
Arbiter Meta-Learning
with Dynamic Selection of Classifiers

and its Experimental Investigation

Alexey Tsymbal1, Seppo Puuronen1, Vagan Terziyan2

1 University of Jyväskylä, P.O.Box 35, FIN-40351 Jyväskylä, Finland
{alexey, sepi}@jytko.jyu.fi

2 Kharkov State Technical University of Radioelectronics, 14 Lenin av.,
310166 Kharkov, Ukraine

vagan@kture.cit-ua.net

Abstract. In data mining, the selection of an appropriate classifier to estimate
the value of an unknown attribute for a new instance has an essential impact to
the quality of the classification result. Recently promising approaches using
parallel and distributed computing have been presented. In this paper, we con-
sider an approach that uses classifiers trained on a number of data subsets in
parallel as in the arbiter meta-learning technique. We suggest that information
is collected during the learning phase about the performance of the included
base classifiers and arbiters and that this information is used during the appli-
cation phase to select the best classifier dynamically. We evaluate our tech-
nique and compare it with the simple arbiter meta-learning using selected data
sets from the UCI machine learning repository. The comparison results show
that our dynamic meta-learning technique outperforms the arbiter meta-
learning significantly in some cases but further profound analysis is needed to
draw general conclusions.

1 Introduction

Currently electronic data repositories are growing quickly and contain huge amount
of data from commercial, scientific, and other domain areas. The capabilities for
collecting and storing all kinds of data totally exceed the development in abilities to
analyze, summarize, and extract knowledge from this data. Data mining is the proc-
ess of finding previously unknown and potentially interesting patterns and relations
in large databases [5].

A typical data mining task is to predict an unknown value of some attribute of a
new instance when the values of the other attributes of the new instance are known
and a collection of instances with known values of all the attributes is given. The
collection of the instances with the known attribute values is treated as a training set
for a learning algorithm that derives a logical expression, a concept description, or a



classifier, that is then used to predict the unknown value of the attribute for the new
instance [2].

Recently, several parallel and distributed computing approaches have been pro-
posed. The main aim behind these approaches is to search techniques that are suit-
able for huge amounts of data that cannot efficiently be handled by main-memory-
based learning algorithms. It has been shown in [2-4] that parallel and distributed
processing provides the best hope of dealing with large amounts of data.

In this paper, we consider an approach that uses classifiers learned on a number
of data subsets in parallel and that selects for each new instance the best classifier
dynamically. This approach reduces and limits the amount of data inspected by
every single learning process and provides dynamic classifier selection, increasing
the classification speed without significant losses in the classification accuracy or
even with an improvement of the accuracy. The approach is based on the arbiter
meta-learning technique [2]. We discuss this technique in chapter 2. In chapter 3, we
consider our technique for the dynamic selection of classifiers. In chapter 4, we
propose a combination of our dynamic classifier selection technique with the arbiter
meta-learning. In chapter 5, we present results of our experiments with the ap-
proach, and chapter 6 concludes with a brief summary and further research topics.

2 Arbiter Meta-Learning Technique

In [2-4] the arbiter meta-learning technique was proposed for the parallel integration
of multiple classifiers. Meta-learning encompasses the use of learning algorithms to
learn how to integrate results from multiple learning systems. The approach includes
data reduction as a solution to the scaling problem. The whole data set is partitioned
into smaller subsets, and learning algorithms are applied on these subsets. This is
followed by a part of the learning phase, which combines the learned results. It has
been proposed to speed up the process by running the learning programs in parallel
using multiple processors. It was shown in experiments that the accuracy would not
suffer in such a scheme, as one may presume, in comparison with learning from the
entire data set [2].

This meta-learning technique is independent of the underlying learning algo-
rithms employed. Furthermore, it does not require a platform that is especially con-
structed for parallel processing. Thus, the meta-learning approach is intended to be
scalable as well as portable and extensible [2]. In this chapter we discuss both the
one-level and multi-level arbiter meta-learning briefly.

