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Abstract

This paper considers the context sensitive approach to handle interval knowledge acquired from
multiple knowledge sources. Each source gives its estimation of the value of some parameter x. The
goal is to process all the intervals in a context of trends caused by some noise and derive resulting
estimation that is more precise than the original ones and also takes into account the context noise.
The main assumption used is that if a knowledge source guarantees smaller measurement error
(estimated interval is shorter), then this source in the same time is more resistant against the effect of
noise. This assumption allows us to derive and process trends among intervals and end up to shorter
resulting estimated interval than any of the original ones.
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1 Introduction

It is generally accepted that knowledge has a contextual component. Acquisition, representation, and
exploitation of knowledge in context would have a major contribution in knowledge representation,
knowledge acquisition, and explanation [3]. It is noticed in [4] that knowledge-based systems do not
use correctly their knowledge. Knowledge being acquired from human experts does not usually
include its context.

Contextual component of knowledge is closely connected with eliciting expertise from one or more
experts in order to construct a single knowledge base (or, for example as in [2], for cooperative
building of explanations). If more than one expert are available, one must either select the opinion of
the best expert or pool the experts’ judgments [14]. It is assumed here that when experts’ judgments
are pooled, collectively they offer sufficient cues leading to smaller uncertainty.

All information about the real word comes from two sources: from measurements, and from experts
[9]. Measurements are not absolutely accurate. Every measurement instrument usually has the
guaranteed upper bound of the measurement error. The measurement result is expected to lie in the
interval around the actual value. This inaccuracy leads to the need to estimate the resulting inaccuracy
of data processing. When experts are used to estimate the value of some parameter, intervals are
commonly used to describe degrees of belief [14]. Experts are often uncertain about their degrees of
belief making far larger estimation errors than the boundaries accepted by them as feasible [7]. In both
cases we deal with interval uncertainty, i.e. we do not know exact values of parameters, only intervals
where the values of these parameters belong to. A number of methods to define operations on
intervals that produce guaranteed precision have been developed in [12], [13], [10], and [1] among
others.

In many real life cases there is also some noise which does not allow direct measurement of
parameters. To get rid of this noise it is necessary to subtract its value from the result of measurement.
The noise can be considered as an undesirable effect to the evaluation of a parameter in the context.
The subtraction of the noise in this sense has certain analogy with the decontextualization [11], [8],
[5]. When effect of noise is not known it might be estimated using several coexisting knowledge
sources. Some geometrical heuristics were used in [6] to solve this problem without enough
mathematical justification. It is natural to assume that different measurement instruments as well as
different experts possess different resistance against the influence of noise.  Using measurements



from several different instruments as well as estimations from multiple experts we try to discover the
effect caused by noise and thus be able to derive the decontextualized measurement result.

This paper considers a context sensitive approach to handle interval knowledge acquired from
multiple knowledge sources. Each source is assumed to give its evaluation, i.e. an estimated interval
to which the value of a parameter x belongs. The goal is to process all the given intervals in the
contexts of trends and derive more precise estimation of the value of parameter from them. The
quality of each source is considered from two points of view: first, the value of guaranteed upper
bound of measurement error, and second, the value of a resistance against a noise. These are assumed
to occur together. The main assumption in this paper is that if a knowledge source guarantees lower
upper bound of the measurement error, then the source in the same time is more resistant against the
effect of noise. This assumption allows us to derive different trends that result to shorter intervals for
the value of the parameter x. These are then combined to more precise estimation of this value.

In chapter 2 we present our decontextualization process and some of it main characteristics in the case
of one trend. Next chapter discusses about one way to formulate groups of trends and its relation to
decontextualization process. Chapter 4 discusses combining results of several trends into one resulting
interval. The last chapter includes very short conclusion.

2 Decontextualization

In this chapter we consider a decontextualization process that is used to improve interval estimation
by processing recursively more bounded intervals against less bounded ones.

Let there be n knowledge sources (human beings or measurement instruments) which are asked to
make estimations of the value of a parameter x. Each knowledge source i, i=1,…,n gives his
estimation as a closed interval [ ]L a bi i, , ii ba <  into which he is sure that the value of the parameter

belongs to.

