
Sergiy Nikitin

WEB-SERVICE FOR COMPUTATIONAL ERROR

ESTIMATION

Master’s thesis

Mobile computing

22/03/2005

University of Jyväskylä

Department of Mathematical Information Technology

Author: Sergiy Nikitin

Contact Information: e-mail: senikiti@cc.jyu.fi

Title: Web-Service for Computational Error Estimation

Work: Master’s Thesis

Number of Pages: 70

Study Line: Mobile Computing

Department: University of Jyväskylä, Department of Mathematical Information

Technology

Keywords: Semantic Web, Error Estimation, Finite Element Method, PDE Toolbox,

MATLAB, Estimator, RDF, Web-Service, OWL, GUN, Integration Environment

Abstract: Modern industrial applications involve more and more computer technology

features due to growth of computational capabilities and intellectualization of industry-

oriented software. The permanent increase of computing capabilities gave an impact to

numerical mathematics and numerical methods are widely used in many industrial

applications. The key question in usage of numerical techniques is to explicitly control the

computational error. In turn, intellectualization of software caused a new wave of

processes automation and now industry is surprisingly fast integrating to WWW. This

work provides an idea of wrapping the numerical technique for computational error

estimation to web-service in order to be reachable not only by humans, but for automated

service discovery and usage. This idea is based on Semantic Web paradigm and Global

Understanding Environment concept, which is also aimed at providing mobile and

distributed web-platforms for industry.

 I

Acknowledgements
First of all I’m grateful to my parents for their support and upbringing. They are most

significant people to me.

Second, I want to say thanks to my supervisors: Ass. Professor Vagan Terziyan and Dr.

Sergey Korotov from Department of Mathematical Information Technology for proposal of

thesis topic and many useful suggestions during preparation of the work. I would like to

thank my colleagues from Industrial Ontologies Group for useful discussions and good

advices.

I’m grateful to our exchange programme coordinator Dr. Helen Kaykova for her guidance

and advices in all the urgent and daily problems during my stay in Finland.

I also express my thanks to University of Jyväskylä and Kharkiv National University of

Radioelectronics for opportunities they provided.

Next, I want to say thanks to the Agora Center particularly to Professor Pekka

Neittaanmäki for financial support and perfect work conditions.

I’m especially grateful to the fund “Intellectual Spirituality Society” for their moral support

and guidance.

I’m thankful to my girlfriend Svetlana for her care, support and reminding me about true

values.

 II

Abbreviations

API – Application Programming Interface

BVP – Boundary-Value Problem

CORBA – Common Request-Broker Architecture

FEM – Finite Element Method

FTP – File Transfer Protocol

GUN – Global Understanding Environment

HTTP – Hyper Text Transfer Protocol

HTTPS – Secure HTTP

jUDDI – Java-based Universal Description, Discovery and Integration

OWL – Web Ontology Language

PDE – Partial Differential Equations

RDF – Resource Description Framework

RSCDF – Resource State-Condition Description Framework

SMTP – Simple Mail Transfer Protocol

SOAP – Simple Object Access Protocol

UDDI - Universal Description, Discovery and Integration standard

WSDL – Web Services Description Language

XML – eXtensible Markup Language

 III

Contents

1 INTRODUCTION ...1
1.1 BACKGROUND...1
1.2 RELATED WORK ..1
1.3 RESEARCH PROBLEM STATEMENT ...1
1.4 STRUCTURE OF THE THESIS ...2

2 WEB-SERVICE ARCHITECTURES ...3

2.1 WEBSERVICES.ORG ARCHITECTURE ...3
2.1.1 Service negotiation ..3

2.1.2 Workflow, discovery, registries...4

2.1.3 Service description language ...5

2.1.4 Messaging ..5

2.1.5 Transport protocols ..5

2.1.6 Business issues...5

2.2 THE STENCIL GROUP ...6
2.3 IBM STACK...7
2.4 W3C STACK..8

2.4.1 Wire stack ..8

2.4.2 Description stack..9

2.4.3 Discovery stack..9

2.5 SOAP ...11
2.6 WSDL ..14
2.7 UDDI ...16

2.7.1 tModels ..17

2.7.2 Business service...17

2.7.3 Authoring UDDI service descriptions ...18

2.7.4 Registering and referencing WSDL definitions in UDDI19

3 ERROR ESTIMATION TECHNIQUE...22

3.1 DIFFUSION PROBLEM...22
3.1.1 Mathematical model ..22

3.1.2 Finite element solution...24

3.1.3 Problem-oriented criterion...24

 IV

3.1.4 Technology for error estimation in terms of problem-oriented criteria for

diffusion problem...24

3.1.5 Auxiliary problem and its finite element solution25

3.1.6 Gradient averaging procedures ..25

3.1.7 The estimator ...28

3.1.8 Error estimation algorithm...28

4 SOFTWARE IMPLEMENTATION ...30
4.1 SOFTWARE PLATFORM SELECTION ..30
4.2 PDE TOOLBOX ...30
4.3 PDE TOOLBOX API ..36
4.4 ESTIMATOR SOFTWARE...37

4.4.1 f-function definition ...39

4.4.2 Finding primal solution..40

4.4.3 ϕ -function definition ..41

4.4.4 Reference solution and exact error computation ...42

4.4.5 Adjoint problem...43

4.4.6 Estimation ..44

4.4.7 Mesh adaptivity..45

4.4.8 Local L2-norm estimation ...45

5 ERROR ESTIMATION WEB-SERVICE WRAPPING48
5.1 SEMANTIC WEB ...48
5.2 RDF..49
5.3 OWL ..50
5.4 GUN CONCEPT..51
5.5 GENERIC WRAPPING MECHANISM..54
5.6 ERROR ESTIMATION WRAPPING...56

CONCLUSIONS ..60

REFERENCES...61

 V

1 Introduction

1.1 Background

Nowadays World Wide Web is permanently transforming all the time and thus opens new

capabilities for possible use. Different application areas are already involved in WWW.

And among them we observe such areas, that we couldn’t even expect a couple of years

ago. Different application domains have already migrated to Mobile Platforms. This web

growth requires new ways to manage its heterogeneous content. But for content

management is essential how it is represented. Semantic Web paradigm [SEMWEB]

brought a new value to content description and aims at not just readable but machine

understandable mark-up.

In this work we will provide architecture for web-service with essentially new kind of

content and application areas. The semantic vision of new web opens new domains for web

coverage. The motivation to create Web-Service for Computational Error Estimation was

brought by Semantic Web paradigm and its benefits for Web-integration. However

Semantic Web paradigm must be implemented in concrete technologies and approaches.

1.2 Related work

Related work concerning Web-services integration and Resource semantic annotation can

be found in [Ermolayev et al., 2004], [SmartResource, 2004], [GUN].

1.3 Research problem statement

From the very beginning the problem was stated as “experimental acknowledgement of

theoretical foundations for Computational Error Estimation” [Korotov et al., 2004].

Experimental results proved the effectiveness of technique. So the idea came to create web

service so that others could check it and use in educational purposes. We decided to apply

Semantic Web wrapping for service architecture as most promising today for web-

standards of future.

 1

1.4 Structure of the thesis

Chapter 2 contains review of existing technologies for web-service integration and

protocol stacks.

In Chapter 3 the mathematical foundations of Computational Error Estimation Technique

are depicted.

Chapter 4 describes software implementation of Error Estimation Technique in MATLAB

Chapter 5 provides a proposal for possible wrapping of implemented software to

semantically annotated resource.

 2

2 Web-service architectures
With Web Services, information sources become components that we can use, re-use, mix,

and match to enhance Internet and intranet applications ranging from a simple currency

converter, stock quotes, or dictionary to an integrated, portal-based travel planner,

procurement workflow system, or consolidated purchase processes across multiple sites

[WSArchitect]. Web Services, at a basic level, can be considered a universal client/server

architecture that allows disparate systems to communicate with each other without using

proprietary client libraries. This chapter reviews existent web-service architectures and

technologies.

2.1 WebServices.Org architecture

The following is the Web Services stack from WebServices.Org:

Layer Example

Trading Partner Agreement Trading Partner Agreement

Workflow, Discovery, Registries UDDI, ebXML registries, IBM WSFL, MS XLANG

Service Description Language WSDL/WSCL

Messaging SOAP/XML Protocol

Transport Protocols HTTP, HTTPS, FTP, SMTP

Business Issues Management, Quality of Service, Security, Open

Standards

Table 2.1 – Web-services stack from WebServices.Org

2.1.1 Service negotiation

The business logic process starts at the Services Negotiation layer (the top) with, say, two

trading partners negotiating and agreeing on the protocols used to aggregate Web Services.

 3

This layer is also referred to as the Process Definition layer, covering document, workflow,

transactions, and process flow.