2.1 One-Level Arbiter Meta-Learning

An arbiter is a classifier that is trained to resolve disagreements between the base
classifiers. An arbiter is generated using the same learning algorithm that is used to
train the base classifiers. In the arbiter technique, the training set for the arbiter is a
subset of the union of the training sets for the base classifiers for which the arbiter is



formed. The arbiter training instances are selected to form a particular distribution
of the union set [2]. One scheme to select the instances to the arbiter training set, i.e.
the selection rule, is to pick up the instances for which none of the classes gathers a
majority classification [4]. We shall use this selection rule in our experiments in the
form presented in [2]. Thus, the predictions of the learned base classifiers determine
the subset of the training set that constitutes the arbiter’s training set in the learning
phase. When a new instance is classified in the application phase, first the base
classifiers and the arbiter generate their predictions. Then an arbitration rule gener-
ates the final prediction using the predictions made by the base classifiers and the
arbiter. The generation of an arbiter has much in common with the boosting tech-
nique [12] that also filters training instances to train the base classifiers. The ap-
proach can be considered as a particular case of the stacked generalization frame-
work [18] that integrates the results of the base classifiers by a trained meta-level
classifier.

One arbitration rule that is used to derive the final classification is the following:
return the prediction with the majority of occurrences given by the base classifiers
and the arbiter. It was used in experiments in [2], and we shall also use it in our
experiments in this paper. Preference will be given to the arbiter’s choice in the case
of a tie. This arbitration rule is based on the most widely used voting principle.

2.2 Arbiter Tree

The one-level arbiter meta-learning is not always able to achieve the same level of
accuracy as a global classifier. In [2-4] a hierarchical (multi-level) meta-learning
method called arbiter tree was considered.

An arbiter tree is a hierarchical structure composed of arbiters that are computed
in a bottom-up, binary-tree way and it can be generalized to arbiter trees of higher
orders. Let there be k base level classifiers. The lowest level arbiters are initially
trained using the outputs of a pair of the base classifiers. Thus k/2 arbiters are gener-
ated at the lowest level. At the second level, arbiters are trained using the outputs of
the lowest level arbiters, and recursively at the higher levels of arbiters. For k sub-
sets and k base classifiers there are log2(k) levels of arbiters generated [2].

When a new instance is classified by the arbiter tree in the application phase,
predictions flow from the leaves to the root of the tree. First, each of the leaf classi-
fiers, i.e. base classifiers, produces its classification of the new instance. From a pair
of predictions and the classification of the parent arbiter, a classification is produced
as a result of the arbitration rule. This process is applied at each higher level until a
final classification is produced at the root of the arbiter tree.

It is noted in [2] that in a distributed environment the union sets need not be
formed at one processing site. Rather, one can classify each subset by transmitting
each learned classifier to each site, which is used to scan the local data set labeled
with the predictions of the classifier. Each classifier is a computational object that is
far smaller in size than the training set from which it is derived. To reduce the com-
plexity of learning the arbiter trees, the size of the training sets for the arbiters can



be purposely restricted to be no larger than the training sets used to compute the
base classifiers. Thus, the parallel processing time at each level of the arbiter tree is
approximately equal throughout the tree. In several experiments in [2], it was shown
that the classification accuracy does not suffer too much from such a restriction.
Without the restriction the size of the training set for an arbiter would be compara-
ble to the size of the entire training set at the root level. Experiments in [2] showed
in some cases an accuracy improvement of this multi-level arbiter tree approach
over the one-level techniques, which generally could not maintain the accuracy of
the global classifier trained on the whole data set.

3 Dynamic Selection of Classifiers

In [9, 10] we proposed a technique for the dynamic integration of classifiers. In
[14,15,17] we considered some medical applications of this technique. This tech-
nique is based on the assumption that each base classifier gives the best prediction
inside certain subdomains of the whole application domain, i.e. inside its compe-
tence areas. The main problem in the technique is to estimate the competence areas
of the base classifiers in a way that helps the dynamic selection of classifiers for
each new instance. Our goal is to use each base classifier just in the subdomain
where it is the most reliable one and thus to achieve overall results that can be con-
siderably better than those achieved using the best individual classifier alone. In this
chapter, we describe our dynamic selection technique briefly.

The proposed meta-classification framework consists of two levels. The first level
contains base classifiers, while the second level contains a combining algorithm that
predicts the error for each of the base classifiers. In the training phase we derive the
information about the performance of the base classifiers calculating for each train-
ing instance the classification errors. These errors can be binary (i.e. a classifier
gives a correct/incorrect classification) or they can be numerical values representing
corresponding misclassification costs. This information about the base classifier
performance is then stacked (as in stacked generalization [18]) and is later used
together with the initial training set as meta-level knowledge to estimate the classi-
fication error for a new instance.

