
as required

Yes No Loop free

RS - routing structure; HM - hello message; H - hierarchical; F- flat; CO - control overhead; LORA - least overhead
routing approach; ORA - optimum routing approach

Table 2.2 Reactive routing protocols

Protocols RS Multiple
Hops

Beacons Route metric
method

Route configuration strategy

DSR F Yes No SP, or next available
in RC

Erase route the SN

AODV F No Yes Freshest & SP Erase route then SN or local route
repair

TORA F Yes No SP, or next available Link reversal & Route repair

RDMAR F No No Shortest relative
distance or SP

Erase route then SN

RS - routing structure; H - hierarchical; F - flat; RT - route table; RC - route cache; SP - shortest path; SN - source
notification

 13

2.5 Power consumption

Devices which constitute WPAN network are small and limited in resources and then rely

on limited battery energy to perform their activity. There are number of groups and

research projects, which are working in the area aiming to reduce energy consumption

using various approaches. These are issues of energy reducing at the hardware level [3], at

the levels of protocol stack [4] in particular on routing and transport protocols [5]. These

approaches can be described in follow:

2.5.1 Power-Aware Routing

Power-aware algorithms choose the routing of data according to some predefined power

cost functions [6]. As described in [11], they introduce the term of minimum transmission

energy (MTE) routing scheme, which selects the route using the least amount of energy to

transport a packet from source to destination. The purpose of using such function is to

maximize the network lifetime, which is defined as the period from the point of time when

the network starts functioning to the point of time when the first node loses its energy

supply. In [13], the problem of finding the most beneficial source rate allocation and flow

control strategy, given a required network lifetime, as defined in [12], is posed. Each

source is associated with a utility function that increases with the traffic flowing over the

available source-destination routes.

2.5.2 Transmission Power Control

The questions of transmission power control (TPC) have been quite good investigated in

the context of GSM cellular networks such as TDMA/FDMA. This technique uses the

algorisms aimed to decrease the effect of mutual interference instead preserving the

energy. That’s why, most of the solutions using TPC rely on a centralized control are it is

not presently reflected in wireless ad hoc networks. Some works in this area show some

theoretical studies [14] and simulations, that by applying TPC in ad hoc packet networks,

concerning to the reducing of energy consumption both in a single-hop environment [16]

and in a multi-hop environment [17] can be obtained. That works are dealing how TPC is

employed to control the topology of wireless ad hoc networks. In [55, 56], power control is

 14

proposed as a part of the multiple access protocol for the class of CSMA/CA protocols and,

more in general, for contention-based multiple access protocols. For specification of IEEE

802.11 standard for WLAN, they concerning so called distributed coordination function

(DCF). This standard defines an optional point coordination function (PCF) also. Power

control is undesirable for DCF when the number of hidden terminals is likely to increase,

which, in turn, results in more collisions and in more energy consumption. From the other

side it can be effective in the PCF access mechanism, since there is no hidden terminal

problem [15].

2.6 Conclusions

WPAN is a quite promising technology which can change the view of ubiquitous

computing and future heterogeneous communication. Possible application scenarios for

these short-range communications, together with the existing and emerging technologies to

support them, have been presented. Low power consumption, operation in the unlicensed

spectrum, coexistence between the WPAN and the WLAN, low cost, and small package

size are some of the most important technical challenges to be faced.

The great volume of research work in ad hoc routing protocols should be put in the context

of concrete MAC layer realization. The future work on the short-range wireless network

must apply the routing protocols in a way that is adapted both to the channel

access/transmission conditions and the application requirements.

 15

3 Distributed system architecture

3.1 History of Distributed Computing

The history of distributed computing began around 1970 with the emergence of two

technologies:

- Minicomputers, then workstations, and then PCs

- Computer networks (eventually Ethernet and the Internet) [23]

Mini-computers such as Digital’s PDP-11 and mainframes could be considered as a

beginning of the distributed computing. Mini-computers worked on timesharing operating

system such as Multix, Unix, RSX, RSTS. Users used the same machine for their work and

it looked to the users as if they worked each with the own machine.

Mini-computers were slower than their Big Brother mainframes made by IBM, Control

Data, Univac, etc [Distributed system]. When they became popular they had not spread

over large number of users as the mainframes had. The way to scale mini-computers was to

buy more of them. The trend toward cheaper machines made the idea of having may minis

a feasible replacement for a single mainframe and made it possible to contemplate a future

computing environment where every user had their own computer on their desk, that is a

computer workstation.

Work on the first computer workstation began in 1970 at Xerox Corporation’s Palo Alto

Research Centre (PARC). This computer was called the Alto. Over the next 10 years, the

computer system's group at PARC would invent almost everything that's interesting about

the computer workstations and personal computers we use today.

3.2 Multi-tier distributed architecture

Multi-tier computing allows to developers to write programs that are distributed across a

different network. It allows also to build applications that run on different application

servers, and that can be called by client programs. The application server can resides on

 16

one machine, the client application on another machine. The two programs work in

tandem, each using the resources available on their own machine, and neither impinging

significantly on the resources available on the other machine.

One of the necessary functionality for multi-tier computing is the ability to make remote

function calls. A remote function call is a call to a method on a server that resides on a

different machine than the one you are currently using. If you are running program A on

machine X, and you call a function on program B that is running on machine Y, then you

are doing multi-tier computing.

In brief description, multi-tier distributed computing, in its simplest possible form, is about

making remote function calls. If you have a client program on one machine that calls a

function or method on a binary file located on a second machine, then you are doing

distributed computing. The crucial point here is that you don't load the server program or

DLL into the memory space of your own machine; instead, the function call executes on

the remote machine.

On the Figure 3.1 is depicted the multi-tired architecture of distributed computing. The

distributed platform uses a distributed multitiered application model for enterprise

applications. As the rule, application logic is divided into components according to purpose

and function, and the various application components that make up a distributed enterprice

application are installed on different machines depending on the tier in the multitiered

environment to which the application component belongs [25].

3.2.1 Tires of distributed architecure

As the rule, enterprice applications are distributed over three locations: client machines, the

application server machine, and the database or legacy system machines at the back end

this distributed architecture is called three-tired distributed architecture and consists of:

- Client-tier components run on the client machine

- Business-tier components run on the application server

- Enterprise information system (EIS)-tier software runs on the EIS server

 17

Client-tier components run on the client
machine

Client tier

Web-tier components run on the application server
Business-tier components run on the application
server

Application tier

Enterprise information system (EIS)-tier software
runs on the EIS server.

Enterprise tier

Figure 3.1 Multitiered Applications Architecrure

Three-tiered applications that run in this way extend the standard two-tiered client and

server model by placing a multithreaded application server between the client application

and back-end storage. One of the interpretation of three tires distributed system can be

compared with MVC pattern. According to this approach we divide data, logic

functionality and representation into three separate parts. Data are stored as they are in

their own model. Controller has logic and makes the appropriate functionality upon data.

View describes in what way data should be represented. So we can see close relationship

between three tires distributed architecture and MVC pattern.

3.2.1.1 Client tire

A client tire can be a Web client or an application client. A Web client consists of two

parts: dynamic Web pages containing various types of markup language (HTML, XML,

 18

and so on), which are generated by Web components running in the Web tier, and a Web

browser, which visually represents the pages received from the server. A Web page

received from the Web tier also can include different embedded application components

like Java Applets or ActiveX components.

