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Abstract 
The on-line algorithms in machine learning are intended to discover unknown function of the 
domain based on incremental observing of it instance by instance. These algorithms have a 
great ability for adaptation to each new situation they appear in time, or to a new context. In 
this paper we propose an algorithm for identifying the moments when the context of the 
'environment' changes. The key idea is that if the predictor, which was based on some 
previous examples, becomes crucially inconsistent with new examples then we identify 
context change at the placement of this instance. If most of the predictors from diverse 
ensemble start to identify context change then we report total context change. We 
experimentally illustrate that this idea works very well on Vowel recognition dataset.  

1 Introduction 
A target function to be learned by a learner passes in time through many different contexts that 
influence its behavior. To match these changes the on-line algorithms track the target function, and 
have special schemes for fast adaptation, such as multiplicative weight updating in Winnow 
(Littlestone, 94) variants. We assume that target function implicitly contains another function in it: 
context function, which indicates recent active context, or, at least, places where context changes. 
We can improve knowledge extraction and benefit from the target function if we explicitly learn 
also the context function. In this paper we propose an algorithm for selection of instances, which 
indicate context change in target function, and are needed for learning of the context function.  

The term ‘context’ is widely used and ill-defined term in many areas. It has two similar and 
strict definitions in the field of supervised machine learning. Both definitions divide the features of 
the objects to be learned into relevant, or predictive, features and contextual ones. Features that 
influence the prediction alone (without any other) are considered as predictive. Features that 
influence the prediction only when considered together with some other non-predictive features, 
which form their context, are considered as contextual. Irrelevant features do not influence the 
predictions in any combination with predictive or contextual. 

In the present paper we use the form ( )YX ,s
r

=  to represent the instance e, where vector 
 represents the m features of the instance and Y denotes the class of the instance. 

We use  to represent the value of  and y to represent the value of Y. 
(r

X X Xm= 1,...,
xi

)
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Xi
Under the Turney’s definition of context (Turney, 1996) the feature  is strongly relevant 

when the assertion  in the context of the assignment for all features except  provides us 
with additional information which we can use to improve the prediction about value of the class Y. 

Xi
X xi = Xi

This definition in terms of probability distributions looks as follows: 

( ) ( )p Y y X x S s p Y y S si i i i i i= = = ≠ = =| , | , 

where each assignment  defines a context in which the feature  is relevant. Si Xi



According to Widmer (Widmer, 1997), the feature  is predictive if the distribution of 

classes in examples with  is significantly different (as determined by a χ  test) from the 
unconditioned distribution of classes. To define contextual features Widmer introduces ‘meta-
classes’ : an instance e is in class c  if feature 

Xi

x j

X xi = i
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$ ,ci j $ ,i j Xi =  is recognized as predictive at the time 
of classification of e. The feature  is contextual if the distribution of meta-classes c  in 

examples with  is significantly different (as determined by a  test) from the 
unconditional distribution of the c . 
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Previous research deals mainly with the context of features. The paper (Widmer, 1997) brings 
the notion of context into the area of on-line learning, but the notion of contextual examples is still 
based on their contextual features. In MetaL(IB) (Widmer, 1997)  two examples are considered to 
be in the same context if their contextual features have the same values. And also there is the lack 
of research about extracting and exploiting of contextual examples in on-line machine learning due 
to natural ability of on-line algorithms to adapt the changing situation. 

In this paper we assume that the learner passes through different contexts in time, and we 
develop a formalism which is able to recognize changes between the contexts. For this we define 
some basic concepts in Chapter 2, then we introduce a formalism to evaluate bounds for some 
threshold parameters, which are necessary to identify context function, in Chapter 3, then we 
perform experimental investigation of this formalism in Chapter 4, and concluding in Chapter 5.  

2 Basic concepts 

In this paper we focus on on-line learning model, introduced in [Littlestone, 1988, Littleston & 
Warmuth, 1994]. According to this model learning process is divided into trials . 
Each trial the learner receives the correspondent example s  from the unknown a-priory sequence 

 of T  examples and has to immediately predict the class, or label y

Tt ,...,,, 321=

Yt

i

},...,{ TssS 1= ∈′  of the 
example, where Y  denotes the set of all possible classes, or labels. Then the learner receives the 
response from the 'environment' in a form of the correct class y Yt ∈  of example s , and updates 
its internal knowledge to classify the next example better.  

t

In this paper we investigate weighted majority algorithm [Littlestone 1988, 
Littlestone&Warmuth 1994], that came together with on-line learning model. This algorithm 
assumes that there exists a set of n  predictors { }nhhh ,...,, 21

t

yhh iii =;