2.1.2 Workflow, discovery, registries

The next layer to establish workflow processes uses Web Services Flow Language [WSFL]

and MS XLANG, which is an XML language to describe workflow processes and spawn

them. WSFL considers two types of Web Services compositions: The first type (flow

models) specifies the appropriate usage pattern of a collection of Web Services, in such a

way that the resulting composition describes how to achieve a particular business goal;

typically, the result is a description of a business process. The second type (global models)

specifies the interaction pattern of a collection of Web Services; in this case, the result is a

description of the overall partner interactions.

While WSFL complements WSDL (Web Services Definition Language) [WSDL] and is

transition-based, XLANG is an extension of WSDL and block-structured based. XLANG,

on the other hand, allows orchestration of Web Services into business processes and

composite Web Services. WSFL is strong on model presentation while XLANG does well

with the long-running interaction of Web Services.

Web Services that can be exposed may, for example, get information on credit validation

activities from a public directory or registry, such as Universal Description, Discovery and

Integration [UDDI]. The ebXML, E-Services Village, BizTalk.org, and xml.org registries

and Bowstreet's (a stock service brokerage) Java-based UDDI (jUDDI) are other

directories that could be used with UDDI in conjunction with Web Services for business-

to-business (B2B) transactions in a complex EAI infrastructure under certain conditions.

Web Services is still primarily an interfacing architecture, and needs an integration

platform to which it is connected. Such an integration platform would cover the issue of

integrating an installed base of applications that cannot work as Web Services yet.

 4

2.1.3 Service description language

As we move further down the stack, we need WSDL to connect to a Web Service. This

language is an XML format for describing network services. With it, service requesters can

search for and find the information on services via UDDI, which, in turn, returns the

WSDL reference that can be used to bind to the service.

Web Service Conversational Language (WSCL) helps developers use the XML Schema to

better describe the structure of data in a common format (say, with new data types) the

customers, Web browsers, or indeed any XML enabled software programs can recognize.

This protocol can be used to specify a Web Service interface and to describe service

interactions.

2.1.4 Messaging

In the Messaging layer SOAP acts as the envelope for XML-based messages, covering

message packaging, routing, guaranteed delivery and security. Messages are sent back and

forth regarding the status of various Web Services as the work progresses (say, from

customer order to shipping product out of the warehouse).

2.1.5 Transport protocols

When a series of messages completes its rounds, the stack goes to its last layer: the

transport layer using Hypertext Transfer Protocol (HTTP), Secure HTTP (HTTPS),

Reliable HTTP (HTTPR) File Transfer Protocol (FTP) or Standard Mail Transfer Protocol

(SMTP). Then, each Web Service takes a ride over the Internet to provide a service

requester with services or give a status report to a service provider or broker.

2.1.6 Business issues

Finally, the Business Issues row in the table lists other key areas of importance to the use

and growth of Web Services. Without consideration to these points, Web Services could

quickly become objects of ridicule.

 5

2.2 The Stencil group

Now, let's take a look at the Stencil Group's Web Services technology stack. It is similar to

that of WebServices.Org with three exceptions:

1. The WebServices.Org stack does not divide the layers into emerging and core

components. Not doing so could confuse the reader as to which standards are

emerging. What is now an emerging standard would become a core standard at a

future date.

2. The Stencil Group does not apply Management, Quality of Service, Open

Standards, and Security to any layer. The reader could get the wrong impression

that they are proprietary and treated as not important. When this happens, the

reader will opt for another architecture stack that has these features.

3. The Stencil Group starts the stack with undefined business rules while

WebServices.Org begins with a clearly defined business process such as service

agreement. The reader could get confused on what undefined business rules are,

and how many would eventually be defined.

Layer Type

Other Business Rules (undefined)

Web Services Flow Language (WSFL)

Universal Description, Discovery and Integration (UDDI)

Web Services Description Language (WSDL)

Emerging Layers

Simple Object Access Protocol (SOAP)

Extensible Markup Language (XML)

Common Internet Protocols (TCP/IP, HTTP)

Core Layers

Table 2.2 - Web-services stack from Stencil Group

 6

2.3 IBM stack

The IBM Conceptual Web Services stack is part of their Web Services Conceptual

Architecture (WSCA) 1.0 [IBM WSCA]. It is presented in a slightly different way than

that of the first two stacks, by starting with Web Services tools and then showing what

each layer is used for.

Tools Layer

TPA (Trading Partner Agreement) Service Negotiation

WSFL Service Flow

UDDI+WSEL Service

Description

Service Publication

(Direct UDDI)

Service Directory

(Static UDDI)

Endpoint

Description

WSDL Service Interface

Service Implementation

SOAP XML-Based Messaging

HTTP, FTP, email, MQ, IIOP Network

Quality of Service, Management,

Security

Business Issues

Table 2.3 - Web-services stack from IBM

The IBM Web Services stack does not show WSCL and ebXML, included in the

WebServices.Org stack. It associates the Network layer with IBM MQSeries (now called

WebSphere MQ) messaging systems and the Internet Inter-ORB Protocol (IIOP) - a

 7

protocol CORBA uses to transmit data, information, and messages between applications.

They do not appear in either that of WebServices.Org or The Stencil Group. IBM considers

WSDL as a description of the service endpoints where individual business operations can

be accessed. WSFL uses WSDL for the description of service interfaces and their protocol

bindings. WSFL also relies on WSEL (Web Services Endpoint Language), an endpoint

description language to describe non-operational characteristics of service endpoints, such

as quality-of-service properties.

Together, WSDL, WSEL, and WSFL provide the core of the Web Services computing

stack. IBM perceives UDDI in two categories: static and direct. Static UDDI refers to the

Service Directory established after applying WSFL to Service Flow, while direct UDDI

pertains to the Service Publication of directory items. Similar to the WebServices.Org

stack, the IBM stack applies QoS, management, and security to all layers.

2.4 W3C stack

The W3C Web Services Workshop, led by IBM and Microsoft, has agreed that the

architecture stack consists of three components: Wire, Description, and Discovery.

2.4.1 Wire stack

The following table shows what layers constitute the Wire Stack.

Other "extensions"

Attachments Routing

Security Reliability

SOAP/XML

XML

Table 2.4 – W3C Wire Stack

 8

Wire Stack has extensions to two layers: SOAP and XML. This means whenever the

SOAP is used as the envelope for the XML messages, they must be attached, secure,

reliable, and routed to the intended service requester or provider. In the stacks of other

organizations, SOAP and XML are not treated as "extensions." IBM, for instance, refers to

SOAP as a tool for its stack layer, "XML-Based Messaging."

2.4.2 Description stack

The Description Stack, the most important component, consists of five layers:

Business Process Orchestration

Message Sequencing

Service Capabilities Configuration

Service Interface WSDL
Service Description (WSDL)

Service Description

XML Schema

Table 2.5 – W3C Description Stack

This stack starts with orchestration of business processes from which the messages are

sequenced, depending on how service capabilities are configured.

W3C uses WSDL to describe service interface and service implementation, neither of

which is explicitly highlighted in other stacks.

2.4.3 Discovery stack

As the name implies, the Discovery Stack involves the use of UDDI, allowing businesses

and trading partners to find, discover, and inspect one another in a directory over the

Internet, as follows:

 9

Directory (UDDI)

Inspection

Table 2.6 - W3C Discovery Stack

The Inspection Layer refers to WSIL (Web Services Inspection Language) and WS-

Inspection specifications.

Putting all three stack-components together, we have the Architecture Stack.

Other "extensions"

Attachments Routing

Security Reliability

SOAP/XML

XML

Business Process Orchestration

Message Sequencing

Service Capabilities Configuration

Service Interface WSDL
Service Description (WSDL)

Service Description

XML Schema

Directory (UDDI)

Inspection

Table 2.7 – W3C architecture stack

 10

Today, SOAP (Simple Object Access Protocol), WSDL (Web Services Description

Language), and UDDI are emerging as the Internet de facto standards for Web services.

SOAP has been accepted and is being standardized by the World Wide Web Consortium

(W3C). WSDL has been submitted to the W3C for standardization, and is emerging as the

de facto standard language for the description of Web services. UDDI is poised to be the

de facto standard for the Web service repository.

The following subchapters describe briefly what these technologies are and what

functionality they carry with.

2.5 SOAP

SOAP Version 1.2 [SOAP] is a lightweight protocol intended for exchanging structured

information in a decentralized, distributed environment. It uses XML technologies to

define an extensible messaging framework providing a message construct that can be

exchanged over a variety of underlying protocols. The framework has been designed to be

independent of any particular programming model and other implementation specific

semantics.

Two major design goals for SOAP are simplicity and extensibility. SOAP attempts to meet

these goals by omitting, from the messaging framework, features that are often found in

distributed systems.

The SOAP protocol provides a convention for Remote Procedure Call (RPC) using XML

messages. SOAP specifies a wire protocol for facilitating highly distributed applications.