Definition 2.1:

 The range of a parameter x is the length 00 ab −  of the interval [ ]00,baL , which includes all possible

intervals [ ]L i na bi i, , , ... , =1  of this parameter estimation.

 Let us assume that all the knowledge sources are effected by the same misleading noise in the context
of estimation. Of course different knowledge sources are effected by such a noise in a different way.
The main assumption that we use in this paper is that: if a knowledge source guarantees smaller
measurement error (interval estimation is more narrow), then this source is also more resistant against
the effect of noise. This assumption also means that the estimated value given by more precise
knowledge source is supposed to be closer to the actual value of the parameter x. This assumption is
used when we derive trends of intervals towards the actual value of the parameter x.

The process advances decontextualizing an interval in the context of another interval (the step of
decontextualization process) pairwise beginning from the shortest and second shortest intervals. The
next step of decontextualization process is made decontextualizing the resulting interval of the first
step in the context of the third shortest original interval. This is continued until all original intervals
have been participated the process. The result of the last step is the result of the whole
decontextualization process.

Definition 2.2:

The uncertainty ui  of an interval [ ]L a bi i,  of parameter estimation is equal to the length of the

interval:

iii abu −= ,  i=1,…,n.

To be precise it is necessary to mention that in a general case the value of uncertainty should be
standardized with the range of the parameter estimated, like the following:
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In this paper, however, we use and compare different estimations of the same parameter within the
same range. That is why it is not essential to standardize a value of uncertainty and we can use the
Definition 2.2 working with uncertainty.

Definition 2.3:

The quality qi  of an interval [ ]L a bi i,  is the reverse of its uncertainty, i.e.: q
ui

i
=

1
, i=1,…,n.

2.1 Operating with two intervals

Definition 2.4:

The step of the decontextualization between intervals [ ]L a bi i,  and [ ]L
a bj j,

, u ui j≠ , i=1,…,n  is:
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The above formulas for calculating the resulting interval was selected because they satisfy three main
requirements:

•  the resulting interval should be shorter than the original ones,

•  the longer the original intervals are the longer should the resulting interval be, and

•  shorter of the two intervals should locate closer the resulting interval than the longer one.

In the following we will prove that the selected formulas fulfill these three main requirements.

The following theorem defines the relationships between the uncertainties of the original and the
resulting intervals.

Theorem 2.1:

 Let it be that    [ ]
[ ]

[ ]L L
a b

L

a bi i

a j bj

res res, ,
,

=   ,  where  ares  and  bres  are as in the right hand part of  the

Definition 2.4.
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Definition 2.2. gives us that:
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Thus:     u
u u

u ures
i j

i j
=

⋅
+

.

b)  Let us suppose that: u ures i≥ ;  then according to (a) we receive:

u u
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u

u u

u
u

i j

i j
i

i j

j
i

⋅
+

≥ ⇒
+

≤ ⇒ ≤1 0,  which contradicts the Definition 2.2. Thus: u ures i< .

c)  Prove is similar as for (b).

d)  From the Definition 2.3. it results that:      u
qi

i

=
1

, i=1,…,n.

Applying (a) we receive that:
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Thus: q q qres i j= + .

Theorem 2.2:

Let it be that:    [ ]
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a b
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,

=
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2 2  , where

ares1 , ares2 , bres1 , and bres2  are as in the right hand part of Definition 2.4.

Let it be that:  u uj k< .   Then:  u ures res1 2
< .
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Theorem 2.3:

Let it be that: [ ]
[ ]

[ ]L L
a b

L

a bj j

ai bi

res res, ,
, =

1 1
, and  [ ]

[ ]
[ ]L L

a b

L

a bk k

ai bi

res res, ,
, =

2 2  , where ares1 , ares2 , bres1 , and

bres2  are as in the right hand part of the Definition 2.3. Let it be that  u uj k< .   Then:  u ures res1 2
< .

Proof: Similarly as Theorem 2.2.

One possible interpretation of the step of decontextualization formula is based on an extrapolation of
the decontextualized value using interval functions. Extrapolation is based on assumption of linearity
of these functions within one step of decontextualization.

