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Abstract

This paper considers the context sensitive approach to
handle interval knowledge acquired from multiple
knowledge sources. Each source gives its estimation of
the value of some parameter x. The goal is to process all
the intervals in a context of trends caused by some noise
and derive resulting estimation that is more precise than
the original ones and also takes into account the context
noise. The main assumption used is that if a knowledge
source guarantees smaller measurement error (estimated
interval is shorter) then this source in the same time is
more resistant against the effect of noise. This
assumption allows us to derive and process trends
among intervals and end up to shorter resulting
estimated interval than any of the original ones.

1 Introduction

It is generally accepted that knowledge has a
contextual component. Acquisition,
representation, and exploitation of knowledge
in context would have a major contribution in
knowledge representation, knowledge
acquisition, and explanation [4].

It is noticed in [5] that knowledge-based
systems do not use correctly their knowledge.
Knowledge being acquired from human
experts does not usually include its context.

Contextual component of knowledge is
closely connected with eliciting expertise from
one or more experts in order to construct a
single knowledge base (or, for example as in
[3], for co-operative building of explanations).
If more than one expert available, one must
either select the opinion of the best expert or
pool the experts’ judgements [28]. It is
assumed here that when experts’ judgements
are pooled, collectively they offer sufficient
cues leading to smaller uncertainty.

In recognition of some pattern it is also
possible to handle context of recognition using
one of two decontextualization techniques: a)
using the same “recognizer” in different
contexts and then combining recognition
results (as it is shown in Fig. 1); b) using
different “recognizers” in the same context.

Context 1

Context 2

Context 3

Context 4

D
ec

on
te

xt
ua

liz
at

io
n

pattern recognition
result

Fig. 1: Context in pattern recognition



All information about the real word comes
from two sources: from measurements, and
from experts [16]. Measurements are not
absolutely accurate. Every measurement
instrument usually has the guaranteed upper
bound of the measurement error. The
measurement result is expected to lie in the
interval around the actual value. This
inaccuracy leads to the need to estimate the
resulting inaccuracy of data processing. When
experts are used to estimate the value of some
parameter, intervals are commonly used to
describe degrees of belief [23]. Experts are
often uncertain about their degrees of belief
making far larger estimation errors than the
boundaries accepted by them as feasible [12].
In both cases we deal with interval
uncertainty, i.e. we do not know exact values
of parameters, only intervals where the values

of these parameters belong to. A number of
methods to define operations on intervals that
produce guaranteed precision have been
developed in [21], [22], [18], and [1] among
others.

In many real life cases there is also some
noise which does not allow direct
measurement of parameters. To get rid of this
noise it is necessary to subtract its value from
the result of measurement. The noise can be
considered as an undesirable effect to the
evaluation of a parameter in the context. The
subtraction of the noise in this sense has
certain analogy with the decontextualization
[20], [13], [7]. When effect of noise is not
known the help of decontextualization using
several coexisting experts (recognizers,
knowledge sources) might estimate it (Fig. 2).
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Fig. 2: Decontextualization of noise in pattern recognition

Some geometrical heuristics were used in
[6] to solve this problem without enough
mathematical justification. It is natural to
assume that different measurement instruments
as well as different experts possess different
resistance against the influence of noise.

Using measurements from several different
instruments as well as estimations from
multiple experts we try to discover the effect
caused by noise and thus be able to derive the
decontextualized measurement result like it is
shown in the example in Fig.2.



This paper considers a context sensitive
approach to handle interval knowledge
acquired from multiple knowledge sources.
Each source is assumed to give its evaluation,
i.e. an estimated interval to which the value of
a parameter x belongs. The goal is to process
all the given intervals in the contexts of trends
and derive more precise estimation of the
value of parameter from them. The quality of
each source is considered from two points of
view: first, the value of guaranteed upper
bound of measurement error, and second, the
value of a resistance against a noise. These are
assumed to occur together.

The main assumption in this paper is as
follows. The estimation of some parameter x
given by more accurate knowledge source (i.e.
source guarantees smaller upper bound of
measurement error) is supposed to be closer to
the actual value of parameter x (i.e. source is
more resistant against a noise of estimation).
The assumption allows us to derive different
trends in cases when there are multiple
estimation that result to shorter estimation
intervals.

In chapter 2 we present our
decontextualization process and some of it
main characteristics in the case of one trend.
Next chapter discusses about one way to
formulate groups of trends and its relation to
decontextualization process. Chapter 4
discusses combining results of several trends
into one resulting interval. The last chapter
includes very short conclusion.

2 Decontextualization

In this chapter we consider a
decontextualization process that is used to
improve interval estimation by processing
recursively more bounded intervals against
less bounded ones.

Let there be n knowledge sources (human
beings or measurement instruments) which are
asked to make estimations of the value of a
parameter x. Each knowledge source i,
i=1,…,n  gives his estimation [ ]L a bi i, , ii ba <

as a closed interval into which he is sure that
the value of the parameter belongs to. L is the
estimation predicate as follows:

Definition 2.1:

The range of a parameter x is the length

00 ab −  of the interval from the estimation

[ ]00 ,baL , which includes all possible interval

estimations [ ]L i na bi i, , ,..., =1  of this parameter.