SOAP is similar to DCOM and CORBA in that it provides an RPC mechanism for

invoking methods remotely. SOAP differs in that it is a protocol based on open XML

standards and XML document exchange rather than being an object model relying on

proprietary binary formats. Both DCOM and CORBA use binary formats for their payload

(NDR and CDR, respectively). The SOAP gateway performs a similar function to DCOM

and CORBA stubs – translating messages between the SOAP protocol and the language of

choice. As a result, SOAP offers vendor, platform, and language independence. With

 11

SOAP, developers can easily bridge applications written with COM, CORBA, or

Enterprise JavaBeansTM.

From the specification, SOAP is composed of three parts:

• A framework describing how SOAP messages should be constructed

• A set of encoding rules for exchanging data types

• A convention for representing remote procedure calls

The encoding rules defined for various data types can be serialized across SOAP requests.

The SOAP 1.1 specification bases its data encoding on XML Schema Structures and XML

Schema Data Types, but also allows arbitrary data encoding like RDF. Supported types

include simple types, like strings and enumerations, and complex types of structures and

arrays. The specification also describes a convention for performing RPC interactions

using XML. SOAP messages can be sent over any transport protocol including HTTP(s),

SMTP, and FTP.

A SOAP message contains three primary pieces: an envelope; a header for adding

application-specific features to a SOAP message, including authentication, transaction

management, and payment; and a body that contains information intended for the recipient.

An application receiving a SOAP message must identify all parts intended for it, verify that

those parts are complete, and process them. Because a SOAP message can travel through a

number of intermediaries, the SOAP actor attribute is used to indicate the ultimate

recipient of the message. The specification also defines a mustUnderstand attribute that

indicates whether a specific header entry has to be understood and processed by the

recipient.

The following illustrates how a simple request/response message could be written with

SOAP:

 12

Request

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml

Content-Length: nnnn

SOAPAction: “Some-URI”

<SOAP:Envelope

xmlns:SOAP="urn:schemas.xmlsoap.org

:soap.v1">

<SOAP:Header>

<t:Transaction xmlns:t=”URI”

mustUnderstand=”1”>5

</t:Transaction>

</SOAP:Header>

<SOAP:Body>

<m:GetLastTradePrice

xmlns:m="URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP:Body>

</SOAP:Envelope>

Response

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: nnnn

<SOAP:Envelope

xmlns:SOAP="urn:schemas.xmlsoap.org

:soap.v1">

<SOAP:Header>

<t:Transaction xmlns:t=”URI”

xsi-type=”xsd:int”

mustUnderstand=”=”>5

</t:Transaction>

</SOAP:Header>

<SOAP:Body>

<m:GetLastTradePriceResponse

xmlns:m="URI">

<return>34.5</return>

</m:GetLastTradePriceResponse>

</SOAP:Body>

</SOAP:Envelope>

Table 2.8 – Examples of Request and Response of SOAP protocol

Because SOAP messages can be carried over the HTTP protocol, they can easily pass

through firewalls. Unlike other distributed object models that rely on dynamically assigned

 13

ports, SOAP can use HTTP’s standard port for transmitting data. The SOAP specification

does not directly address security but relies on either the underlying protocol or the

conventions of securing data within the business payload. Using the HTTPS protocol,

SOAP message exchanges can be kept private.

SOAP was never intended to provide a complete distributed object architecture. Although

it is possible to handle request and response messages, the SOAP specification does not

directly handle asynchronous communication. It is, however, possible to implement

asynchronous communication using the SOAP protocol.

SOAP will need to be extended with standardized mustUnderstand header fields to encode

attributes like “message sender,” “message recipient,” and “message co-relation id” in

order to claim native support for asynchronous messaging. BizTalk and ebXML are

examples of initiatives that have extended SOAP to handle asynchronous messaging.

Although SOAP is protocol-neutral, it currently only describes transport bindings over the

HTTP protocol.

SOAP is clearly becoming one of the de facto standards for Web services. Because of its

platform and language independence, and its ease of integration, many companies are

embracing SOAP as a backbone for their Web services strategy.

2.6 WSDL

WSDL [WSDL] provides a grammar for describing services as a set of endpoints that

exchange messages. A WSDL document serves as a language and platform agnostic

(XML) description of one or more services. A WSDL document describes those services,

how to access them, and what type of response (if any) to expect. WSDL describes types,

messages, operations, portTypes, locations, and protocol bindings of the service.

Below are some of the concepts that WSDL tries to describe:

 14

PortTypes: A portType describes the operations provided by a Web service. It is like

a Java interface in that it describes a set of operations. It combines message

elements into an operation.

Messages

and types

A message is a data element. It is used by an operation to carry the data of

the operation. Messages describe the communication between client and

service, by listing the data types exchanged. The types are described in the

types element, which is usually done with XML Schema. Types are like

Java classes and primitive types.

Operations,

messages,

and faults

An operation is like a Java method. It consists of incoming, outgoing,

and fault messages. We can think of an incoming message for an operation

like a method's parameters in Java programming language. We can think of

an outgoing message for an operation like a method's return type in Java

programming language. We can think of a fault message as a Java exception.

Bindings A binding binds a portType to a particular protocol (for example, SOAP 1.1,

HTTP GET/POST, or MIME).

Services A service defines the connection information for a particular binding.

Services can have one or more ports, each of which define a different

connection method (for example, HTTP / SMTP, etc.).

Table 2.9 – Concepts of WSDL

For relations between WSDL concepts see Figure 2.1

 15

Figure 2.1 – WSDL concepts diagram

2.7 UDDI

The Universal Description Discovery and Integration (UDDI) specification provides a

platform independent way of describing services, discovering businesses, and integrating

business services using the Internet. The UDDI data structures provide a framework for the

description of basic business and service information, and architects an extensible

mechanism to provide detailed service access information using any standard description

language. Many such languages exist in specific industry domains and at different levels of

the protocol stack. The Web Services Description Language (WSDL) is a general purpose

XML language for describing the interface, protocol bindings and the deployment details

 16

of network services. WSDL complements the UDDI standard by providing a uniform way

of describing the abstract interface and protocol bindings of arbitrary network services.

2.7.1 tModels

tModels provide the ability to describe compliance with a specification, a concept, or a

shared design. tModels have various uses in the UDDI registry. We are interested here in

the use of tModels to represent technical specifications like wire protocols, interchange

formats and sequencing rules. When a particular specification is registered with the UDDI

repository as a tModel, it is assigned a unique key, which is then used in the description

of service instances to indicate compliance with the specification.

2.7.2 Business service

Services are represented in UDDI by the businessService data structure, and the

details of how and where the service is accessed are provided by one or more nested

bindingTemplate structures.

Figure 2.2 – UDDI concepts relations

A bindingTemplate specifies a network endpoint address (in the accessPoint

element) and a stack of tModels describing the service.

 17

Below is the example code of UDDI accessPoint

<businessService>

(...)

 <bindingTemplates>

 <bindingTemplate>

 (...)

 <accessPoint urlType="http">http://www.etc.com/</accessPoint>

 <tModelnstanceDetails>

 <tModelnstanceInfo tModelKey="...">

 </tModelnstanceInfo>

 (...)

 </tModelnstanceDetails>

 </bindingTemplate>

 (...)

 </bindingTemplates>

</businessService>

2.7.3 Authoring UDDI service descriptions

We now consider how WSDL can support the creation of UDDI businessService entries.

We summarize the process in three major steps.

1. The first step is to create the WSDL service interface definition. Typically, industry

groups will define a set of service types, and describe them with one or more

service interface definition WSDL documents. The service interface definition will

include service interfaces and protocol bindings, and will be made publicly

available. The WSDL service interface definitions are then registered as UDDI

tModels; the overviewDoc field in each new tModel will point to the

corresponding WSDL document

 18

2. Next, programmers will build services that conform to the industry standard service

definitions. Either manually or using appropriate UDDI-aware tooling,

programmers will retrieve the tModel description of the industry standard

definition, and (following the overviewDoc link) obtain the corresponding

WSDL definition document. WSDL-aware tooling, in turn, can help generate an

implementation that supports the standard interfaces and bindings.

3. Finally, the new service must be deployed and registered in the UDDI repository.

Either manually or using WSDL and UDDI-aware tooling, a UDDI businessService

data structure is created, and then registered. Typically when using WSDL and

UDDI-aware tools, service deployment information (some type of “deployment

descriptor” document) will be generated at that same time.

The information contained in the new businessService references the implemented

standards and provides additional deployment details:

- A bindingTemplate is created for each service access endpoint. The network

address of the access point is encoded in the accessPoint element.

- One tModelInstanceInfo is created in the bindingTemplate for each

tModel that is relevant to the service end point being described, in particular, for

every wsdlSpec tModel that defines interfaces and bindings supported by the

service.