The two linear functions are considered:  a f u= ( ) , that connects points ( , ), ( , )u a u ai i j j , and

b u= ϕ ( )  that connects points ( , ), ( , )u b u bi i j j as it is shown in Figure 1.
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Figure 1: Deriving decontextualized interval by linear extrapolation
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The solution of these equations gives us the following values:
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which are exactly the same as if we make one step of decontextualization process accordingly to the
Definition 2.4. Also this fact motivates the selection of the formula in the Definition 2.3 from the
point of view of the possibility to obtain result of decontextualization using linear extrapolation.

Physical interpretation of the decontextualization formula is shown in Figure 2. It represents the
uncertain opinion as certain resistance to correct parameter estimation. However the more opinions
we consider (parallel resistances in Figure 2 ) the more exact estimation we will obtain due to the
formula of parallel resistances.
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Figure 2: Physical interpretation of decontextualization
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Definition 2.5:

Let us have two interval opinions [ ]L a bi i,  and [ ]L a bj j, , i j n, , ... ,= 1 .

The distance between these opinions is as follows:

[ ] [ ]D L L abs a a abs b ba b a b j i j ii i j j
( , ) max( ( ), ( )), , = − − .

Theorem 2.5:

If it holds that: [ ]
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2.2 Operating with several intervals

The process of decontextualization with several intervals was described in the beginning of this
chapter. We describe now this step by step process formally.

Let there be n intervals [ ]L i na bi i, , , ... , =1 , n ≥ 2 , u u i ni i< = −+1 1 1, ,... , . The resulting interval:
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An example: Let us suppose that three knowledge sources 1, 2, and 3 evaluate the value of the
attribute x to be in the following intervals:

[ ] [ ]L La b1 1 9 12, ,= , [ ] [ ]L La b2 2 6 11, ,= , [ ] [ ]L La b3 3 0 10, ,= .

The above intervals are already in ascending order according to their uncertainties. The resulting
interval is derived by the recursive procedure above:

[ ] [ ] [ ]L L La b a bres res1 1 1 1 9 12, , ,= = ;

[ ] [ ]
[ ]

[ ]
[ ]

[ ]L L L La b a b

L L

res res res res

a b

2 2 1 1

2 2 6 11

9 12 10 687512 5625, , , . , .
, ,= = = ;

[ ] [ ][ ]
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[ ]
[ ] ,6559.12,0769.115625.12,6875.10,,

10,03,3

2233
LLLL

LL

baba
ba

resresresres
≈==

and thus: [ ] [ ] [ ]L L La b a bres res res res, , . , .= =
3 3

110769 12 6559 .

The resulting interval with the original ones is shown in Figure 3.
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Figure 3: The resulting interval and the original ones in the example

One can see that the resulting interval has no common points with two of the three original intervals.
This happens because the decontextualization process takes into account the trend caused by noise in
the estimation context.

3 A Trend Classification

In this chapter we consider one classification of trends into seven different groups of trends. This
classification is used to group together intervals based on the relations of their endpoints and we
prove that the previous step of decontextualization (Definition 2.4) gives as a result an interval that
belongs to the same group as the intervals participating into the decontextualization process.

Definition 3.1:

There are seven groups of trends named as trends with direction dirk and power powk (marked

Lk
dir powk k ) as presented in Table 1. Each pair of intervals [ ] [ ] [ ]L L L i ja b a b a bi i j j, , ,, ,∈ ≠

0 0
, belonging

to the same group Lk
dir powk k  keep the sign of ∆ ∆a b+ , ∆a , and ∆b  where

∆ ∆a a a b b bj i j i= − = −,   .

The direction of a trend group is: left (‘l’), center (‘c’), or right (‘r’), and it is defined by the sign of
∆ ∆a b+ :

( ) ’ ’∆ ∆a b dir lk+ > ⇒ =0  ; ( ) ’ ’∆ ∆a b dir ck+ = ⇒ =0  ;

( ) ’ ’∆ ∆a b dir rk+ < ⇒ =0  .