An application client runs on a client machine and provides a way for users to handle tasks

that require a richer user interface than can be provided by a markup language. It typically

has a graphical user interface (GUI), for instance Java Swing API, but a command-line

interface is certainly possible [25].

Application clients directly access enterprise beans running in the business tier. However,

if application requirements warrant it, an application client can open an HTTP, Sockets or

DCOM connection to establish communication with a servlet running in the Application

tier.

3.2.1.2 Application tire

Application tire is the tire of application servers where all business logic are stored.

Application server servers and manage that logic which solves or meets the needs of a

particular business domain of an enterprice or organisation such as manufactoring,

banking, or finance, is resided on the papllication tire. For example in J2EE technology

this logic is encapsulated into EJB – enterprice java beans. An enterprise bean receives

data from client programs, processes it (if necessary), and sends it to the enterprise

information system tier for storage.

3.2.1.3 Enterprise tire

The enterprise information system tier (or just enterprice tire) handles EIS software and

includes variouse enterprise infrastructure systems such as enterprise resource planning

(ERP), mainframe transaction processing, different database systems (Oracle, Sybase, MS

SQL), and other legacy information systems. For example, distributed application

components might need access to enterprise information systems for database connectivity.

 19

3.3 Java Connector Architecture

The Java Connector Architecture defines a standard architecture for connecting the J2EE

platform to heterogeneous EIS systems such as ERP, mainframe transaction processing,

database systems, and legacy applications whis is not written in the Java programming

language [26]. It defining a a set of scalable, secure, and transactional mechanisms, the

J2EE Connector architecture enables the integration of EISs with application servers.

The J2EE Connector architecture describes standards and provides its specification that

enables vendors of EIS to provide standard resource adapters for its EIS. The resource

adapter plugs into an application server, providing connectivity between the EIS, the

application server, and the enterprise application. If an application server vendor has

extended its system to support the J2EE Connector architecture, it is assured of seamless

connectivity to multiple EISs. An EIS vendor needs to provide just one standard resource

adapter which has the capability to plug in to any application server that supports the J2EE

Connector architecture [26].

Multiple resource adapters (that is, one resource adapter per type of EIS) are pluggable into

an application server. This capability enables application components deployed on the

application server to access the underlying EIS systems [26].

 20

Figure 3.2 Common schema of Java Connector Architecture [26]

The approach of JCA helps to think about sensor network integration and combination of

WPAN with current legacy systems. JCA describes specification of resource adapters for

heterogeneous resources. We entirely can consider WPAN network as some kind of

resource which could be integrated with others resources.

So to integrate WPAN network with some legacy system or other distributed application

we need to provide resource adapter for this WPAN network. Resource adapter is

developing according JCA specification and allows to system to be integrated into J2EE

distributed platform.

Since JCA covers such issues as connection, transaction and secure management; common

client interface (CCI) and has built-in implementation of them, there is no need to develop

such functionality from the scratch. All what you need is to provide the new resource

adapter or to enhance current one. For example if the connection interface will be change

from RS232 to Bluetooth you need to provide new connection factory for Bluetooth

connection.

 21

4 WEB services technique
First of all it should be mentioned that WEB services are the big part of distributed

computing paradigm which was considered in the previous topic. But WEB services

technique is so big and complicated part of computer science that it might be distinguished

into individual area.

4.1 Service-Oriented Architectures for WPAN networks

Service-oriented architectures are all about connections and data interaction [20]. A web

service is a network accessible interface to application functionality, built using standard

Internet technologies, which is opened for other applications, usually with not human

interaction. In other words, if an application can be accessed over a network using a

combination of protocols like HTTP, SMTP, or Jabber, then it is a web service. Web

Services are tightly exploited with the use of XML. Web services using XML are the most

common connections in a service-oriented environment.

Figure 4.1 WEB service network communications

Mostly, the web services which are deployed on the Internet today are HTML based web

sites. Thus, the services which are publishing, managing, searching, and retrieving

content—are accessed through the use of standard protocols and data formats: HTTP and

HTML [20]. Client applications (web browsers) that understand these standards can

interact with the application services to perform tasks like ordering books, obtaining data

WEB

WEB service To anther WEB service
WEB service’s consumer

From anther service’s consumer

 22

from environment monitoring system, sending greeting cards, or reading news, planning

the business route and many others.

Web services are a messaging framework. Web services have the requirement to obey to

the set of standard Internet protocols to be capable of sending and receiving messages. The

most common form of web services is to call procedures running on a server, in which case

the messages encode "Call this subroutine with these arguments," and "Here are the results

of the subroutine call."[21]

4.2 The Web Service Technology Stack

As showed in [21] the web services architecture similar to network stack protocol is

implemented through the layering of five types of technologies, organized into layers that

build upon one another Figure 3.2

Descovery

Description

Packaging

Transport

Network

Figure 4.2 The web service technology stack

Because the architecture of the web services are divided on the separate parts stack it

reflects separate business problem, and you only have to implement those pieces that make

the most sense at any given time. It allows reusing designed parts and when a new layer of

the stack is needed, you do not have to rewrite and rebuild your previous infrastructure and

just to provide the support of a new form of exchanging information or a new way of

authenticating users.

Even in such architecture, the layered stack of web services does not provide a complete

solution to many tasks of business. For example they don't cover such issues like security,

identity, trust, workflow and other business concerns.

 23

Web services can be easily implemented with the combination of the WPAN technology.

Actually you need to wrap existing sensor network by the web service. Such solution

allows incorporating and integrating heterogeneous networks into global interchanging

environment. It also allows collaborating with different legacy systems, and combining

new WPAN solutions with present business systems.

4.3 Web Services Explained

When the Web services were announced they were described as the connection and

interchanging technology of the future. In [22] described that Web services are software

applications that can be discovered, described and accessed based on XML and standard

Web protocols over intranets, extranets, and the Internet. The techniques which constitute

the Web service’s layer stack are WSDL, UDDI, SOAP, XML and describes bellow.

4.3.1 Using the Web Services Description Language (WSDL)

WSDL is the way to describe the communication details and the specific of message

intended to service’s application. Figure 4.3 illustrates the use of WSDL. At the left is a

service provider. At the right is a service consumer. The steps involved in providing and

consuming a service are:

Figure 4.3 WEB service descriptions

Discover

3. Service description using WSDL

Service
provider Service

consumer

1. Service description using WSDL

SOAP
message

2. Discovery queries

4. XML service request based on WSDL

5. XML service response based on WSDL

 24

- A service provider uses WSDL to describe describes the specific of its service.

This definition is published to a directory of services. The directory could use

Universal Description, Discovery, and Integration (UDDI).

- A service consumer which needs to exploit the service functionality sends one or

more queries to the directory to locate a service and determine the way of

communication with that service.

- Part of the WSDL provided by the service provider is passed to the service

consumer. This tells the consumer of service what format the requests and

responses are for the service provider.

- The service consumer uses the WSDL to send a request to the service provider.

- The service provider provides the expected response to the service consumer.

So, as showed in [20] WSDL describes the operational information – the location of

service, the functionality of service and how to talk (or invoke) the service.