2.7.4 Registering and referencing WSDL definitions in UDDI

The development and registration of services described in the previous section assumes

that some WSDL service information is registered or embedded in the UDDI registry. We

focus on two aspects of this problem:

1. Registration of WSDL service interface definitions as UDDI tModels.

2. Reference to reusable wsdlSpec tModels in bindingTemplates.

 19

WSDL service interface definitions are intended to describe many service instances, and it

is consequently natural to register them as tModels. In the case when the description

comprises more than one WSDL document, one tModel should be created for each. Each

such tModel must be classified, using the uddi-org:types taxonomy, as being of

type “wsdlSpec” and must have an overviewDoc whose overviewURL points to the

relevant WSDL document. An example is outlined below.

<tModel authorizedName="..." operator="..." tModelKey="...">

<name>StockQuote Service</name>

<description xml:lang="en">

WSDL description of a standard stock quote service interface

</description>

<overviewDoc>

<description xml:lang="en">WSDL source document.

</description>

<overviewURL>

http://stockquote-definitions/stq.wsdl

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"

keyName="uddi-org:types"

keyValue="wsdlSpec"/>

</categoryBag>

</tModel>

 20

tModelInstanceInfo structures in the bindingTemplate use the tModelKey

attribute to refer to the technical specifications that are required to interact with that service

endpoint. When WSDL and UDDI are used together, the tModel referred to should be

one of type wsdlSpec, that is, one whose overviewDoc is a WSDL service interface

definition, as explained in the previous section. One tModelInstanceInfo structure

must be created for each wsdlSpec tModel containing standard definitions that are

relevant to the service being defined.

 21

3 Error estimation technique
The technology presented below is designed to evaluate the accuracy of computed

solutions, measured in terms of “problem-oriented” criteria that can be chosen by users.

The technology is applicable to various problems in mechanics and physics embracing

mathematical models of diffusion processes and models arising in the elasticity theory of

solid bodies.

3.1 Diffusion problem

3.1.1 Mathematical model

We consider physical (or mechanical) problem that can be formally presented in the form

of a boundary value problem of elliptic type (BVP) as follows: Find a function

 of variables 1()du u x x= ,..., d 1 dx x, ..., , where 1 2d = , ,..., such that

1

in
d

ij
i j i j

ua f
x x, =

⎛ ⎞∂ ∂
− = Ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∑ , (3.1)

 0 1onu u= Γ , (3.2a)

 2
1

on
d

ij i
i j j

ua n g
x, =

∂
= Γ .

∂∑ (3.2b)

In the above, relation (3.1) is a process governing equation in the solution domain
dRΩ⊂ , where the natural number denotes a dimension of the problem,

, are the given coefficients of the problem that usually

describe the diffusion properties of the respective media, and

d

1()ij ij da a x x= ,..., 1i j d, = ,..., ,

1(d)f f x x= ,..., can be

viewed as a given source function. The coefficients are assumed to be bounded functions

and is assumed to be square summable. We assume that f Ω is a bounded connected

 22

domain with Lipschitz continuous boundary Γ , which consists of a finite number of

smooth parts (see Fig. 3.1).

Figure 3.1 - A solution domain with the basic notation.

Further, relations (3.2a) and (3.2b) are boundary conditions, which prescribe a behaviour

of the solution and its derivatives on two nonintersecting boundary parts and 1Γ 2Γ ,

respectively, i.e., . The functions 1Γ = Γ ∪Γ2 0 0 1()du u x x= ,..., and are

given. We assume that is a square summable function, in particular, it can be an

arbitrary piecewise smooth function. The function must belong to the energy functional

class (which is), and, in particular, it can also be any piecewise smooth function.

1()dg g x x= ,...,

g

0u

1()H Ω

The symbol denotes the i -th component of the outward unit normal vector in

1(d)x x= ,...,n n to the boundary Γ , i.e., (see Fig. 3.1), the outward unit

normal is defined at almost all points of the boundary.

1[T
dn n= ,...,n]

 23

The above assumptions are not restrictive and cover the bulk of practically meaningful

cases in modeling of diffusion processes.

3.1.2 Finite element solution

Let be a finite-dimensional space constructed by means of a selected set of finite

element trial functions defined on commonly-used finite element mesh over

hV

hT Ω . We

notice that space is chosen so that its functions vanish on hV hw 1Γ .

The finite element approximation for problem (3.1)–(3.2) is defined then as a function

 such that 1 0()h h d hu u x x V u= ,..., ∈ + ,

2

1

d
h h

ij h h h h
i j j i

u wa dx fw dx gw ds w V
x x, =Ω Ω Γ

∂ ∂
= + ∀

∂ ∂∑∫ ∫ ∫ ∈ . (3.3)

3.1.3 Problem-oriented criterion

Engineers are often interested not only in the overall error he u u= − , but also in its local

behaviour, e.g., in a certain subdomain ω ⊂Ω . One way to get an information about the

local behaviour of is to measure the error in terms of specially selected problem-

oriented criteria.

hu u−

One of the most typical criteria of such a type is presented by the integral

 ()hu u dxϕ
Ω

− ,∫ (3.4)

where 1(d)x xϕ ϕ= ,..., is a selected function such that suppϕ ω⊆ .

3.1.4 Technology for error estimation in terms of problem-oriented criteria for

diffusion problem

To present the technology for estimation of the criterion given by (3.4), we need first to

describe two technical problems that must be previously solved. They consist of finding an

approximate solution of an auxiliary problem (so-called adjoint problem) and making a

 24

certain post-processing of this solution, and also making a post-processing of the finite

element approximation . hu

3.1.5 Auxiliary problem and its finite element solution

Let Vτ be another finite-dimensional space constructed by means of a selected set of finite

element trial functions on another standard finite element mesh Tτ over . We notice that

space

Ω

Vτ is chosen so that its functions wτ vanish on 1Γ , and also that Tτ need not to

coincide with . hT

Consider the auxiliary finite-dimensional problem as follows: Find a function

1()dv v x x Vτ τ τ= ,..., ∈ , such that

1

d

ji
i j j i

v wa dx w dx w
x x
τ τ Vτ τ τϕ

, =Ω Ω

∂ ∂
= ∀ ∈

∂ ∂∑∫ ∫ . (3.5)

3.1.6 Gradient averaging procedures

On , we define the gradient averaging transformation mapping the gradient of the

finite element approximation

hT hG

hu

1

[Th h

d

u u
x x

]∂ ∂
∇ = ,..., ,

∂ ∂hu (3.6)

which is constant over each element of the finite element mesh, into a vector-valued

continuous piecewise affine function

 1() [() ()]d
h h h hG u G u T∇ = ∇ ,..., ∇ ,h hG u (3.7)

by setting each its nodal value as the mean (or weighted mean) value of ∇ on all

elements of the patch

hu

()x∗P associated with corresponding node x∗ in the mesh . hT

More precisely, let
k

h
T

i

u
x

∂
|

∂
 denote the value of -th coordinate of gradient over

triangle , let

i ∇ hu

kT x∗ be one of nodes of finite element mesh , and let , ..., hT 1T
xNT
∗
 be

 25

elements of the mesh having node x∗ as one of their vertices. The union of such elements

is called the patch and denoted as ()x∗P . (Thus, in terms of Fig. 3.2 the patch consists of

lesix triang s, i.e. 6= .) Then, we define

xN
∗

()

1()(1
k

i h
h h T

uG u i d
N x

∗

)
kT xx i

x
∗

∗
∈

∂
∇ | , = ,..., ,

∂∑ (3.8a)

or

=
P

()1

1()() 1
k

kx

i h
h h k T

T xN i

uG u x measT i d
measT measT x

∗∗

∗
∈

∂
∇ = ⋅ , = ,..., ,

+ ... + ∂∑
P

re the symbol denotes the area of corresponding triangle.

| (3.8b)

measwhe

Figure 3.2 - A part of standard finite element mesh and a patch associated with

node

Having

piecewise affine function over the whole domain

)(*xP

)(*x

()h hG u∇ defined at all nodes of the mesh hT , we uniquely define continuous i

()i
h hG u∇ Ω . In this way, the vector-

valued continuous piecewise affine function ()∇h hG u in (3.7) is built.