The information about the base classifier performance is derived using the cross-
validation technique [1,7] for learned base classifiers and directly calculated for
heuristic non-learned classifiers.

In [9,10] we considered the weighted nearest neighbor classification (WNN) as
the meta-level classifier. The WNN simplifies the training phase of the composite
classifier because with the WNN there is no need to train referees, only the base
classifier performance matrix is needed. In the application phase, the nearest neigh-
bors of a new instance are found out among the training instances and the perform-
ances of the corresponding base classifiers are used to predict the performance of
each base classifier. In this calculation, we sum up the corresponding performance
values of each classifier using weights that depend on the distances between a new
instance and its nearest neighbors in the training set.



The use of WNN as the meta-level classifier is based on the assumption that each
classifier has certain subdomains in the space of instance attributes, where it is more
reliable than the other classifiers. This assumption is supported by the experiences
that base classifiers usually work well not only in certain points of the domain
space, but in certain subareas of the domain space. The performance of a classifier
usually changes gradually from one instance to another near-by instance. Thus if a
classifier does not work well with the instances near the new instance, then it is
quite probable that it will not work well with the new instance.

4 Application of Dynamic Integration of Classifiers with Arbiter
Meta-Learning

In chapter 2, we discussed the arbiter meta-learning technique, which uses a kind of
voting, arbitration rule, to integrate multiple classifiers both in the one-level ap-
proach and in the arbiter tree approach. The voting technique, however, has several
shortcomings (see for example [13]). From our point of view the most important
shortcoming is that the voting technique is unable to take into account the local
expertise. When a new instance is difficult to classify, then the average classifier
will give a wrong prediction, and the majority vote will more probably result in a
wrong prediction. In that case, one can advise the use of another arbitration rule as
in [4]: if the majority of the base classifiers disagrees with the arbiter, then use the
arbiter’s prediction. However, the arbiter can itself make mistakes in a situation
when the majority of the base classifiers does not make them.

In order to improve the meta-learning, we propose the use of our dynamic classi-
fier selection (chapter 3) as the arbitration rule. This helps the selection of the base
classifiers and arbiters so that they will be used in the subarea of their expertise. In
this chapter, we consider both one-level and multi-level arbiter meta-learning com-
bined with our dynamic classifier selection, and a general algorithm for the arbiter
meta-learning technique with the dynamic classifier selection.

4.1 One-Level Arbiter Meta-Learning with Dynamic Classifier Selection

We suggest that the training phase remains bottom-up and the base classifiers are
trained first. Then, an arbiter is formed using the same procedure (selection rule), as
in the simple arbiter meta-learning [4]. Next, the meta-level information about the
performances of the base classifiers and the arbiter is derived comparing their pre-
dictions with the actual classifications included in the training set.

Our application phase is top-down. First, the performances of the base classifiers
and the arbiter are estimated for a new instance to be classified. Then, a base classi-
fier or the arbiter with the best estimated performance is launched to make the final
classification. Thus, during the application phase only one classifier is launched (not
all as in the simple arbiter meta-learning).



4.2 Arbiter Tree with Dynamic Classifier Selection

The first level arbiters are initially trained using the outputs of the pairs of the base
classifiers, and, recursively, the arbiters at the higher levels are trained using the
outputs of the subtrees. An example of an arbiter tree that uses the dynamic selec-
tion of classifiers is shown in Figure 1.

The training phase is similar to the simple arbiter tree (chapter 2) with added
collection of the classification error information. Let there be initially four training
subsets T1 - T4. First, the four classifiers C1 - C4 are generated in parallel for each T1 -
T4. Then the union of T1 and T2 is classified by C1 and C2, and these predictions are
used to form the training set for the arbiter A12 using the selection rule. Next, the
arbiter is trained using the same learning algorithm, and it is used to classify the
instances in the union of T1 and T2. Based on the classification results of C1, C2, and
A12 the error information of these classifiers on the union of the training sets T1 and
T2 is collected for dynamic selection DS12. The subtree rooted with DS34 is trained
using the same procedure as for DS12 using the union of T3 and T4. After that the
union of T1, T2, T3, and T4 is classified by the subtrees rooted with DS12 and DS34. The
root arbiter A12,34 is formed and the dynamic selection classifier DS12,34 is generated,
completing the arbiter tree.