4.3.2 Using Universal Description, Discovery, and Integration (UDDI)

UDDI might be considered as the “phone book” of Web services. It has the register for

storing essential business information about services. The idea is that the UDDI registry

can be searched in various ways to obtain contact information and the Web Services

available for various organizations. The information provided in a UDDI business

registration consists of three components:

- white pages of company contact information

- yellow pages that categorize businesses by standard taxonomies

- green pages includes the technical information about services

The figure 4.4 demonstrates this concept.

 25

UDDI REGISTERY
WHITE PAGES YELLOW PAGES GREEN PAGES

Business name
Contact
information
Description

Services and
products
Industry codes
Geographic
index

eBusiness rules
Service
description
WSDL

Figure 4.4 UDDI Registry

4.3.3 Using SOAP

All the messages shown in Figure 4.3 are sent using SOAP. SOAP at one time stood for

Simple Object Access Protocol. SOAP essentially provides the envelope for sending the

Web Services messages. SOAP generally uses HTTP, but other means of connection may

be used. HTTP is the familiar connection we all use for the Internet. In fact, it is the

pervasiveness of HTTP connections that will help drive the adoption of Web Services.

So as described in [21], SOAP's place in the web services technology stack is as a

standardized packaging protocol for the messages shared by applications. The specification

defines nothing more than a simple XML-based envelope for the information being

transferred, and a set of rules for translating application and platform-specific data types

into XML representations. SOAP's design makes it suitable for a wide variety of

application messaging and integration patterns. This, for the most part, contributes to its

growing popularity.

4.4 Conclusions

To utilize the functionality of the WPAN system which is showed in the details in chapter

5 by other application it should be developed WEB services according to standards

described in this chapter. For example it possible to use some tools for WEB services

creation which have wizards, as the result there will be generated WSDL description files

and WEB services archive for deploying it to the application server.

 26

5 Mobile services

5.1 Introduction

This Master Thesis uses mostly all materials and practical results which were obtained

during practical training passed in frame of research project which is going in Chydenius

Institute – Kokkola University Consortium. The project is aimed to construct the prototype

of wireless private network which node’s communication is based upon ad hoc

connectivity.

The first phase of project was to construct mobile WPAN node form electronic

components and program it to communicate with other same devises. The main feature of

these devises is they communicate on short range distances with low data transmit range.

The main crucial features are these devisees have limited computation power (the capacity

of Flash RAM of microcontroller is only 128 Kb), low power consumption, small size.

The next phase is to implement one of the AD HOC routing protocols for node’s

communication. This will allow building real prototype of WPAN network with dynamic

topology that is nodes could change their place in real time.

Simultaneously with building WPAN network it was intended to develop WEB-based

interface for external communication with WPAN network. One of the purpose of this

interface to have connection to WPAN network through Internet, which allow to

administrate WPAN network, incorporate different heterogeneous WPAN networks,

development various services.

Upon this task pilot WPAN system was developed to show possible ways of sensor

network integration with distributed environment. It utilizes the WPAN node’s

functionality and provides it to the user.

5.2 WPAN services architecture

By the meaning of “WPAN service” in this chapter we assume that functionality which

were originally built into mobile nodes and provided to the end user. By end user we

 27

assume any device which is interact in standard way (HTTP, WAP) with WPAN

application and exploits this functionality. As mentioned previously this master thesis is

based on the results of practical training and the initial task for WPAN project was the

development of simple service to show the possibility of idea of services. There were no

any requirements for the choice of platform, computer design facilities, the architecture of

system, so this was one of the project’s task.

During the analysis of problem domain and requirements for the system’s functionality we

got the follow architecture of system which is depicted on the figure 5.1.

Figure 5.1 Architecture of WPAN distributed system

Application Server

WPAN Server

PC connection interface

WEB

WPAN

 Data Base

G
at

ew
ay

 (c
on

tro
l s

er
ve

r)

PC-connection role node (sink)

RS 232, Bluetooth, LAN,

WLAN, USB

MySQL server

JDBC

Tomcat application server

HTTP
HTTP

GPRS/WAP

 28

The main idea of this system is to integrate self-enclosed WPAN network with Internet

using the approach of distributed architecture. Such approach allows utilizing all power of

distributed systems architecture.

It is shown that whole system consists of four main parts:

- WEB application

- Application server

- WPAN server

- Data Base

The interaction scenario of above architecture is follow:

End user sends the standard HTTP (POST/GET) or WAP request through the any web

browser from the Internet. Application server gets the request and involves appropriate

servelet to process it. Then this request sends to the WPAN server via open socket

connection. WPAN server codes the request into SLIP format and sends it via physical

connection to the WPAN network and starts to wait for the response. When it gets the

response from WPAN it transfers it back to the user.

The PC connection interface layer has a program code for the physical connection to PC-

connection role node. It uses one of the connection factories to establish connection

(RS232 in our case). The factory method easy allows to add new factories if the connection

interface will be changed. For example we need to obtain Bluetooth driver, wrap it to the

factory and add this factory to the connection method.

5.2.1 WPAN distributed system architecture description

The core element in the whole system is the WPAN server which plays role of the bridge

between the distributed environment and WPAN network. From one side WPAN server

exploits the low level API for sensor network communication; from another side it opens

socket communication for incoming requests. Besides the physical communication,

 29

WPAN server fulfils functionality of management and transaction of incoming and

outcoming responses and requests. As the program framework for the whole architecture it

was decided to use J2EE platform with appropriate API.

All core logic of WPAN server is encapsulated in the WpanServer class. The main class

which can start the WPAN server is WpanServerStart. This class includes swing elements

which represent to administrator the WPAN server window with all information about

server starting and server working such as: server’s IP address and port, information about

server’s starting stages, information about all requests going through server.

5.2.1.1 Physical sensor network connection

To realize the physical communicating with WPAN sensor network it was chosen the Java

Communications API. The Java Communications API can be used to write platform-

independent communications applications for technologies such as voice mail, fax, and

smart cards. Two versions of the Java Communications API implementations -- 2.0.3 for

Solaris/SPARC, and 2.0 for Windows and Solaris x86 -- are available for use [24].

The Java Communications API contains support for RS232 serial ports and IEEE 1284

parallel ports. With updated functionality, developers can:

 Enumerate ports available on the system

 Open and claim ownership of ports

 Resolve port ownership contention between multiple applications

 Perform asynchronous and synchronous I/O on ports

 Receive Beans-style events describing communication port state changes

Since the sink of sensor network has RS 232 interface to be connected to the PC (gateway)

it was enough to use Java Communications API, which provides methods for serial port

connection. But WPAN server is not limited by this connection method only and preserves

connection factory for new types of connections. For instance it might be USB, Bluetooth

or WLAN types of connection.

 30

http://java.sun.com/products/javacomm/downloads/index.html

5.2.1.2 Datagram encapsulation

In paragraph 5.2.1.1 described that WPAN server use serial connection as the physical

connection with “PC-connection role” node. So server listens for incoming datagram on

RS-232 port and fires DATA_AVAILABLE event if new datagram comes from sensor

network. By the network stack protocol specification, datagrams are wrapped by the SLIP

protocol.

SLIP (Serial Line IP) is the simple form for encapsulation of IP datagrams which are

transferred via serial port. SLIP is very used especially for connection of home computers

to the Internet via fast-speed modems.