 26

TτSimilarly, on , we define the gradient averaging transformation τG mapping the

gradient of the finite element approximation vτ

1 d

[]Tv
x x
τ τ

τ
v∂ ∂

∇ = ,..., ,
∂ ∂

v (3.9)

which is constant over each element of the finite element mesh, into a vector-valued

continuous piecewise affine function

1() [() ()]d TG v G vτ τ τ τ τ τ∇ = ∇ ,..., ∇ ,G v (3.10)
value as the mean (or weighted mean) value of

by setting each its nodal τ∇v on all

elements of the patch ()xP o associated with corresponding node x in the mesh T . τo

More precisely, let
kT

i

v
x
τ∂
|

∂
 denote the value of -th coordinate of gradient i τ∇v over

triangle , let kT x Tτ be one of nodes of finite element mesh o , and let , ..., be

elements of the mesh having node

1T
xNT
o

xo as one of their vertices. The respective patch is

denoted as ()xP o . The

n

()

1()()
k

i
T

T xx i

vG v x i dτ
τ τ

∈

1
kN x

∂
∇ = | , = ..., .∑

P oo

 1a)

or

,
∂o (3.1

()1

1()() 1
k

kx

i
k T

T xN i

vG v x measT i d
measT measT x

τ
τ τ

∈

∂
∇ = ⋅ | , = ,..., .

+ ... + ∂∑
P oo

o (3.11b)

Having) at all nodes

()(iG v xτ τ∇ o xo , we uniquely define continuous piecewise affine

unction ()iG vτ τ∇ over the whole domain Ω .f In this way, the vector-valued co

iecewise affine function

ntinuous

p ()τ τ∇G v in (3.10) is built.

Such averaging transformations are widely used in the finite element calculations (see, e.g.,

[Babuška, Strouboulis., 2001], [Brandts, Křížek, 2003], [Hlaváček, Křížek, 1987], [Křížek,

 27

Neittaan], [Zienkeiewicz, Zhu, 1987]). Usually they lead to

computationally inexpensive algorithms.

mäki, 1984], [Verfürth, 1996

3.1.7 The estimator

Our error estimation method is based upon a new estimator that has been derived and

justified numerically in [Korotov et al., 2003a], [Korotov, et al., 2003b], [Korotov,

Turchyn, 2004]. It estimates the quantity (3.4) by the quantity ()hE u vτ, given by the

following formula:

0 1() () ()h h hE u v E u v E u vτ τ τ, := , + , , (3.12)

where

2

0
1

()
d

h
h ij

i j j

u v

i

E u v fv dx gv ds a dx
x

τ
τ τ τ

, =Ω Γ Ω

∂ ∂
, = + − ,

∂ ∂∑∫ ∫ ∫ (3.13)
x

and

1
1

() () ()
d

j ih
h ij h h

i j j i

u vE u v a G u G v dx
x x

τ
τ τ

, =Ω

⎛ ⎞⎛ ⎞∂ ∂
, = − ∇ − ∇⎜ ⎟⎜⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∑∫ τ .⎟

he functional

(3.14)

 ()hE u vτ, is directly computable once the approximations and hu vτ are T

found.

.1.8 Error estimation algorithm

tep 1: Pose a problem of type (3.1)–(3.2)

n (3.3)

Select criterion (3.4), i.e. subdomain

3

S

Step 2: Find hu i

Step 3: ω and function ϕ

and find vτStep 4: Solve auxiliary problem (3.5)

Step 5: Construct by (3.8a) or (3.8b) ()∇h hG u

 28

Step 6: Construct ()τ τ by (3.11a) or (3.11b) ∇G v

Step 7: Compute 0 ()hE u vτ,

Step 8: Compute 1()hE u vτ,

()hE u vτ, Step 9: Compute

 29

4 Software implementation
In this chapter we will discuss software implementation issues. First of all the arguments

for software platform selection will be given.

4.1 Software platform selection

As far as we implement complicated mathematical method it is reasonable to use already

existent packages and tools with appropriate set of functions. Second, we need to wrap all

the functionality into web-accessible interface. For future extensions it is also important to

have an ability to use some popular programming language, which is involved in web-

services development. Such a language could guarantee that service will be easy to

upgrade and maintain.

The most suitable for all these requirements in our opinion is MATLAB language

[MATLAB]. MATLAB also provides good programming environment. It is extensible

because of its toolboxes conception. MATLAB also provides a platform for web-service

implementation. Furthermore, it is full compliant with Java programming language, thus

implies consistency with powerful programming environments.

But the most significant is mathematical capabilities of MATLAB. It is easy to learn, fast

enough for programming and testing the algorithms.

MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation.

4.2 PDE Toolbox

The Partial Differential Equation (PDE) Toolbox [PDE Tool] provides a powerful and

flexible environment for the study and solution of partial differential equations in two

space dimensions and time. The equations are discretized by the Finite Element Method

(FEM).

 30

PDE Toolbox provides Graphical Users Interface and Application Programming Interface.

The PDE Toolbox’s GUI is depicted on Figure 4.1.

Figure 4.1 – PDE Toolbox GUI

PDE Toolbox allows solve different types of problems. It has 10 application modes:

• Generic scalar (the default mode)

• Generic system

• Structural Mechanics -- Plane Stress

• Structural Mechanics -- Plane Strain

• Electrostatics

• Magnetostatics

• AC Power Electromagnetics

 31

• Conductive Media DC

• Heat Transfer

• Diffusion

In this paper we will refer to Generic Scalar mode. The process of finding solution via

PDE Toolbox GUI is the following:

• Define problem

Figure 4.2 – Geometry definition: L-shaped domain

 32

• Specify boundary conditions

Figure 4.3 – Boundary conditions specification

• Set PDE coefficients

Figure 4.4 – PDE specification

 33

• Build mesh

Figure 4.5 – Mesh generation

Mesh generation parameters are:

1. Maximum edge size

2. Growth rate

3. Jiggle mode

4. Refinement Method

 34

• Solve problem

Figure 4.5 – Solved problem

The solution is a vector of values in points of mesh.

 35

• Plot the solution

Figure 4.6 – Plotted solution

4.3 PDE Toolbox API

PDE Toolbox provides a set of functions available for use. The most significant for us are:

• assempde - Assemble the stiffness matrix and right-hand side of a PDE problem.

It is the basic function of the PDE Toolbox. assempde assembles and solves the

PDE problem by eliminating the Dirichlet boundary conditions from the system of

linear equations.

 Function syntax: u=assempde(b,p,e,t,c,a,f), where

 u – solution vector

 b – Boundary Conditions Matrix

 p – nodes of mesh

 e – edges of mesh

 t – triangles of mesh

 c, a, f – PDE coefficients

 36

• pdegrad - The gradient of a PDE solution

 Syntax: [ux,uy]=pdegrad(p,t,u)

 ux contains
x
u
∂
∂

 uy contains
y
u
∂
∂

4.4 Estimator software

As one of the outcomes of this thesis, the pilot software was developed in order to check

experimentally Error Estimation Technique (see section 3 for details). We named it

“Estimator”.

Estimator is implemented in MATLAB language on top of PDE Toolbox and uses its API.

PDE Toolbox GUI is used to define problem and boundary conditions, then all data is

exported to global namespace of MATLAB environment and accessed by our software.

Estimator introduces user-friendly interface that provides ability to vary parameters of

meshes construction, gradient averaging procedures in estimation calculation and precision

of estimation (see Figure 4.7).

Estimator uses PDE Toolbox API, to build numerical solution. Then, the error of the

solution is estimated and results of estimation a compared to so-called “exact error”. Exact

error is calculated as difference between reference solution – a solution which is built over

a well-refined mesh, and primal solution. The program allows vary sharpness of the

reference solution, however, more precise it is more computational resources it requires.

Problem geometry and boundary conditions are defined and exported from PDE Toolbox

(see Figures 4.8, 4.9, 4.10). But the difference from solution in PDE Toolbox is obligatory

definition of “zone of interest”.

 37

Figure 4.7 – Estimator software in initial state

Figure 4.8 – Geometry definition with zone of interest

 38

The Geometry then must be exported from Draw menu – option “Export Geometry

Description, Set Formula, Labels”.

Figure 4.9 – PDE Toolbox geometry export window

The next step is to switch to Boundary Mode (See figure 4.3) and export Decomposed

Geometry and Boundary Conditions to MATLAB workspace (figure 4.10).

Figure 4.10 - PDE Toolbox decomposed geometry and boundary conditions export

After all exports are done we do not need PDE Toolbox GUI anymore.

4.4.1 f-function definition

The f-function (see 4.3 for details) can be defined as constant with certain user-defined

value over whole area, or as a peak, which has radius and height. Peak has 0-value out of

radius area and follows the equation:

)
)()(

2
(),(

1

2
1

2
1

1 R
yyxx

CosVyxf centercenter −+−
⋅⋅=

π , (4.1)

 39

where

1V - peak height value

1R - radius

centerx1 , - coordinates of peak center centery1

 It is also possible to define two peaks in different points of geometry and set their

parameters independently. Figure 4.11 shows the window, where these parameters are set.

Figure 4.11 – f-function definition and export to workspace

4.4.2 Finding primal solution

We find primal solution using exported geometry and boundary conditions. The parameters

for mesh generation are set by user in appropriate fields. The solution is built using

assempde function from PDE Toolbox API. We pass as a parameter our user-defined f-

 40

function, which can be set as an independent value in each grid point. Figure 4.12

demonstrates primal solution built over our geometry taking into account f-function values.