, or hypotheses about correct 
labeling of input examples. The algorithm maintains a vector of predictors' weights 

 and for each trial it presents input example s  to all predictors, and collects their 

opinions . Then it calculates the sum  of the weights of predictors that 

support predicted class 

{ nwww ,...,, 21

ih

}
wn

i∑ =1
y , separately for each possible class. The ensemble predicts class yt′ , for 

which the sum was maximal. 
 After making prediction on trial t  each predictor h  receives the correct class of the 

example and is said to suffer loss value l . 
i

t
i

 
Definition 1: The loss value for i-th predictor ( i n,...,1,0= ) at t-th trial is as follows: 
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After making a prediction the leaner receives the correct class of the example from the 

'environment' and updates the weights with exponential rule: w , where 
t
it

i
t
i

lw β←+1 β  is a fixed 
parameter 0 1<< β . 

Each example  is presented to the learner as a vector ts ),...,( mt xxs 1=  of the features of 
the example. We use the scheme for generating the predictors h , similar to described in [Blum, 
1997]. For each pair (  of features we generate a separate predictor h  that observes 
only the values of these two features and predicts the classes from this information. Totally we 

construct 


 predictors from 

i
,(x ′),x ′′′x )x ′′






2
m

m  features.  

 
Assume that the algorithm has observed already sequence of T examples { } 

from the set S  during past T trials and now considers example S  on trial T+1.  
Tsss ,...,, 21

1+T
 

Definition 2: The cumulative loss for predictor h   i-th predictor ( ii n,...,1,0= ) during T trials is 
as follows: 
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We expand the basic ideas of the definitions of (Turney, 1996) and (Widmer, 1997) to define 

context of examples. The idea of the definition in (Turney, 1996) is that the feature is defined as 
strongly relevant if it provides us with additional information, which we can use to improve our 
prediction about the value of the class. So, the definition in (Turney, 1996) defines the feature as 
predictive if it affects the probability somehow, not necessary in the good direction. It is impossible 
to implement this idea for batch learning, because we do not know whether the feature improves or 
not the prediction. In batch learning paradigm, a learner gets the training instances with known 
correct classes at once, and only then it can classify test examples. Incremental learning assumes 
that a learner obtains examples one-by-one, classifies them, and only then receives the correct class 
to compare with its own prediction. 

We consider the example as relevant if it influences the distribution of “real” classes from the 
set Y among the examples. This differs from the definitions of (Turney, 1996) and (Widmer, 1997), 
where the feature is recognized as relevant if it influences the distribution of classes predicted by 
the algorithm  without any respect whether these predictions correct ( ) or not.  The idea 
behind our following definition is to eliminate noisy and irrelevant examples, which are abounding 
in on-line learning tasks. 

th0 t
t yh =0

 
Definition 3: The probability  of correct prediction (h ) is as follows: t

iP t
t
i y=
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Definition 4: Example s  from trial t t  is relevant with respect to ε  to the predictor  if: t

ih

ε≤− +1t
i

t
i PP , 10 << ε . (1)  
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The background of Definition 4 is the following: an example, which is relevant to some 
predictor, must increase the probability of correct classification done by this predictor. However in 
the same time the Definition allows considering even misclassified examples as relevant ones, if 
this misclassification keeps the probabilities in bound (1). 

 
Definition 5: The predictor h  indicates context change on trial T (example s ) if a sequence 

 of r previous examples, which were relevant with respect to ε 
on the correspondent trials, begins to meet the following requirements starting from T-th trial:  

i

⊂
T

{ ESsssS TrTrT= −+−−  ,,...,, 11 }

ε>−=− −−−− TrTrT
i

T
i PPrLL 00

11    and   . (2) 

The left-hand condition of (2) requires that whole sequence S should be misclassified by i-th 
predictor. However this requirement alone does not indicate context change if the probability of 
correct classification for the collective predictor has not decreased essentially during last r trials as 
requires the right-hand condition of (2).  

 
The idea of Definition 5 is the following. If a predictor has predict classes well during the past 

trials and now begins to make errors we suppose that something in the “environment” of this 
concrete predictor has changed. It does not matter if other predictors still work accurately. If we 
have diverse enough ensemble then we can believe that most of the hypotheses from it are not as 
much effected by this change as one we are talking about. In such case there is no need to report 
context change for the work of on-line algorithm. However if most of the predictors begin to 
predict wrong, then we suppose that the context changed rather than the hypotheses make 
correlated errors together. 

3.  Context change for on-line learning 

First we prove a Theorem which bounds the loss that the on-line algorithm should get over 
the sequence of recent examples to be able to indicate context change on trial T according to 
Definition 5. Then we interpret our bounds and definitions for the Weighted Majority on-line 
algorithm. We end this chapter by the definition of a context function for Weighted Majority 
algorithm. 