The wrapping of the SLIP datagram is adhered by the follow rules:

- At the tail of IP datagram it is added the special symbol END (0xC0). For

reliability the same symbol is added at the begin of frame

- If there is the END byte code in the body of IP datagram it must be replaced by the

sequence of 2 bytes: 0xdb, 0xdc. The special symbol 0xdb is called as ESC symbol

of SLIP frame

- If there is the ESC symbol in the body of IP datagram it must be replaced by the

sequence of two bytes: 0xdb, 0xdd

On the figure 5.2 is depicted the example of encapsulation of IP datagram by the SLIP

protocol. We can see the “worst” case where we involve all three rules of SLIP protocol.

Figure 5.2 Encapsulation of IP datagram in SLIP protocol

 c0 db

c0 db dc db dd

IP datagram

c0

 31

WPAN server fulfils the logic of coding/decoding IP frames by the specification of SLIP

protocol. The main logic of coding/decoding by the SLIP protocol is done with the

SlipFrame class.

5.2.1.3 Traffic storage

Another task for WPAN server is the storing all incoming and outcoming traffic in the

local data base for the further processing these data. For this purposes it was designed

simple database schema and chosen MySQL DBMS as data base server.

WPAN delegates the connection to the data base to MYSQLConnect class which includes

all logic for connection to MySQL server. After established connection MYSQLConnect

class returns the Connection object to the WPAN server and then WPAN server is able to

perform storing all traffic data.

5.2.1.4 Sockets connection

To provide the standard way for connection to WPAN server from other applications it

opens socket connection. Actually WPAN server opens multi sockets and listens for

requests on the port 3045. The logic of sockets connection is encapsulated in two classes –

SocketServer and MultiSocketClient. Such way of WPAN server allows to interact to any

application with the sockets API.

On the Figure 5.3 is depicted UML class diagram of WPAN server with all classes which

constitute it.

 32

Figure 5.3 UML class diagram of WPAN server

5.2.1.5 WPAN control application

As the pilot application for WPAN network which provides simple service it was

developed control application for getting two parameters from the WPAN sensors. This

application just tries to show possible implementation of such approach to provide

different mobile services.

Control application is build with the distributed paradigm and allows getting parameters of

temperature and lightness controlled by WPAN nodes. Also it allows to carry out some

management tasks such as setting and getting different node’s parameters. The interaction

between user and application is taking place by “thin client” user interface which is

compatible with any WEB browser.

User interface of application based on simple HTML language and include HTML form to

enter all necessary data. Forms use standard POST/GET HTTP methods to send requests to

 33

the application server. On the application server side there are different servlets which are

involved upon every browser request.

It was chose Java JSP/Servlets technique to build server part of this system and Apache

Tomcat as the application server. All servlets are resided in the Tomcat_Home\Tomcat

5.0\webapps\jwpan\WEB-INF\classes\ where Tomcat_Home is the root directory for

Tomcat server installation.

Table 5.1 Description for servlets functionality

Servlet name Description

GetParameterAll.class This servlet returns result upon GET method for all twelve
parameters (own IP, device name, temperature, lightness, etc.)

DeviceNameSetParameter.class This servlet returns result upon SET method for set up
DEVICE_NAME

OwnIpSetParameter.class This servlet returns result upon SET method for set up
OWN_IP

RoleSetParameter.class Set the PC-connection role for the mobile node

Switch1SetParameter.class Set on /set off the switch #1 parameter of the mobile node

Switch2SetParameter.class Set on /set off the switch #2 parameter of the mobile node

On the figure 5.4 is depicted the screenshot of the user interface of the control WPAN

application. This is the one of the example where user can control WPAN’s nodes. In this

case user can change the parameter SWITCH_2 of the mobile node, send this request to the

sensor network and in such way switch-on or switch-off the switch on the board of node

with appropriate IP address.

 34

Figure 5.4 Control application – example

On the picture 5.5 and 5.6 are depicted UML class diagram of the distributed WPAN

application which resides on the application server.

 35

Figure 5.5 UML class diagram of the WPAN application

The Figure 5.5 shows the classes of Java classes which encapsulate logic for control

WPAN network. Every class’s name corresponds to that operation which can be done with

mobile node.

According to the network stack protocol specification described in the paragraph 5.3

WPAN application wraps the original requests into UDP frame and then into IP frame. The

classes UdpFrame and IpFrame encapsulate appropriate logic to build UDP and then IP

frame from user request correspondingly.

The Figure 5.6 shows the classes of Java servlets, which process the user’s requests.

Servlets use appropriate classes, showed on Figure 5.5 to build request frames and redirect

them to the WPAN server via socket connectivity.

 36

Figure 5.6 UML class diagram of the servlets

5.3 WPAN mobile device specification

As was mentioned above one of the main task of the research activity in the Kaustinen Lab

was developing WPAN mobile device. The first prototype of such device is showed on the

Figure 5.7

The node has follow technical specification:

 RS 232 serial port connection

 Light and temperature sensor controls

 Two switch controls

 CC2420 radio chip

 ATmega32 microcontroller

 37

 B&W display

It should be mentioned here that this schema and functionality of this device was

developed from the scratch in laboratory, it was build first prototype and successfully

tested its work.

Figure 5.7 The WPAN mobile device

Device has two chips - CC2420 radio chip and ATmega32 microcontroller chip. The

bellow lists summarize their characteristics:

CC2420 radio chip

 True single-chip 2.4 GHz IEEE 802.15.4/ZigBee(tm) RF transceiver with MAC

support

 Low current consumption (RX: 19.7 mA, TX: 17.4 mA)

 Low supply voltage with internal voltage regulator (2.1 V - 3.6 V)

 Packet handling with 128 byte (RX) + 128 byte (TX) data buffering

 38

 Hardware MAC encryption and authentication (AES-128)

ATmega32 microcontroller chip

 2-wire Serial Interface (I2C compatible)

 Full Duplex Serial Peripheral Interface (SPI)

 In-System Programming via JTAG port

 Flash memory 32kB

 Analog-to-Digital Converter (10-bit)

5.4 Network stack protocol

Figure 5.8 shows the network stack protocol which was designed for WPAN network.

Application

UDP

IP

SLIP MAC

From/To
Gateway

From/To same
net nodes

Figure 5.8 Network stack protocol layers

There are two flows of ingoing/outgoing traffic: from/to gateway (PC) and from/to mobile

nodes which are in the same WPAN network.

Communication of WPAN network with external environment goes through gateway (PC).

For that purpose one of net’s node has PC connection role (PAN coordinator) and it is

 39

connected to the PC with one of the standard interface such as USB, LAN, Bluetooth, etc

(in the project’s case by the RS 232 serial port).

All mobile nodes have built in application which performs some functionality with some

data structures. These structures were defined just for test and research purposes. The

following table indicates predefined functionality of node:

Table 5.2 WPAN node memory structure

Name ID Memory location Read/Write

ID_OWN_IP 0 eeprom R/W

ID_DEVICE_NAME 1 eeprom R/W

ID_ROLE 2 eeprom R/W

ID_IP_DATA 3 eeprom R/W

ID_TEMP_PROPERTIES 4 eeprom R/W

ID_LS_PROPERTIES 5 eeprom R/W

ID_ROUTING_TABLE 6 sram R/W

ID_ARP_TABLE 7 sram R/W

ID_ERROR_TABLE 8 sram R/W

ID_TEMPERATURE 9 - R

ID_LIGHT_SENSOR 10 - R

ID_SWITCH_1 11 - R/W

ID_SWITCH_2 12 - R/W

 40

5.5 Protocol specification

5.5.1 GET command

Get command is one of the most used commands in the application protocol. It used when

upon the request to devise to read values of data structures or memory from any device.