Figure 4.12 – Primal solution

4.4.3 ϕ -function definition

When primal solution is found, we define ϕ -function, which emphasizes the “zone of

interest”. This function influences the Adjoint Solution construction and Exact Error

computation. Due to simplicity, we assume that zone of interest always rectangular. So we

defined 5 possible types of ϕ -function:

- constant over whole area

- Bilinear function such that ijji Point δϕ =)(, where ijδ is the Kronecker symbol. In

other words we define peak in one of zone corners with descent to zero in all other

corners.

 41

Figure 4.13 - ϕ - function definition dialog window

4.4.4 Reference solution and exact error computation

The mesh for reference solution is built as a multiple refinement of primal mesh. The

number of refinements is set by user, however too many refinements increase

computational load and may be calculated for a long time. All parameters for reference

solution are taken from primal solution.

Under “Exact error” we assume the difference between exact solution and primal solution.

We consider reference solution as exact one. Difference is calculated in two ways:

- Quantity of interest ∫
Ω

− dxuu h)(ϕ

 42

- Local L2-norm ∫
Ω

− dxuu h
2

4.4.5 Adjoint problem

The adjoint problem is similar to Primal Problem. We take the same geometry and set zero

boundary conditions. One important thing is that boundary condition of certain segment in

adjoint problem must be of the same type as primal one.

The parameters for mesh generation can be set by user. For adjoint solution we pass ϕ -

function as a parameter to assempde function.

Figure 4.14 – Adjoint solution

 43

4.4.6 Estimation

The parameters for estimation which user can vary are gradient averaging type and

supermesh refinement level.

There are three types of averaging procedures (see subsection 3.1.6 for details).

Supermesh is a well-refined mesh introduced for facilitation of operation with values,

defined over heterogeneous primal and adjoint meshes. Supermesh is built as a refinement

of primal mesh. Of course it harms the precision, but at this moment there is no mesh

generator in MATLAB, which could combine two meshes and build a mesh as an

intersection with minimal number of triangles. Our experiments show that supermesh

solution is acceptable even if we refine primal mesh 2-3 times.

Solutions and gradient values of primal and adjoint meshes are interpolated to supermesh.

Figure 4.15 demonstrates estimation process.

Figure 4.15 – Estimation results

 44

4.4.7 Mesh adaptivity

During the error estimation process we calculate the contribution of each triangle to

integral error. Triangles with worst values then are marked and can be refined. User can set

threshold value to mark more or less triangles with respect to their error values.

After new primal solution is built, reference solution and exact error should be

recalculated. Then new estimation value can be obtained.

Figure 4.16 – Triangles contribution to integral error

4.4.8 Local L2-norm estimation

There is also an implementation of Local L2 norm estimation via quantities of interest. The

formula which describes the estimation procedure is the following:

IIBEst ⋅= −1 , (4.2)

where

“dot” means the scalar product

 45

I – vector, containing the “Quantity of Interest” values computed with different ϕ -

functions:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

i
i
i
i

I (4.3)

B - 4x4 matrix of following values:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

9183618

1891836

3618918

1836189

abababab

abababab

abababab

abababab

B (4.4)

where a and b are zone of interest side lengths.

Figure 4.17 – L2 norm estimation window

 46

Interface window contains two equivalent parts where L2-norm estimation can be

calculated. These two parts were created for ability to compute and compare L2-norm

estimations from exact error values of quantity of interest and estimated ones.

 47

5 Error estimation web-service wrapping
In this section we will discuss the problems of heterogeneity of service classification

schemes and classification as such. Another issue is common way to formalize service

inputs and outputs so, that it can be discovered and accessed automatically.

5.1 Semantic web

The Semantic Web is an initiative of the World Wide Web Consortium [W3C], with the

goal of extending the current Web to facilitate Web automation, universally accessible

content, and the ‘Web of Trust’. Semantic Web is the vision of having data defined and

linked in a way that it can be used by machines not just for display purposes, but for

automation, integration and reuse of data across various applications. The goal of Semantic

Web development is promotion of existing Web to qualitatively new and higher level,

utilizing machine-processable metadata associated with Web resources. Next generation of

intelligent applications will be capable to make use of such resource descriptions and

perform resource discovery and integration based on its semantics. Semantic Web

approaches to development of global environment on top of Web with interoperable

heterogeneous applications, web services [Ermolayev et al., 2004], data repositories,

humans, etc.

On the technology side, Web-oriented languages and technologies are being developed

(e.g. RDF, RDF-Schema, DAML+OIL, OWL, DAML-S) [RDF], [RDFS], [DAML+OIL],

[OWL], [DAML-S] schema and ontology integration techniques are being examined and

refined. The success of the Semantic Web will depend on a widespread adoption of these

technologies.

Management of resources in Semantic Web is impossible without use of ontologies, which

can be considered as high-level metadata about semantics of Web data and knowledge.

Ontologies are content theories about the sorts of objects, properties of objects, and

relations between objects that are possible in a specified domain of knowledge.

 48

5.2 RDF

The Resource Description Framework [RDF] is a framework for representing information

in the Web. The underlying structure of any expression in RDF is a collection of triples,

each consisting of a subject, a predicate and an object. A set of such triples is called an

RDF graph.

Each triple represents a statement of a relationship between the things denoted by the

nodes that it links.

Figure 5.1 – Basic RDF triple

The direction of the arc is significant: it always points toward the object.

Example RDF in XML syntax:

<?xml version="1.0" encoding="UTF-8" ?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/DC/"

 xmlns:os="http://somesite.org/Schema/">

 <rdf:Description about="http://people.jyu.fi/~senikiti/index.html">

 <dc:Creator rdf:resource="mailto:senikiti@cc.jyu.fi"/>

 <dc:Title> Index of my web site </dc:Title>

 </rdf:Description>

</rdf:RDF>

 49

5.3 OWL

OWL Web Ontology Language [OWL] is intended to be used when the information

contained in documents needs to be processed by applications, as opposed to situations

where the content only needs to be presented to humans. OWL can be used to explicitly

represent the meaning of terms in vocabularies and the relationships between those terms.

This representation of terms and their interrelationships is called ontology. OWL has more

facilities for expressing meaning and semantics than XML, RDF, and RDF-S, and thus

OWL goes beyond these languages in its ability to represent machine interpretable content

on the Web.

In OWL, an ontology is a set of definitions of classes and properties, and constraints on the

way those classes and properties can be employed. OWL is developed on top of RDF and

RDF-schema and includes broad functionality but more strict and strong. All of the

elements/attributes provided by RDF and RDF Schema can be used when creating an

OWL document.

OWL has three sublanguages:

• OWL Lite

• OWL DL (includes OWL Lite)

• OWL Full (includes OWL DL)

Each of these sublanguages is an extension of its simpler predecessor, both in what can be

legally expressed and in what can be validly concluded.

OWL Full can be viewed as an extension of RDF, while OWL Lite and OWL DL can be

viewed as extensions of a restricted view of RDF. Every OWL (Lite, DL, Full) document

is an RDF document, and every RDF document is an OWL Full document, but only some

RDF documents will be a legal OWL Lite or OWL DL document.

Below you can see simple fragment of ontology class definition. Namespaces used show

that OWL uses constructs of RDF and RDFS.

 50

<owl:Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#madeFromGrape"/>

 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

 </owl:Restriction>
 </rdfs:subClassOf>
 ...

</owl:Class>

5.4 GUN concept

Concept of Global Understanding eNvironment [Terziyan, 2003], [GUN] is designated to

join most recent research results, standardization effort, features and benefits of Semantic

Web, Web Services, Peer-to-Peer and Agent technologies in integral resource management

oriented framework.

Basic features of GUN are:

• Semantic Web principles reused for integration of resources and interoperability;

• Proactive, goal-driven, self-maintaining resources;

• Wide spectrum of supported resource types;

• Resource-to-resource communication;

• Mobility of resources.

In GUN, resources are Semantic Web enabled in a sense that they are annotated using

standards of ontology-based representation, in which semantics of separate piece of data

identified by a reference to assigned meaning (a concept from ontology).

In GUN, resources are active participants of the environment (besides the applications that

use them). This assumes adding associated resource-maintenance mechanism – resource-

maintenance agent, which provides goal-oriented capabilities and support for self-

interested, self-maintaining proactive behavior. Due to this, resources inherit agent features

and become capable to have assigned goals. Mechanism of assigning goals and behavioral

models to a resource can be considered as a higher-level development tool for resource

maintenance applications.