C1 C2 C3 C4

A12 A34

DS12

DS12,34

A12,34

DS34

A - Arbiter

C - Classifier

DS - Dynamic Selection

T - Training Set

T1 T2 T3 T4

T12 T34

T12,34

Fig. 1. A simple arbiter tree with the dynamic selection of classifiers

The application phase, however, is completely different from the application
phase of the simple arbiter tree technique. In our approach, this phase is a top-down
procedure using the attribute values of a new instance as input. First, for a new in-
stance the topmost dynamic selection classifier DS12,34 estimates the performances of
the subtrees DS12, DS34, and the arbiter A12,34. The subtree or the arbiter with the best
performance estimate is selected. If the root arbiter A12,34 is selected, it is used to
make the final classification. Otherwise, the dynamic selection classifier of the se-
lected subtree (either DS12 or DS34) is used to estimate the performances of the lower
level classifiers and the arbiter. One of the classifiers or the arbiter with the best
performance is selected to make the final classification. Thus, during the application
phase, at worst as many classifiers are launched as there are levels in the tree. In the
simple arbiter tree approach all the classifiers and arbiters must be launched during
this phase.



_______________________________________________________

Node current node at the tree being learned
fs the first subset for the current node
nos number of subsets for the current node
arity the arity of the tree being learned
Subtree1...Subtreearity subtrees or base classifiers
  of the current node
TSi i-th training subset for meta-learning
Ci base classifier trained on the i-th subset
Arbiter arbiter classifier at the current node
Instance a new instance to be classified
Best_Classifier a subtree, classifier or arbiter
  selected according to the local performance info

Procedure Dynamic_Arbiter_Meta-Learning(Node, fs, nos)

Begin

   If nos=arity
   then
      {train base classifiers}
      Subtree1=Train(Cfs);
               . . .
      Subtreearity=Train(Cfs+arity-1);
   else
      {develop the tree further}
      Dynamic_Arbiter_Meta-Learning(Subtree1,
      fs, nos/arity);
               . . .
      Dynamic_Arbiter_Meta-Learning(Subtreearity,
      fs+(arity-1)*(nos/arity), nos/arity);
   endif
   {Derive the performance info for
   Subtree1...Subtreearity on TSfs,...,TSfs+nos-1}
   Evaluate(Subtree1, fs, nos)
               . . .
   Evaluate(Subtreearity, fs, nos)
   {Generate a set for the arbiter using
   a selection rule}
   Selection_Rule(fs, nos);
   {train the arbiter}
   Train(Arbiter);
   {Derive the performance info for Arbiter
   on TSfs,...,TSfs+nos-1}
   Evaluate(Arbiter, fs, nos);

End



Function Dynamic_Arbiter_Tree_Application(Node,
   Instance) returns class of Instance
Begin

   If Node is a base classifier or arbiter
   then return Node.Classify(Instance)
   else
      {Select the best classifier using the performance
      info in near-by instances to Instance}
      Best_Classifier=Select_Classifier(Subtree1, ...,
      Subtreearity, Arbiter)
      return Dynamic_Arbiter_Tree_Application
             (Best_Classifier, Instance);
   endif

End
_______________________________________________________

Fig. 2. A general algorithm of the arbiter meta-learning with the dynamic classifier selection

Two recursive algorithms for the learning and application phases of the arbiter
meta-learning with the dynamic classifier selection are presented in Figure 2. The
procedure Dynamic_Arbiter_Meta-Learning implements the learning phase of the
technique, while the Dynamic_Arbiter_Tree_Application implements the application
phase. The goal of the learning phase is to build an arbiter tree recursively and to
collect the performance information at each node. The goal of the application phase
is to use the performance information at each node to select an appropriate classifier
for the final classification. These procedures can be applied for the generation and
use of trees with different arity and different number of subsets. For example, to
train a binary arbiter tree on 32 subsets it is necessary to set arity=2 and to execute
Dynamic_Arbiter_Meta-Learning(Root, 1, 32), where Root denotes the root node of
the arbiter tree being learned. When an Instance is classified, Dy-
namic_Arbiter_Tree_Application(Root, Instance) should be executed.

5 Experimental Evaluation

In this chapter, we present an experimental evaluation of the arbiter meta-learning
with the dynamic classifier selection. We compare it with the simple arbiter meta-
learning. First we present the experimental setting and then describe the data sets
and the results of our experiments.