• Function

A mobile device can generate GET command if the application needs to send a request to

another device. GET command can be also generated by the “PC role connection” device if

it gets the request form PC application. The GET request includes all necessary parameters

according to application protocol. When the device’s application receive GET request form

PC connection interface it sends acknowledge immediately and check destination IP

address. If IP address does not match to device’s IP then this packet must be sent forward,

in such case application forms GET command frame according to the protocol

specification. This frame is transferred as the primitive to the transport layer. The protocol

stack manages the message, routing, etc. and sends it to the destination address.

The application with the destination IP address receives frame and indicate the GET

command as DATA indication primitive. If the application is able to process the intended

data it fulfills all necessary logic and end IND frame back to the initiator of GET

command. If the right answer can not be sent or any error happens then application sends

ACK command with the error information. The initiator of GET command handles the

answer and transfers it to the PC via available connection interface.

After sending by the PC application the GET command it waits until the answer is received

or timeout is occurred. Program should report ether any errors or timeout occurring or right

answer to the user.

• Command frame

The data frame according to the Figure 5.9 is sent to the protocol stack. The specification

of the GET frame is describing in the Table 5.3

 41

Figure 5.9 GET command frame

Table 5.3 GET frame specification

Field Length/ octets Purpose

GET 1 Type of frame: 0x01

IP 4 IP address of sender

ID 1 ID of data structure or memory

5.5.2 SET command

Some data structures and memory location are stored in the local device’s memory. The

purpose of SET command is to change some entries of these data.

• Function

SET command is used when the control application needs to change the value of memory

location. The wireless device can get the SET request from the PC through available

connection interface or this command can be retransmitted by intermediate device to the

destination device.

If device’s application gets the SET command from PC, the acknowledge is sent back

immediately. If the destination IP address in request is intended to other device, the SET

command frame is built and sent to the destination device.

When SET command reaches the destination device it goes to the application layer as the

DATA.indication primitive, the application program save the data and sends ACK

command as an acknowledge. If saving is done without the errors then the ERR field

include zero value, otherwise the error code is placed to the ACK frame. The ACK frame

is sent back to the initiator of SET command ether device or PC. The originator expects to

ID GET IP

 42

receive acknowledgement in defined timeout, otherwise the error is happened. In PC case

this error should be reported (displayed) to the control application.

• Command frame

The SET data frame according to the Figure 5.10 is sent to the protocol stack. The

specification of the SET frame is describing in the Table 5.4

Figure 5.10 SET command frame

Table 5.4 SET frame specification

Field Length/ octets Purpose

SET 1 Type of frame: 0x02

IP 4 IP address of sender

ID 1 ID of data structure or table

LEN 1 Length of data frame

DATA variable Data value

5.5.3 IND command

IND command is used when values of data structures or single memory location are

delivered from a one device to another one.

• Function

IND command is used as a response to GET command or it can be generated by a device

itself when frame data must be sent via network. For example, the result of measurement

may be sent through the definite time interval to data acquisition device and forward to the

control application on the PC.

• Command frame

ID LEN DATA SET IP

 43

The IND data frame according to the Figure 5.11 is sent to the protocol stack. The

specification of the IND frame is describing in the Table 5.5

Figure 5.11 SET command frame

Table 5.5 IND frame specification

Field Length/ octets Purpose

IND 1 Type of frame: 0x03

IP 4 IP address of sender

ID 1 ID of data structure or table

LEN 1 Length of data frame

DATA variable Information

5.5.4 ACK command

ACK command is used as a response to the any command or as a error message.

• Function

ACK command is sent when a device or control application needs a confirmation that a

sent message has reached the destination device. It is used also when special error message

has to be sent. The error codes are defined elsewhere. ERR field of ACK frame has zero

value if no error occurred.

• Command frame

The ACK data frame according to the Figure 5.12 is sent to the protocol stack. The

specification of the ACK frame is describing in the Table 5.6

Figure 5.12 GET command frame

ACK IP ID ERR

ID LEN DATA IND IP

 44

Table 5.6 ACK frame specification

Field Length/ octets Purpose

ACN 1 Type of frame: 0x04

IP 4 IP address of sender

ID 1 ID of data structure or memory location

ERR 1 Error code (0 – no error)

5.6 WPAN Services

In the previous chapters was showed the pilot WPAN application and described its

architecture and features. Even with such functionality (obtaining two sensor’s

parameters), this simple application gives an idea for building real complex systems which

involve WPAN technology. It should be noticed that the market of WPAN technologies

quite young and unexplored.

Such questions as sensor networks integration, combination with legacy systems,

deploying different WEB services upon WPAN functionality, ubiquitous computing are

quite actual and need detailed research and practical implementation.

As the example of possible implementation it could be showed cases of the WPAN

systems deployed in the hothouse and in the modern building to maintain its infrastructure.

In the first example the WPAN sensors could be easily deployed to control temperature,

lightness and humidity of the microclimate in the hothouse during crop growing. The

distributed application with appropriate logic provides to operator remote control for all

hothouse parameters. Picture 5.13 shows this idea.

 45

Hothouse

Control center

Figure 5.13 “Hothouse” WPAN system

Another view of implementing of the designed architecture could be embodied in the

“Modern Building” infrastructure maintenance system. There is a rich branched out

infrastructure in the modern building and it needs to be controlled and maintained. Using

designed WPAN devices it is possible to build in their in different electronic building’s

devices such as locks, fire sensors, light switches and so on. Using developed WPAN

system it possible to provide the monitoring for that devices. Picture 5.14 shows this idea.

 46

Electronic locks

Fire sensors

Switches

Control center

Figure 5.14 “Modern Building” infrastructure maintenance WPAN system

 47

Conclusions
The main idea of this master thesis was to show possibility of practical implementation of

WPAN technology with conjunction of distributed computing and mobility. Itself WPAN

technology is quite young in IT industry and all works are fulfilled mostly in research field.

However it’s possible already to use practically that approaches and methods which were

elaborated for resent years.

By its architecture WPAN or sensor networks are closed on itself. So it necessary to have

at least one sink or PAN coordinator or “PC-Connection” device. As usual some PC

application fulfills the coordinator of this network.

But further improving of such approach gives an idea to incorporate WPAN network for

the world of distributed computing. In the opinion of the author of this thesis such kind of

combination could lead to the impressive results.

Today many companies involved into IT industry, having their legacy systems. WPAN

might be the part of one’s business and need to be implied into it. It might increase the

company’s benefits of such combination.

There are two essential technology aimed on the corporative business – distributed

computing and WEB services. The first describes how to integrate heterogeneous pieces of

Software second one allows to provide functionality.

This work tries to cover booth technologies and propose its implementation with WPAN.

As a result in the chapter 4 is showed pilot system which realized such idea. From one side

this simple application developed for WPAN network based on ad hoc connectivity fulfills

trivial task – obtains temperature and lightness from arbitrary mobile node. From other side

this system introduces the concept of new approach – it opens the standard interface for

communication and provides interoperability between WPAN and other systems.