 51

Types of resources integrated into GUN are not limited only to digital documents and

database content. Real-world objects can be also represented as resources capable, for

example, to accept and respond to queries, interact with other resources in order to achieve

own goals. Specific adaptation mechanism has to be elaborated for communication

between resource and its agent. Taking into account great variety of possible resource

types, diversity of their formats and ways of accessing them, adaptation of such resources

in resource management environment will be an important challenge for development of

GUN. General-purpose resource agents can be set up to maintain virtually any kind of

supported resources using resource adapters. Development of resource adapters for each

class of resources is required for GUN.

Another adaptation to be performed is an adaptation of resource semantics to environment

where it resides. Initially none of the resources is semantically annotated and available for

semantic-enabled environment. This is due to use of semantic-enabled environment. This

is due to use of real-world resources and other types of resources that have to become

Semantic Web enabled. In GUN adaptation is made by a resource agent, which “wraps”

data retrieved from resource with semantic labels and delivers semantically annotated data

from outside to a resource stripping out semantic markup.

Additionally to original challenges provided by the Semantic Web approach:

- resource discovery based on semantic descriptions;

- semantics-based resources integration;

The GUN concept assumes at least two new challenges:

- resource state monitoring: retrieval, semantic annotation and accumulation of a

resource state data and its initial preprocessing for discovery of special classes of

states (alarms) that require advanced handling and initiate resource-maintenance

mechanisms;

- resource state diagnostics/maintenance: learning models of resource state

classification (using various machine learning techniques), automated testing,

 52

quality evaluation and certification of learned models and application of models for

diagnostics and maintenance decision making.

Essential concern in resource maintenance is processing data about resource state. State of

the resource can be understood in broader meaning than just values of some internal

properties, but also as a relation between internal state (including its history), external

factors and the purpose of resource existence. The analysis of the factors that influence

state of the resource provides view to characteristics of balance between internals and

externals of the resource, also meant as resource condition. The open standard for

representation of states and conditions of complex industrial objects and processes is

required for efficient resource diagnostics and maintenance by heterogeneous applications.

In the context of resource maintenance, the challenge is to create Resource State/Condition

Description Framework (RSCDF) [SmartResource, 2004], [Kaykova et. al., 2004], as an

extension to RDF, which introduces upper-ontology for describing maintenance-oriented

characteristics of resources: states and correspondent conditions, dynamics of state changes

that happen, target condition of the resources and historical data about previous states.

Resources (e.g. devices) are assumed to have their own state presented as RSCDF

descriptions. These descriptions are used by external applications (e.g. remote diagnostics)

that support RSCDF and are able to process data presented in such format. Introduction of

RSCDF allows solving problems of interoperability and resource heterogeneity (the same

basic concepts will be used for state description of any kind of resources). Design of the

RSCDF will follow the ontology engineering principles in the scope of Resource

Description Framework developed by W3C Semantic Web Activity.

The essential component of GUN paradigm is generic resource access mechanism

(Semantic Adapter) [SmartResource, 2004], [Kaykova et. al., 2004]. It contains following

model components:

- Semantic Adapter, generic software component for connecting resources

 53

- Device-Data Source, an object that is either device accessed directly via specific

hardware/software interface or another kind of device state-data source: database or

emulated (virtual) device.

- Resource Browser, a software that provides access to resources with semantic

adapter via semantic interface; browser has user interface (UI) and can be used as

part of semantic adapter to Human;

- Human, a person involved into activities performed in the system

- Service Component, a standalone software component (executable, program code,

dynamic library) or web service used for performing some servicing actions.

5.5 Generic wrapping mechanism

Three main technologies provide a basis for Web-Service access, description and

discovery, they are respectively SOAP, WSDL and UDDI. However, approach based only

on these technologies lacks “common vocabulary” for description of different types of

service input and output parameters. The problem lies not only in specification of

variable/parameter type (e.g. String, int, double in Java notation) but in more complete

explanation of parameter meaning. This kind of full description is possible within terms of

Ontology and already standardized language for it – Ontology Web Language (OWL).

Furthermore usage of Ontology does not provide common understanding because each

service vendor can develop his/her own ontology and consider it as true one. That is why

we need some common environment where it would be easy to establish connections

between different concept hierarchies and provide a certain structure for components

presentation. This kind of structure proposed by Industrial Ontologies Group [IOG, 2004]

is GUN – Global Understanding Environment [Terziyan, 2003].

At present step it is hard to provide absolutely new basement for GUN, so we will try to

map it to already existent technologies. The vision we try to provide here does not pretend

to cover all the issues the GUN concept declares, but it allows integrate already existent

approaches and services, and makes them consistent to GUN paradigm.

 54

First of all let us set roles for participating technologies:

Technology Function Role in GUN-compliant environment

SOAP Carrier protocol Used as a low-level protocol for messages exchange

WSDL Service Description Describing services as a set of endpoints that

exchange messages and how service should be

accessed using terms of common ontology

UDDI Registry for

Resource

Discovery

Used as a registry for resources and stores upper-

ontology, which provides taxonomy of ontologies for

different application areas and meta-ontology for their

mapping

OWL Ontology

Description

Used as common language for Ontology Definition

RSCDF Resource

Description

Extended resource state/condition description in terms

of common ontology

Table 5.1 – Roles of technologies in GUN environment

Here we should clarify the difference between WSDL and RSCDF descriptions. WSDL is

good for defining messaging and functionality, while RSCDF allows define parameters of

the resource. WSDL service operation may refer to RSCDF type of parameters in input and

output messages.

 55

Figure 5.2 – Schema of components relations

5.6 Error estimation wrapping

First of all we have to define service component and define its input and output parameters.

The main function in our software is estimation function, which receives as input two

solutions – primal and adjoint. The output of the function is estimated error value. As far as

adjoint solution belongs to estimation technique, we will pass instead geometry description

and boundary conditions of the primal solution. So function input might look like:

err=estimate(p,e,t,u,g,b)

Where

p - number of mesh points

Domain
Ontologies

(OWL)

Service

Component

Semantic Adapter 1

Agents

RSCDF

UDDI Registry

Services
Discovery

&

(Upper Ontology)

RSCDF

(Proactivity)

Semantic Adapter

WSDL

 56

e - number of edges

t - number of triangles

u - FEM-solution

g – decomposed geometry matrix

b – boundary conditions matrix

err – estimated error value

To define such a function inputs and outputs we need at least following ontologies:

- service ontology(describes in more general what type of service this service

belongs to)

- mathematical ontology(what type and class of equations are solved)

- parameters ontology(specify parameter types and format)

The table below shows how concrete ontologies, belong to resource descriptions in terms

of WSDL and RSCDF languages.

UDDI upper ontology (references)

Service Ontology Mathematical Ontology Parameters Ontology

WSDL RSCDF

Table 5.2 – Ontology-to-description correspondence

For ontological modeling we will refer to American Mathematical Society [AMS]

Mathematical Subject Classification [MSC]. However, this classification is too large, so

we will take only a part to describe our resource. Below is picture, describing the hierarchy

in Protégé [Protégé], leading to type of problem, being estimated by our Estimator. See

Figure 5.3.

 57

Figure 5.3 – Mathematical subject classification by AMS

This classification can be used for unique identification of mathematical area, which

service belongs to. So we can refer to it as to Mathematical Ontology.

It is more difficult question for classification of parameters, because parameters may be

presented in different ways. For example, MATLAB PDE Toolbox for problem solving

uses certain format of matrices, where order of values is essentially important. Here we can

propose a solution, based on general parameter description approach, or instead, refer to

parameters structure of certain software producer. However it is still open research

question [SmartResource, 2004].

 58

Services Ontology must describe the service from service properties point of view.

Whether this service is for educational purposes or not, is it commercial, what kind of

Quality of Service it provides. These topics may be divided into a set of more specific

ontologies, but they should be any way highly expressive and strict, like MSC of AMS.

In our vision, only ontological unambiguity can make web globally understandable.

 59

CONCLUSIONS
Web-integration is almost impossible today without ontology usage. Companies, in order

to establish business interaction, map their data structures to each other. In this way they

actually establish mapping between their ontologies(e.g. models, that describe some

relations between concepts). A lot of work is already done on the way to simplification of

business interaction. First, it was XML language, which allowed represent data in readable

format for everybody, then basing on XML syntax a wide variety of languages and

protocols appeared. RDF is W3C standard and allows describe any resource but is too

expressive for automated knowledge processing. OWL is a standard for defining

ontologies. At the same time a number of technologies appeared as a need for today’s e-

business. Among them are SOAP, WSDL, UDDI, ebXML. These technologies established

a generic protocol for service discovery, access and description, however they lack

common basis for defining semantics. This basis can be implemented in GUN paradigm,

where all participants of interaction are considered as resources and have common

representation through generic mechanism called “Semantic Adapter”.

The hot and open research problem is – how to provide a common vocabulary for all

resources of environment. In this paper we discussed one possible solution – usage of

already existing UDDI platform for ontology sharing. New services being registered in

UDDI can be checked for validity to ontology they refer.