In our experiments, we use the common technique used in evaluating the accu-
racy of a learning algorithm, the cross-validation technique [1,7]. In the cross-
validation technique, all the instances of the training set are divided randomly into v
approximately equal sized partitions that are usually called folds. Each classifier
being evaluated is then trained on v-1 folds v times and tested v times on the fold



being held-out. We use 10-fold cross-validation, and the averages of 10-fold cross-
validation runs are presented in Figure 3. We measure statistical significance of the
difference of averages by using the paired differences t-test based on train/test cross-
validation splits.

In our experiments, we use the C4.5 inductive learning algorithm taken from the
machine learning library in C++ (MLC++)[6]. The experiments are implemented
within the MLC++ framework. In all the experiments, we use only the Euclidean
distance metrics (the standard squared-distance metrics) for finding the nearest
neighbors.  We vary the number of equi-sized subsets of the training data from 2 to
32 ensuring that the subsets are disjoint with the same distribution of instances of
each class. Stratified sampling was made so that each training subset represents a
good but smaller model of the entire training set. No pairing strategy for the tree
generation and no restriction on the size of the data set for training an arbiter is
used, because the main goal of the experiments is to compare our technique with the
simple arbiter meta-learning. The experiments with one-level classification trees (n-
ary trees on n training subsets) and with binary multi-level classification trees are
conducted on four datasets from the UCI machine learning repository: three
MONK’s problem datasets donated by Sebastian Thrun and the Tic-Tac-Toe End-
game dataset donated by David W. Aha [8].

The MONK’s problems are a collection of three artificial binary classification
problems over the same six-attribute discrete domain (a1,…,a6). All MONK’s da-
tasets contain 432 instances without missing values, representing the full truth tables
in the space of the attributes. The ”true” concepts MONK-1, MONK-2, and MONK-
3 underlying each MONK’s problem are given by: (a1=a2)or(a5=1) for MONK-1,
exactly two of {a1=1, a2=1, a3=1, a4=1, a5=1, a6=1} for MONK-2, and (a5=3 and
a4=1)or(a5<>4 and a2<>3) for MONK-3. MONK-3 has 5% additional noise (mis-
classifications) in the training set. The MONK’s problems were the basis of the first
international comparison of learning algorithms [16].

The Tic-Tac-Toe Endgame dataset encodes the complete set of possible board
configurations at the end of tic-tac-toe games, where ”x” is assumed to have played
first. The target concept is ”win for x” (i.e., true when ”x” has one of 8 possible ways
to create a ”three-in-a-row”). The dataset contains 958 instances without missing
values, each with 9 attributes, corresponding to tic-tac-toe squares and taking on 1 of
3 possible values: ”x”, ”o”, and ”empty”.

The experimental results are presented in Figure 3. The four meta-learning tech-
niques described above are analyzed: the one-level simple arbiter meta-learning
(Arbiter), the one-level arbiter meta-learning with the dynamic classifier selection
(Dynamic), the simple binary arbiter tree (Arbiter Tree), and the binary arbiter tree
with the dynamic classifier selection (Dynamic Tree). The plotted accuracies in the
left charts are the averages of 10-fold cross-validation runs. The accuracy of the
global classifier is plotted as “the number of subsets=1” that means that the learning
algorithm was applied to the whole training set to produce the baseline accuracy
results for comparisons. The charts on the right present the learning curves for the
datasets. Each point of a learning curve is an average over 70 runs with random
training subsets of appropriate size.



Fig. 3. Experimental results on the 4 data sets from the UCI machine learning repository

MONK-1 Results

75

80

85

90

95

100

1 2 4 8 16 32
Number of  subsets

A
cc

ur
ac

y 
(%

)

Arbiter
Dynamic
Arbiter Tree
Dynamic Tree

MONK-1 Learning Curve

60

70

80

90

100

1 1/2 1/4 1/8 1/16 1/32
Training set share

A
cc

ur
ac

y 
(%

)

MONK-2 Results

49

53

57

61

65

1 2 4 8 16 32
Number of  subsets

A
cc

ur
ac

y 
(%

)

Arbiter
Dynamic
Arbiter Tree
Dynamic Tree

MONK-2 Learning Curve

51

52

53

54

55

56

57

1 1/2 1/4 1/8 1/16 1/32
Training set share

A
cc

ur
ac

y 
(%

)