It should be mentioned here that this thesis is completely based on the results of practical

training, but proposed and consider future views how to improved developed system with

new functionality. In particular it’s mentioned above about possible incorporation with

 48

some legacy systems using Java Connector Architecture and deploying WPAN network as

a WEB service. Some examples are given in this thesis as applicable use-cases:

“Hothouse” control system and “Modern Building” maintenance infrastructure system.

To summarize the whole work it should be mentioned that this thesis has more practical

trend rather than research. It tries to show a solution for some new aspects concerning

WPAN technology.

 49

References

[1] Mobile ad hoc networking: imperatives and challenges; Imrich Chlamtac, Marco Conti,

Jennifer J.-N. Liu; Ad Hoc Networks 1 (2003) 13–64; School of Engineering, University of

Texas at Dallas, Dallas, TX, USA; Istituto IIT, Consiglio Nazionale delle Ricerche, Pisa,

Italy; Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA

[2] A review of routing protocols for mobile ad hoc networks; Mehran Abolhasan, Tadeusz

Wysocki, Eryk Dutkiewicz, Telecommunication and Information Research Institute,

University of Wollongong, Wollongong, NSW 2522, Australia; Motorola Australia

Research Centre, 12 Lord St., Botany, NSW 2525, Australia

 [3] - Simunic, T., et al., “Energy Efficient Design of Portable Wireless Systems,”

Proceedings of the 2000 International Symposium on Low Power Electronics and Design,

Rapallo, Italy, July 25–27, 2000.

[4] - Girling, G., et al., “The Design and Implementation of a Low Power Ad Hoc Protocol

Stack,” Proceedings of IEEE Wireless Communications and Networking Conference,

Chicago, Sept. 2000.

[5] Agrawal, S., and S. Singh, “An Experimental Study of TCP’s Energy Consumption

over a Wireless Link,” in 4th European Personal Mobile Communications Conference,

Feb. 2001.

[6] Technology Trends in Wireless Communications; Ramjee Prasad, Marina Ruggieri;

Artech House; ISBN 1-58053-352-3

[7] Mobile Ad Hoc Networking working group,

http://protean.itd.nrl.navy.mil/manet/manet_home.html

[8] The Internet Engineering Task Force, http://www.ietf.org/

 50

http://www.ietf.org/

[9] Wireless Ad Hoc Sensor Networks, http://w3.antd.nist.gov/wahn_ssn.shtml

[10] Draft Standard for Part 15.4: Wireless Medium Access Control (MAC) and Physical

layer (PHY) specifications for Low Rate Wireless Personal Area Networks (LR-WPANs)

[11] Shepard, T., “Decentralized Channel Management in Scalable Multihop Spread

Spectrum Packet Radio Networks,” Tech. Rep. MIT/LCS/TR-670, Massachusetts Institute

of Technology Laboratory for Computer Science, July 1995.

[12] Chang, J.-H., and L. Tassiulas, “Energy Conserving Routing in Wireless ad hoc

Networks,” Proc. of INFOCOM 2000, Tel Aviv, Israel, March 2000.

[13] Srinivasan, V., et al., “Optimal Rate Allocation and Traffic Splits for Energy Efficient

Routing in Ad Hoc Networks,” in INFOCOM 2000, March 2002.

[14] Gupta, P., and P. Kumar, “The Capacity of Wireless Networks,” IEEE Transactions

on Information Theory, Vol. 46, No. 2, March 2000, pp. 388–404.

[15] Qiao, D., et al., “Energy-Efficient PCF Operation of IEEE 802.11a Wireless LAN,”

Proc. IEEE INFOCOM ’02, March 2002.

[16] Wu, S.-L., Y.-C. Tseng, and J.-P. Sheu, “Intelligent Medium Access for Mobile Ad

Hoc Networks with Busy Tones and Power Control,” IEEE Journal on Selected Areas in

Communications, Vol. 18, No. 9, Sept. 2000, pp. 1647–1657.

[17] Monks, J., et al., “A Study of the Energy Saving and Capacity Improvement Potential

of Power Control in Multihop Wireless Networks,” Proc. IEEE Conference on Local

Computer Networks LCN, Nov. 2001, pp. 550–559

[18] Monks, J., V. Bharghavan, and W. Hwu, “A Power Controlled Multiple Access

Protocol for Wireless Packet Networks,” Proc. IEEE INFOCOM ’01, April 2001.

[19] ElBatt, T., and A. Ephremides, “Joint Scheduling and Power Control for Wireless Ad

Hoc Networks,” Proc. IEEE INFOCOM ’02, 2002.

 51

http://w3.antd.nist.gov/wahn_ssn.shtml

[20] Web Services and Service-Oriented Architecture: The Savvy Manager's Guide,

Douglas K. Barry , Morgan Kaufmann Publishers, 2003

[21] Programming Web Services with SOAP, Doug Tidwell James Snell Pavel Kulchenko,

Publisher: O'Reilly, First Edition December 2001, ISBN: 0-596-00095-2

[22] The Semantic Web:A Guide to the Future of XML, Web Services, and Knowledge

Management, by Michael C. Daconta, Leo J. Obrst and Kevin T. Smith, Publisher: John

Wiley & Sons 2003, ISBN:0471432571

[23] The University of British Columbia, Department of computer science, Lectures of

Distributed Systems, http://www.ugrad.cs.ubc.ca/~cs416/X/

[24] Java communications, http://java.sun.com/products/javacomm/

[25] Java 2 Enterprise Edition, online tutorial,

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

[26] Java Connector Architecture overview,

http://java.sun.com/j2ee/connector/overview.html

 52

http://www.ugrad.cs.ubc.ca/~cs416/X/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/connector/overview.html

Appendix A

Source code listing of WPAN server classes
Listing 1. WpanServerStart class

import javax.swing.*;

public class WpanServerStart{

 public static void main(String args[]){

 // specify the Java look and feel
 JFrame.setDefaultLookAndFeelDecorated(true); // create instance of model

 WpanServer ws = new WpanServer();
 MenuBarApp mb = new MenuBarApp(ws); // main window

 JFrame frame = new JFrame("Communication Server");

 StringBuffer sb = new StringBuffer("WPAN Communication Server,
Version: 1.0\nResearch Lab, Chydenius-Instituutti\n");

 //Text area as View in MVC

 TextAreaApp ta = new TextAreaApp();
 JTextArea output = ta.createTextArea();

 //Scrolling element
 JScrollPane scroller = new JScrollPane(output);

 frame.getContentPane().add(scroller);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setJMenuBar(mb.createMenu());
 output.setText(sb.toString());

 // register model and viewer in MVC
 ws.addObserver(ta);

 frame.pack();
 frame.setVisible(true);
 ws.connect();
 }
}

Listing 2. WpanServer class

import java.util.*;
import javax.comm.*;
import java.io.*;
import java.net.*;

 53

public class WpanServer extends Observable implements SerialPortEventListener{

 SerialPort sp = null;
 CommPortIdentifier portId = null;
 StringBuffer readBuf = new StringBuffer();
 String sError, sMessage;
 String ok = "\nok";
 InputStream inStr;
 OutputStream outStr;
 InetAddress[] addresses;
 ServerSocket serverSocket = null;
 Socket clientSocket = null;
 boolean isConnected = false;
 SocketServer ss = null;
 boolean flag = false;
 List l;
 SlipFrame slipFrame;
 byte[] frame;
 MYSQLConnect msql = new MYSQLConnect();