The RSCDF descriptions added to each resource through common ontology terms allow

integrate the resources to common environment, where resources can be proactive. The

proactivity is based on agent approach.

We implemented new error estimation technique and tested it over wide variety of

domains. The idea to position it as a resource came from GUN paradigm and idea of

proactive resources. This kind of service with unique algorithm can be an independent

business entity, which can propose its facilities in different domains (e.g. education,

industry, research). Such an entity can be easily reused for collaborative task solving in

clusters of agents, thus providing a new value to services integration.

 60

References
[AMS] American Mathematical Society web-site, http://www.ams.org

[Babuška, Strouboulis, 2001] I. Babuška, T. Strouboulis. The Finite Element Method and

its Reliability, Oxford University Press Inc., New York, 2001.

[Brandts, Křížek, 2003] J. Brandts, M. Křížek. Gradient superconvergence on uniform

simplicial partitions of polytopes. IMA J. Numer. Anal., 23, 489–505, 2003.

[DAML+OIL] DAML+OIL language web page, http://www.daml.org/2001/03/daml+oil-

index.html

[DAML-S] DAML-S 0.7 Draft Release, http://www.daml.org/services/daml-s/0.7/

[Ermolayev et al., 2004] Ermolayev V., Keberle N., Plaksin S., Kononenko O., Terziyan

V., <http://www.cs.jyu.fi/ai/papers/IJWSR-2004.pdf>Towards a Framework for Agent-

Enabled Semantic Web Service Composition, International Journal of Web Service

Research, Idea Group, ISSN: 1545-7362, Vol. 1, No. 3, 2004, pp. 63-87.

[GUN] Global Understanding Environment concept, http://www.cs.jyu.fi/ai/papers

/HCISWWA-2003.pdf

[Hlaváček, Křížek, 1987] I. Hlaváček, M. Křížek. On a superconvergent finite element

scheme for elliptic systems. I. Dirichlet boundary conditions. Apl. Mat. 32, 131–154, 1987.

[IBM WSCA] IBM Web Services Conceptual Architecture document, http://www-

306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[IOG, 2004] Official Web-Site of Industrial Ontologies Group, http://www.cs.jyu.fi/ai

/OntoGroup .

[Kaykova et. al., 2004] Kaikova H., Khriyenko O., Kononenko O., Terziyan V., Zharko A.,

Proactive Self-Maintained Resources in Semantic Web, Eastern-European Journal of

Enterprise Technologies, Vol. 2, No. 1, 2004, ISSN: 1729-3774, Kharkov, Ukraine, pp. 37-

49

 61

http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/2001/03/daml+oil-index.html
http://www.daml.org/services/daml-s/0.7/
http://www.cs.jyu.fi/ai/papers/IJWSR-2004.pdf
http://www.cs.jyu.fi/ai/papers /HCISWWA-2003.pdf
http://www.cs.jyu.fi/ai/papers /HCISWWA-2003.pdf
http://www.cs.jyu.fi/ai /OntoGroup
http://www.cs.jyu.fi/ai /OntoGroup

 [Korotov et al., 2003a] S. Korotov, P. Neittaanmäki, S. Repin. A posteriori error

estimation of goal-oriented quantities by the superconvergence patch recovery. J. Numer.

Math. 11, 33–59, 2003.

[Korotov, et al., 2003b] S. Korotov, P. Neittaanmäki, S. Repin. A posteriori error

estimation in terms of linear functionals for boundary value problems of elliptic type, in

Proc. of the Fifth European Conf. on Numerical Mathematics and Advanced Applications

(ENUMATH-2003), Prague, Czech Republic (eds. M. Feistauer et al.), 1–8 (to appear)

[Korotov et al., 2004] Sergey Korotov, Pekka Neittanmäki, and Sergey Repin A posteriori

Error Estimation of “Quantities of interest” for the elliptic type boundary-value problems,

in Proc. of the European Congress on Computational Methods in Applied Sciences and

Engineering (ECCOMAS-2004), Jyväskylä, Finland (eds. P. Neittaanmäki et al.), 1–16,

2004.

[Korotov, Turchyn, 2004] S. Korotov, P. Turchyn. A posteriori error estimation of

“quantities of interest” on tetrahedral meshes, in Proc. of the European Congress on

Computational Methods in Applied Sciences and Engineering (ECCOMAS-2004),

Jyväskylä, Finland (eds. P. Neittaanmäki et al.), 1–20, 2004.

[Křížek, Neittaanmäki, 1984] M. Křížek, P. Neittaanmäki. Superconvergence

phenomenon in the finite element method arising from averaging gradients. Numer. Math.

45, 105–116, 1984.

[MATLAB] MATLAB website, http://www.mathworks.com/

[MSC] Mathematical Subject Classification document, http://www.ams.org/msnhtml

/classification.pdf

[OWL] OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/

[PDE Tool] PDE Toolbox site, http://www.comsol.se/products/pde/

[Protégé] Protégé ontology editor site, http://protege.stanford.edu/

 62

http://www.mathworks.com/
http://www.ams.org/msnhtml
http://www.comsol.se/products/pde/

[RDF] Resource Description Framework specification site, http://www.w3.org/RDF/

[RSCDF] RDF Vocabulary Description Language, http://www.w3.org/TR/2004/REC-rdf-

schema-20040210/

[SEMWEB] Semantic Web activity site, http://www.w3.org/2001/sw/

[SmartResource, 2004] Proactive Self-Maintained Resources in Semantic Web,

Presentation of SmartResource Tekes Project, http://www.cs.jyu.fi/ai/OntoGroup

/SmartResource.ppt

[SOAP] Simple Object Access Protocol W3C recommendation, http://www.w3.org/

TR/2003/REC-soap12-part0-20030624/

[Terziyan, 2003] Terziyan V., <http://www.cs.jyu.fi/ai/papers/HCISWWA-2003.pdf>

Semantic Web Services for Smart Devices in a "Global Understanding Environment", In:

R. Meersman and Z. Tari (eds.), On the Move to Meaningful Internet Systems 2003:

<http://www-staff.it.uts.edu.au/~wgardner/HCI-SWWA.html> OTM 2003 Workshops,

Lecture Notes in Computer Science, Vol. 2889, Springer-Verlag, 2003, pp.279-291.

[UDDI] Universal Description, Discovery and Integration standard site,

http://www.uddi.org/specification.html

 [Verfürth, 1996] R. Verfürth. A review of a posteriori error estimation and adaptive

mesh-refinement techniques, Wiley-Teubner, 1996.

[WSArchitect] Judith M. Myerson, “Web Service Architectures”, http://www.webservices

architect.com/content/articles/webservicesarchitectures.pdf

[WSDL] Web Services Description Language submission, http://www.w3.org/TR/wsdl

[WSFL] Web Services Flow Language specification by IBM, http://www-

306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[W3C] World Wide Web Consortium site, http://www.w3.org/

 63

http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.cs.jyu.fi/ai/OntoGroup /SmartResource.ppt
http://www.cs.jyu.fi/ai/OntoGroup /SmartResource.ppt
http://www.w3.org/
http://www.cs.jyu.fi/ai/papers/HCISWWA-2003.pdf
http://www-staff.it.uts.edu.au/~wgardner/HCI-SWWA.html
http://www.uddi.org/
http://www.webservices architect.com/
http://www.webservices architect.com/
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[Zienkeiewicz, Zhu, 1987] O. C. Zienkeiewicz, J. Z. Zhu. A simple error estimator and

adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg.

24, 337–357, 1987.

 64

	Introduction
	Background
	Related work
	Research problem statement
	Structure of the thesis

	Web-service architectures
	WebServices.Org architecture
	Service negotiation
	Workflow, discovery, registries
	Service description language
	Messaging
	Transport protocols
	Business issues

	The Stencil group
	IBM stack
	W3C stack
	Wire stack
	Description stack
	Discovery stack

	SOAP
	WSDL
	UDDI
	tModels
	Business service
	Authoring UDDI service descriptions
	Registering and referencing WSDL definitions in UDDI

	Error estimation technique
	Diffusion problem
	Mathematical model
	Finite element solution
	Problem-oriented criterion
	Technology for error estimation in terms of problem-oriented
	Auxiliary problem and its finite element solution
	Gradient averaging procedures
	The estimator
	Error estimation algorithm

	Software implementation
	Software platform selection
	PDE Toolbox
	PDE Toolbox API
	Estimator software
	f-function definition
	Finding primal solution
	-function definition
	Reference solution and exact error computation
	Adjoint problem
	Estimation
	Mesh adaptivity
	Local L2-norm estimation

	Error estimation web-service wrapping
	Semantic web
	RDF
	OWL
	GUN concept
	Generic wrapping mechanism
	Error estimation wrapping

	CONCLUSIONS
	References