The power of a trend group is: slow (‘<’), medium (‘=’), or fast (‘>’) and it is defined by the signs of
∆a and ∆b  by the following way:

(( ) ( )) ’∆ ∆a and b powk< > ⇒ = <0 0   ’ ;

(( ) ( )) ’ ’∆ ∆a or b powk= = ⇒ = =0 0   ;

(( ) ( )) ’ ’∆ ∆a or b powk> < ⇒ = >0 0   .

In Figure 4 there are three examples of trend groups with left direction and power: slow (a), medium
(b), and fast (c).



Table 1: Trends of uncertainty

Trend Direction→ left central right

Power↓ Restrictions ∆ ∆a b+ > 0 ∆ ∆a b+ = 0 ∆ ∆a b+ < 0

slow ( ) ( )∆ ∆a and b< >0 0 Ll< Lc< Lr <

medium ( ) ( )∆ ∆a or b= =0 0 Ll = does not exist Lr =

fast ( ) ( )∆ ∆a or b> <0 0 Ll> does not exist Lr >

Figure 4: Left trend groups L L Ll l l< = >, ,
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⇒ =sign a sign a( ’) ( )∆ ∆ ;  sign b sign b( ’) ( )∆ ∆= ;  sign a b sign a b( ’ ’) ( )∆ ∆ ∆ ∆+ = + .

The Theorem 3.1 shows that the step of decontextualization gives resulting interval that belongs to the
same group of trends as the original intervals participating the process.

4 Deriving a Resulting Interval in the Case of Several Trends

In a common case it is possible that several different trends can be derived from the same set of
intervals. In this chapter we discuss one way of deriving resulting interval when there exist several
trends among the original intervals.

Each pair of intervals can define a trend. We require that each pair participates once and only once in
some of trends. This means that the number m of different trends cannot be more than the number of
different interval pairs in the set of intervals [ ]L L i na bi i

= =, , , ... 1  given as opinions by knowledge

sources:

 m Cn≤ 2 .

Each trend can in general case include more than one interval and each interval can support several
more than one trend.

Definition 4.1:

Let us suppose that the set L of interval opinions [ ]L i na bi i, , , ... =1  is divided into m trends

L k mk , , ... = 1 .

The support Sk  for the  trend Lk  is calculated as follows:
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S q

N
k res
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ii L Lai bi k

= ⋅
∀ ∈

∑ 1

, ,

,

where qres
k  is the quality of the result [ ]L

a bres
k

res
k,

,

Ni is the number of different trends that includes the opinion [ ]L a bi i, .

As one can see the Definition 4.1 gives more support for the trend that includes more intervals and the
support of each interval is divided equally between all the trends that include this interval.

Definition 4.2:

Let the set of original interval opinions [ ]L L i na bi i
= =, , , ... , 1  consists of  m different trends

L k mk , , ... , =1   with their resulting interval opinions [ ]L
a bres

k
res
k,

  and support Sk .

Then the resulting opinion [ ]L
a bres

L
res
L,

 for the original set of interval opinions is derived using

following formulas:

a
a S a S a S

S S S

b
b S b S b S

S S S

res
L res res res

m
m

m

res
L res res res

m
m

m

= ⋅ + ⋅ + + ⋅
+ + +

= ⋅ + ⋅ + + ⋅
+ + +

1
1

2
2

1 2
1

1
2

2

1 2

...

...
;

...

...
.

Thus the resulting interval is expected to be closer to the result of those trends that have more support
among the original set of intervals.



5 Conclusion

This paper discusses one approach to handle interval uncertainty in estimation of some domain
parameter. The case is considered when the estimation is made by multiple knowledge sources in a
context of a trend  caused by possible noise. The approach is based on an assumption that if a
knowledge source guarantees less measurement error (estimation interval is shorter), then this source
in the same time is more resistant against the effect of possible noise. In this paper we discussed one
way to decontextualize knowledge given under misleading noise when this basic assumption holds.
We defined different groups of trends among estimated intervals. We introduced one way how to take
into account several trends that exist among the original intervals when one resulting interval is
produced. Further research is needed in different application areas to evaluate practical results of
presented decontextualization process.
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