 // method of Wpan Server in which we create Soket Server and pass
 // into it reference of Wpan Server's object itself(trick!!!)

 public void createSocketServer(){
 ss = new SocketServer(this);
 }

 // method for notifying observers (views) that model is changed
 public void changed(Object o){
 setChanged();
 notifyObservers(o);
 }
 public void connect(){
 // try to get port ID from driver
 portId = SerialConnect.getComPort();
 if (portId == null) {
 sError = "\nCan not get COM1 port object";
 changed(sError);
 return;
 }
 //try open port for listening
 try{
 sMessage = "\nTrying to open COM1 port...";
 changed(sMessage);
 sp = (SerialPort) portId.open("JWpan", 2000);
 changed(ok);
 }catch(PortInUseException e){
 sError = "\nCan not get port,\nPort is used by other
application";
 changed(sError);
 }
 // try to get event listener to the port
 try {

 54

 sMessage = "\nTrying to add listener...";
 changed(sMessage);
 sp.addEventListener(this);
 changed(ok);
 } catch (TooManyListenersException e)
 {
 }
 //try get input stream from serial port
 try{
 sMessage = "\nTrying to get I/O stream...";
 changed(sMessage);
 inStr = sp.getInputStream();
 outStr = sp.getOutputStream();
 changed(ok);
 }catch(IOException e){
 sError = "\nCan not get stream from port";
 changed(sError);
 }
 sp.notifyOnDataAvailable(true);
 //try to set up paremeters for serial port
 try{
 sMessage = "\nSetup port params...";
 changed(sMessage);
 sp.setSerialPortParams(9600,

 SerialPort.DATABITS_8,SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 changed(ok);
 }catch(UnsupportedCommOperationException e){
 sError = "\nCan not to set up parameters for serial port";}

 // connect to data base
 changed("\nConnecting to MySQL server...");
 msql.connect();
 if (msql.isConnected()){
 changed(ok);
 }else {
 changed("\nCan not connect to MySQL server");
 }
 // obtain server IP
 try {
 addresses = InetAddress.getAllByName(InetAddress.getLocalHost().getHostName());
 for (int i=0; i<addresses.length; i++) {
 changed("\nServer IP: " +
addresses[i].getHostAddress());
 }
 } catch (UnknownHostException e){
 changed("\nCan not abtain server IP");
 }

 sMessage = "\nWPAN server is started\n";
 changed(sMessage);
 isConnected = true;
 createSocketServer();
 }

 55

 public void serialEvent(SerialPortEvent event) {
 switch(event.getEventType()) {
 case SerialPortEvent.BI:
 case SerialPortEvent.OE:
 case SerialPortEvent.FE:
 case SerialPortEvent.PE:
 case SerialPortEvent.CD:
 case SerialPortEvent.CTS:
 case SerialPortEvent.DSR:
 case SerialPortEvent.RI:
 case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
 break;
 case SerialPortEvent.DATA_AVAILABLE:
 readPort();
 break;
 }
 }
 public void disconnect(){
 sp.close();
 try {
 clientSocket.close();
 serverSocket.close();
 } catch (IOException e) {
 changed("\nCan not close sockets");
 }
 this.isConnected = false;
 changed("\nServer stoped\n");
 }
 public void readPort(){
 int size = 0;
 byte[] readBuffer;
 try {
 size = inStr.available();
 readBuffer = new byte[size];
 while (inStr.available() > 0) {
 int numBytes = inStr.read(readBuffer);
 }
 makeFrame(readBuffer);
 } catch (IOException e) {}
 }
 public void writePort(byte[] frame){
 try{
 // code this frame according SLIP format
 slipFrame = new SlipFrame();
 byte[] b = slipFrame.encodeFrame(frame);
 // save this frame into database
 if(msql.isConnected()){
 msql.insert(makeQuery("o", frame));
 }
 outStr.write(b);
 slipFrame = null;
 } catch (IOException e){
 System.out.println("Write exception");

 56

 }
 }
 public void makeFrame(byte[] b){
 for(int i=0; i<b.length; i++){
 if(((b[i]&0xFF)==192)&&(!flag)){ // indicator of begin of
slip frame
 flag = true;
 l = new ArrayList();
 l.add(new Byte(b[i]));
 continue;
 // add to frame
 }else if(((b[i]&0xFF)!=192)&&flag){ // normal byte
 l.add(new Byte(b[i]));
 }else if(((b[i]&0xFF)==192)&&flag){ // end of slip frame
 l.add(new Byte(b[i]));
 // create SLIP object to make transformation with slip frame
 slipFrame = new SlipFrame();
 frame = slipFrame.decodeFrame(Utils.listToByteArray(l));
// get decoded sequence of byte from slip frame
 // send to view
 changed(frame);
 // save this frame into database
 if(msql.isConnected()){
 msql.insert(makeQuery("i", frame));
 }
 // distroy all objects for the next frame
 frame = null;
 slipFrame = null;
 l = null;
 flag = false;
 }
 }
 }
 public String makeQuery(String q, byte[] b){
 StringBuffer sb = new StringBuffer();
 for(int i=0; i<b.length; i++)
 sb.append(b[i] + " ");
 String s = ("insert into wpan_data values(null, '" + q + "', null, '" +
sb.toString() + "')");
 System.out.println(s);
 return s;
 }
}

Listing 3. TextAreaApp class

import javax.swing.*;
import java.util.Observer;
import java.util.Observable;

public class TextAreaApp implements Observer{
 JTextArea output = new JTextArea(19, 35);
 public JTextArea createTextArea(){
 //Text area for displaying processing
 output.setEditable(false);

 57

 return output;
 }

 public void update(Observable obs, Object obj){
 if(obj.getClass().getName().equals("java.lang.String"))
 output.append((String)obj);
 if(obj.getClass().getName().equals("[B")){
 byte[] ar = new byte[((byte[])obj).length & 0xFF];
 ar = (byte[])obj;
 for (int i=0; i<ar.length; i++){
 output.append(ar[i] + " ");
 }
 output.append("\n");
 }
 }
}

Listing 4. SocketServer class

import java.io.*;
import java.net.*;

public class SocketServer {
 // Choose a port outside of the range 1-1024:
 public static final int PORT = 3045;
 SocketServer(WpanServer ws){
 try{
 this.create(ws);// create instance of wpan server
 }catch (IOException e){
 System.out.println("error of Socket Server creation");
 System.out.println("\n" + e);
 }
 }
 public static void create(WpanServer ws) throws IOException {
 ServerSocket s = new ServerSocket(PORT); // new server socket
 ws.changed("Started listening requests on port: " + PORT + "\n");
 try {
 // create multyple sockets
 while(true){
 Socket socket = s.accept(); // start listen for
client requests
 try{
 new MultiSocketClient(socket, ws);
 }catch(IOException e){
 socket.close();
 }
 }
 }finally{
 s.close();
 }
 }
}

Lsiting 5. MultiSocketClient class

 58

import java.io.*;
import java.net.*;
import java.util.*;
public class MultiSocketClient extends Thread implements Observer{

 private Socket socket;
 WpanServer ws;
 private DataInputStream in;
 private DataOutputStream out;