MONK-3 Results

96

97

98

99

100

1 2 4 8 16 32
Number of  subsets

A
cc

ur
ac

y 
(%

)

Arbiter
Dynamic
Arbiter Tree
Dynamic Tree

MONK-3 Learning Curve

70

76

82

88

94

100

1 1/2 1/4 1/8 1/16 1/32
Training set share

A
cc

ur
ac

y 
(%

)

Tic-Tac-Toe Results

75

80

85

90

95

1 2 4 8 16 32
Number of  subsets

A
cc

ur
ac

y 
(%

)

Arbiter
Dynamic
Arbiter Tree
Dynamic Tree

Tic-Tac-Toe Learning Curve

62

68

74

80

86

1 1/2 1/4 1/8 1/16 1/32
Training set share

A
cc

ur
ac

y 
(%

)



Our experimental results support the findings and conclusions made in [4]. All
the meta-learning strategies do show a consistent improvement in the classification
accuracy over the base classifiers trained on a subset of the training data. This can
be seen comparing the resulting charts with corresponding learning curves. Our
experimental results show also that both the one-level meta-learning schemes (Dy-
namic and Arbiter) and the hierarchical meta-learning schemes (Dynamic Tree and
Arbiter Tree) are often able to sustain the same level of accuracy as a global classi-
fier trained on the entire data set. Thus meta-learning over data partitions can main-
tain or even boost the accuracy of a single global classifier under certain circum-
stances. For example, it was done by Dynamic on the Tic-Tac-Toe dataset, where
the best base classifier on 32 subsets has 73% accuracy, and the global classifier
87% only, but the one-level dynamic arbiter meta-learning classifier has 97% accu-
racy! It can be seen from the experimental results that this is a very common result.
Our experimental results confirm that maximal parallelism can be effectively ex-
ploited by the meta-learning over disjoint data partitions without a substantial loss
of accuracy. Hierarchically learned classifiers can work better than a single layered
meta-learning under certain circumstances. For example, on the MONK-1, MONK-
3, and Tic-Tac-Toe datasets the Arbiter Tree works significantly better than the
Arbiter, and on the MONK-2 dataset the Dynamic Tree works significantly better
than the Dynamic.

One can see from the experimental results that under some circumstances our dy-
namic meta-learning techniques are better than the corresponding simple meta-
learning techniques. For example, on the MONK-1, MONK-3, and Tic-Tac-Toe
datasets the Dynamic is significantly better than the Arbiter, and on the MONK-2
dataset the Dynamic Tree is significantly better than the Arbiter Tree. However, it is
not clear under what circumstances our dynamic meta-learning techniques will be
better and further studies are needed to gain understanding of these circumstances.

6 Conclusion

We considered the use of the dynamic classifier selection in the arbiter meta-
learning. We evaluated our technique and compared it with the simple arbiter meta-
learning using selected data sets from the UCI machine learning repository. We
showed that our technique often results in the better classification accuracy than the
simple arbiter meta-learning. However, multiple experiments on large real-world
databases are needed to compare these meta-learning techniques and to find out the
conditions under which our technique is better.

There are also many open questions related to our dynamic meta-learning tech-
nique which require further experiments. In the above arbiter tree algorithm, the
training set grows at each level of the tree, and at the root level a dynamic selection
classifier is trained using the whole training set. Unfortunately, such an algorithm is
computationally expensive. In [4] it was shown in experiments that the overall accu-
racy would not suffer significantly if the size of training sets is restricted to the size



of the initial subsets at all nodes. However, this is still open for our approach and it
should be checked with multiple experiments.

Another interesting question is “How to pair classifiers in order to construct the
best tree?”. In [4] Chan proposed three strategies of pairing classifiers: a random
pairing, and pairings with the maximal and with the minimal possible arbiter train-
ing sets. The experiments in [4] showed that the pairing with the maximal arbiter
training sets usually gives better results. We expect that this pairing will also be
better in our approach resulting in more diverse arbitrated classifiers. In [10] we
have shown that the bigger base classifier diversity results usually in the better cov-
erage by the composite classifier and, consequently, the higher accuracy. The above
pairing will generate more compact trees but requires significantly more computer
time than the random pairing.