 
Theorem 1: If the predictor  indicates context change according to Definition 5, then the 

amount q of examples, misclassified by this algorithm during the sequence S, is bounded with the 
following:   

T
ih

)1()1()1( εεε −+−⋅≤<−⋅ TqT . 

Proof:  
 
We first rewrite the right-hand condition of (2) according to Definition 3: 
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Taking into account that amount q of examples, misclassified by the algorithm during the 

sequence S of r trials is equal to: 
 

1
0

1
0

−−− −= rTT LLq , 
 
we can rewrite (3) as follows: 

ε>
−1T
q , and thus: 

)1( −⋅> Tq ε .        (4)  
 
On the other hand, according to Definition 5 the condition from the right-hand of (2) holds 

starting from T-th trial. We can write the following: 
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Taking into account that amount of examples, misclassified by the algorithm during the 
sequence of r trials from 1    to1 −−− TrT  is equal to 1−q , because the example s  should 
be classified correctly according to Definition 5. It means that: 

1−−rT
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and we can rewrite (5) as follows: 

ε≤
−
−

2
1

T
q , and thus: 

1)2( +−⋅≤ Tq ε , 

)1()1( εε −+−⋅≤ Tq .       (6) 

From (4) and (6) we receive: 

)1()1()1( εεε −+−⋅≤<−⋅ TqT .     (7) 

Taking into account that T<<<< 10 ε  we can locate no more than one integer within bounds 

(7).g 

 

For example if T  and 100= 05.0=ε , then 5=q . It means that some predictor reports context 
change if it is making the uninterrupted sequence of misclassification errors during which the on-
line algorithm makes 5 errors up to 100-th trial.  

Definition 6: Context of an on-line learned sequence of examples changes on trial T if the 
collective predictor h  indicates context change.  T

0

According to Definitions (5) and (6) and Theorem 1, the context of an on-line learned sequence 
changes starting from example s  if the on-line algorithm misclassifies previous q examples 

, where q is the integer within bounds (7). 
T

11 −+−− TqTqT sss ,...,,

Definition 7: Context function CF(t) of an on-lined learned sequence of examples is as follows: 
 

1)1( =CF ; 
 





=
otherwise.,0

;  trialon changescontext   theif,1
)(

t
tCF   

 
This is the simplest possible context function, which only indicates places where context 

changes and gives no other information.  

4. Experiments on Vowel dataset 

Context function that indicates only context change can be used to identify speaker change in 
speech recognition task. Our task is not only to recognize the words, spoken by the speakers, but 
also to recognize when the speaker changes. 

Vowel dataset is available from UCI Repository and contains information about the speakers 
that pronounce eleven vowels. Each speaker pronounces this set of vowels six times, and then new 
speaker continues. Thus, the dataset contains 11 classes, and each speaker is presented with 66 
examples in the dataset. Each vowel is presented with ten numeric features that correspond to 
different frequencies in digitized vowels.  

In our experiments we use sliding 1-Nearest Neighbor classifier as predictors h ),( xxi ′′′ , each 
generated over a pair of features. Each classifier stores only 20 recent examples in the memory and 
predicts from them using simple Euclidean distance measure to find nearest neighbors.  Parameter 
β  was set to 2

1=β . 
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We also set the number q  of misclassified examples (Theorem 1) to q . When the 
predictor generated wrong predictions for last q  examples then it is marked as indicating context 
change, and context change flag is set to 1. If half or more of predictors identify context change 
then we report context change for the whole ensemble and clear individual context change flags of 
the predictors. 

5=

Figure 1 shows experimental results on the Vowel dataset. According to on-line learning 
model the learner receives the examples one-by-one, and first 66 examples belong to speaker 1, 
next 66 – to speaker 2, and so on up to speaker 15. The examples are shown on the horizontal axis 
in the figure, and the examples of context change are marked with ticks and numbers. 

Upper line on the figure shows accuracy of the weighted majority ensemble, measured over 
the last 20 trials and marked on the left axis. Context change flag of the ensemble, referenced as 
context function in Definition 7, is presented with a lower line on the figure, that is marked over the 
right axis.  

We see, that our algorithm identifies all the moments of speaker change. 
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Figure 1. Vowel dataset 

 

5. Conclusion 

The proposed formalism in conjunction with weighted majority algorithm select instances 
indicating context change, and the experiments show that the formalism is able to identify all the 
moments of context change on the Vowel dataset.  

The paper rises two questions. The first one is how to use context function derived from the 
selected examples to improve the classification accuracy? What types of context functions exist and 
which of them can be successfully learned with parameter ε?  
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