 // consructor for initialisation all fields
 public MultiSocketClient(Socket s, WpanServer ws) throws IOException{
 this.socket = s;
 this.ws = ws;
 ws.addObserver(this);
 in = new DataInputStream(socket.getInputStream());
 out = new DataOutputStream(socket.getOutputStream());
 start(); // Calls run()
 }
 public void run(){
 try {
 // read from socket into byte array
 int arraySize;
 while (true) {
 arraySize = in.readInt();
 byte[] frame = new byte[arraySize];
 in.read(frame);
 if((new String(frame)).equals("END"))
 break;
 ws.writePort(frame);
 }
 }catch(IOException e) {
 }finally{ // close sokets in any cases
 try{
 socket.close();
 }catch(IOException e){
 }
 }
 }
 // notify view about all changes
 public void update(Observable obs, Object obj){
 if(obj.getClass().getName().equals("[B")){// [B indicates that this object is
byte array
 byte[] ar = new byte[((byte[])obj).length & 0xFF];
 ar = (byte[])obj;
 try{
 out.writeInt(ar.length);
 out.write(ar);
 out.flush();
 } catch(IOException e){}
 ws.deleteObserver(this);
 }
 }
}

 59

Listing 6. SlipFrame class

import java.util.*;

public class SlipFrame{
 private static final byte SLIP_END_FRAME = (byte)192; // The end marker of slip frame
0xC0
 // Esc characters for Slip frame 0xDB, 0xDC, 0xDD correspondingly
 private static final byte SLIP_ESC_CHARACTER_DB = (byte)219;
 private static final byte SLIP_ESC_CHARACTER_DC = (byte)220;
 private static final byte SLIP_ESC_CHARACTER_DD = (byte)221;
 private List l;
 private byte[] slipFrame;
 public SlipFrame(){
 l = new ArrayList();
 }
 public void addByte(byte b){
 // Add bytes method, adds one byte to the list, according to the rules of
 // SLIP frame, which repalace some bytes with others
 if(b==SLIP_END_FRAME){
 l.add(new Byte(SLIP_ESC_CHARACTER_DB));
 l.add(new Byte(SLIP_ESC_CHARACTER_DC));
 }else if(b==SLIP_ESC_CHARACTER_DB){
 l.add(new Byte(SLIP_ESC_CHARACTER_DB));
 l.add(new Byte(SLIP_ESC_CHARACTER_DD));
 }else{
 l.add(new Byte(b));
 }
 }
 public byte[] encodeFrame(byte[] b){
 // make up SLIP frame, adding END character to the begin and end of frame
 for(int k=0; k<b.length; k++)
 addByte(b[k]);
 l.add(0, new Byte(SLIP_END_FRAME));
 l.add(new Byte(SLIP_END_FRAME));
 slipFrame = null;
 slipFrame = Utils.listToByteArray(l);
 return slipFrame;
 }
 public byte[] decodeFrame(byte[] c){
 // growable list for decode array
 List l = new ArrayList();
 // start to decode slip frame and strore it in the list
 for(int k=0; k<c.length; k++){
 if((c[k])==SLIP_END_FRAME){
 continue;
 }else if((c[k])==SLIP_ESC_CHARACTER_DB){
 k++;
 if((c[k])==SLIP_ESC_CHARACTER_DC){
 l.add(new Byte(SLIP_END_FRAME));
 }else{
 l.add(new Byte(SLIP_ESC_CHARACTER_DB));
 }
 }else{
 l.add(new Byte(c[k]));

 60

}
 }
 // store result in the byte array and return it
 slipFrame = null;
 slipFrame = new byte[l.size()];
 int j = 0;
 Iterator i = l.iterator();
 while(i.hasNext()){
 slipFrame[j] = ((Byte) i.next()).byteValue();
 j++;
 }
 return slipFrame;
 }
 public byte[] getFrame(){
 return slipFrame;
 }
}

Listing 7. SerialConnect class

import java.util.*;
import javax.comm.*;

public class SerialConnect {
 static CommPortIdentifier portId;
 static Enumeration portList;
SerialPort serialPort;
 public static CommPortIdentifier getComPort() {
 portList = CommPortIdentifier.getPortIdentifiers();
 while (portList.hasMoreElements()) {
 portId = (CommPortIdentifier) portList.nextElement();
 if (portId.getName().equals("COM1")){
 break;
 }
 }
 return portId;
 }
}

Listing 8. MYSQLConnect class

import java.sql.*;

public class MYSQLConnect {
 String mySqlUrl = "jdbc:mysql://localhost/wpan";
 Connection conn = null;
 Statement st = null;
 boolean isConnected = false;
 public void connect(){
 try {
 Class.forName("com.mysql.jdbc.Driver");
 conn =
DriverManager.getConnection(mySqlUrl, "root",
");
 st = conn.createStatement();

 61

 isConnected = true;
 }catch(ClassNotFoundException e){
 System.out.println("Load Driver Error: " +
e.getMessage());
 }catch(SQLException e){
 // handle any errors
 System.out.println("SQLException: " + e.getMessage());
 System.out.println("SQLState: " + e.getSQLState());
 System.out.println("VendorError: " + e.getErrorCode());
 }
 }
 public void insert(String query){
 if(st != null){
 try{
 st.executeUpdate(query);
 }catch(SQLException e){

 System.out.println("SQLException: " + e.getMessage());
 System.out.println("SQLState: " + e.getSQLState());
 System.out.println("VendorError: " + e.getErrorCode());
 }
}
 }
 public void disconnect(){
 if (st != null) {
 try {
 st.close();
 } catch (SQLException sqlEx){
 st = null;
 }
 }
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException sqlEx){
 conn = null;
 }
 }
 isConnected = false;
 }
 public boolean isConnected(){
 return isConnected;
 }
}

 62

	Introduction
	Background
	Related work
	Research problem statement
	Contribution of the thesis
	LR WPAN project
	Structure of the thesis

	Wireless Private Area Network Domain
	General description
	WPAN components
	Network issues and topologies
	Star topology
	Peer to peer topology

	Routing protocols
	Proactive routing protocols
	Destination Sequenced Distance Vector (DSDV)
	Wireless Routing Protocol (WRP)
	Source Tree Adaptive Routing (STAR)

	Reactive routing protocols
	Dynamic Source Routing (DSR)
	Ad Hoc on Demand Distance Vector Routing (AODV)
	Temporary Ordered Routing Algorithm (TORA)
	Relative Distance Microdiversity Routing (RDMAR)

	Power consumption
	Power-Aware Routing
	Transmission Power Control

	Conclusions

	Distributed system architecture
	History of Distributed Computing
	Multi-tier distributed architecture
	Tires of distributed architecure
	Client tire
	Application tire
	Enterprise tire

	Java Connector Architecture

	WEB services technique
	Service-Oriented Architectures for WPAN networks
	The Web Service Technology Stack
	Web Services Explained
	Using the Web Services Description Language (WSDL)
	Using Universal Description, Discovery, and Integration (UDD
	Using SOAP

	Conclusions

	Mobile services
	Introduction
	WPAN services architecture
	WPAN distributed system architecture description
	Physical sensor network connection
	Datagram encapsulation
	Traffic storage
	Sockets connection
	WPAN control application

	WPAN mobile device specification
	Network stack protocol
	Protocol specification
	GET command
	SET command
	IND command
	ACK command

	WPAN Services

	Conclusions
	References