Another open question is “What is the optimal order of the arbiter tree with the
dynamic classifier selection?”. Experiments in [4] showed that the higher order trees
are generally less accurate than the lower order ones. It can be explained by the fact
that in the higher order trees it is more difficult for arbiters to arbitrate among bigger
number of classifiers. However, this question is also still open for our approach and
needs further research.

Acknowledgments: This research is partly supported by the Academy of Finland
and the COMAS Graduate School of the University of Jyväskylä. Alexey Tsymbal is
thankful to the Kharkov State Technical University of Radioelectronics that allowed
him to work in Jyväskylä during the preparation of this article. We would like to
thank the UCI machine learning repository of databases, domain theories and data
generators for the data sets and the machine learning library in C++ for the source
code used in this study.

References

1. Aivazyan, S.A.: Applied Statistics: Classification and Dimension Reduction. Finance and
Statistics, Moscow (1989)

2. Chan, P., Stolfo, S.: On the Accuracy of Meta-Learning for Scalable Data Mining. Intelli-
gent Information Systems, Vol. 8 (1997) 5-28

3. Chan, P., Stolfo, S.: Toward Parallel and Distributed Learning by Meta-Learning. In:
Working Notes AAAI Work. Knowledge Discovery in Databases (1993) 227-240

4. Chan, P.: An Extensible Meta-Learning Approach for Scalable and Accurate Inductive
Learning. PhD Thesis, Columbia University (1996)

5. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge
Discovery and Data Mining. AAAI/ MIT Press (1997)

6. Kohavi, R., Sommerfield, D., Dougherty, J.: Data Mining Using MLC++: A Machine
Learning Library in C++. Tools with Artificial Intelligence, IEEE CS Press (1996) 234-245

7. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection. In: Proceedings of IJCAI’95 (1995)

8. Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Databases [http://
www.ics.uci.edu/ ~mlearn/ MLRepository.html]. Department of Information and Com-
puter Science, University of California, Irvine, CA (1998)



9. Puuronen, S., Terziyan, V., Katasonov, A., Tsymbal, A.: Dynamic Integration of Multiple
Data Mining Techniques in a Knowledge Discovery Management System. In: Dasarathy,
B.V. (Ed.): Data Mining and Knowledge Discovery: Theory, Tools, and Techniques. Pro-
ceedings of SPIE, Vol. 3695. SPIE-The International Society for Optical Engineering,
USA (1999) 128-139

10.Puuronen, S., Terziyan, V., Tsymbal, A.: A Dynamic Integration Algorithm with an En-
semble of Classifiers. In: Proceedings ISMIS’99 - The Eleventh International Symposium
on Methodologies for Intelligent Systems, Warsaw, Poland, June (1999) (to appear)

11.Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA
(1993)

12.Schapire, R.E.: Using Output Codes to Boost Multiclass Learning Problems. In: Machine
Learning: Proceedings of the Fourteenth International Conference (1997) 313-321

13.Skalak, D.B.: Combining Nearest Neighbor Classifiers. Ph.D. Thesis, Dept. of Computer
Science, University of Massachusetts, Amherst, MA (1997)

14.Terziyan, V., Tsymbal, A., Puuronen, S.: The Decision Support System for Telemedicine
Based on Multiple Expertise. Int. J. of Medical Informatics, Vol. 49, No. 2 (1998) 217-229

15.Terziyan, V., Tsymbal, A., Tkachuk, A., Puuronen, S.: Intelligent Medical Diagnostics
System Based on Integration of Statistical Methods. In: Informatica Medica Slovenica,
Journal of Slovenian Society of Medical Informatics,Vol.3, Ns. 1,2,3 (1996) 109-114

16.Thrun, S.B., Bala, J, Bloedorn, E., et al.: The MONK’s Problems – A Performance Com-
parison of Different Learning Algorithms. Technical Report CS-CMU-91-197, Carnegie
Mellon University, Pittsburg, PA (1991)

17.Tsymbal, A., Puuronen, S., Terziyan, V.: Advanced Dynamic Selection of Diagnostic
Methods. In: Proceedings 11th IEEE Symp. on Computer-Based Medical Systems
CBMS’98, IEEE CS Press, Lubbock, Texas, June (1998) 50-54

18.Wolpert, D.: Stacked Generalization. Neural Networks, Vol. 5 (1992) 241-259