 Let us assume that all the knowledge
sources are effected by the same misleading
noise in the context of estimation. Different
knowledge sources are effected by such a
noise in a different way. The main assumption
used in this paper is that: if a knowledge
source guarantees smaller measurement error
(interval estimation is more narrow), then this
source is also more resistant against the effect
of noise. This assumption also means that the
estimated value given by more precise
knowledge source is supposed to be closer to
the actual value of the parameter x. This
assumption is used when we derive trends of
intervals towards the actual value of the
parameter x.

The process advances decontextualization
of an interval from the context of another
interval (the step of decontextualization
process) by pairs beginning from the shortest
and second shortest intervals. The next step of
decontextualization process is made
decontextualization of the resulting interval of
the first step from the context of the third
shortest original interval. This is continued
until all original intervals have been
participated the process. The result of the last
step is the result of the whole
decontextualization process.

Definition 2.2:

The uncertainty ui  of interval estimation

[ ]L a bi i,  is equal to the length of the interval:

iii abu −= ,  i=1,…,n.
To be precise it is necessary to mention

that in a general case the value of uncertainty
should be standardized with the range of a
parameter estimated, like the following:
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In this paper, however, we use and
compare different estimations of the same
parameter within the same range. That is why
it is not essential to standardize a value of
uncertainty and we can use the Definition 2.2
working with uncertainty.

Definition 2.3:

The quality qi  of interval estimation

[ ]L a bi i,  is the reverse of its uncertainty, i.e.:

q
ui

i
=

1
, i=1,…,n.

2.1 Operating with two intervals

Definition 2.4:
The result of one step of the
decontextualization process with two interval

estimations [ ]L a bi i,  and [ ]L
a bj j, , u ui j≠ ,

i=1,…,n  is:
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The above formulas for calculating the
resulting interval was selected because they
satisfy three main requirements:
•  the resulting interval should be shorter than

the original ones,
•  the longer the original intervals are the

longer should the resulting interval be, and
•  shorter of the two intervals should locate

closer to the resulting interval than the
longer one.
In the following we will prove that the

selected formulas fulfill these three main
requirements.

The following theorem defines the
relationships between the uncertainties of the
original and the resulting interval estimations.

Theorem 2.1:

 Let it be that:

   [ ]
[ ]
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a b
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a j b j

res res, ,
,

=   ,

where  ares  and  resb  are as in the right hand
part of  the Definition 2.4.
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a) u
u u

u ures
i j

i j
=

⋅
+ ,  b) u ures i< ,

c)  u ures j< ,     d)  q q qres i j= + .

Proof:
a) According to the Definition 2.4:

a a
u a a

u u
res i

i i j

j i

= +
⋅ −

−

2

2 2

( )
   and

b b
u b b

u u
res i

i i j

j i

= +
⋅ −

−

2

2 2

( )
.

Definition 2.2 gives us that:
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b) Let us suppose that:  ires uu ≥ ,
then according to (a) we receive:
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which contradicts the Definition 2.2. Thus:
u ures i< ;

c) Prove is similar as for (b).
d) From the Definition 2.3 it results that:

u
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i
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1

, i=1,…,n.

Applying (a) we receive that:
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Theorem 2.2:
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Theorem 2.3:

Let it be that: [ ]
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2 2  , where ares1 , ares2 ,

bres1 , and bres2  are as in the right hand part

of the Definition 2.4. Let it be that u uj k< .

Then: u ures res1 2
< .

Proof: Similarly as Theorem 2.2.

It is easy to see that the formula of the
resulting uncertainty calculation has very
simple physical interpretation. It is shown in
Fig. 3.
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Fig. 3: Physical interpretation of decontextualization

Every interval uncertainty can be
considered as certain “resistance” to exact
recognition of a pattern. However if we use
several estimations and connect the
appropriate resistance in a parallel scheme,

then the resulting resistance (according well
known from physics formula, Fig. 3) will be
smaller then every separate one.

Another possible interpretation of the step
of decontextualization formula is based on an



extrapolation of the decontextualized value
using interval functions. Extrapolation is based
on assumption of linearity of these functions
within one step of decontextualization.

The two linear functions are considered:
a f u= ( ) , that connects points

( , ), ( , )u a u ai i j j , and b u=ϕ( )  that

connects points ( , ), ( , )u b u bi i j j  as shown in

Fig. 4.
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The solution of these equations gives us
the following values:
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which is exactly the same as if we make one
step of decontextualization process
accordingly to the Definition 2.4. Also this
fact motivates the selection of the formula in
the Definition 2.4 from the point of view of the
possibility to obtain result of
decontextualization using linear extrapolation.

Theorem 2.4:
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2.2 Measuring distance between
intervals

To prove that the resulting interval is located
closer to smallest of the original two intervals,
we need to define distance function between
intervals.

There are many approaches to define
distance between any two entities (attributes,
terms) based on their numerical or semantic
closeness.  For example the semantic closeness
between terms is a measure of how closely
terms are related in the classification schema
[27].

Distance metric used by Rada et al. [25]
represents the conceptual distance between
concepts. Rada et al. uses only the path length
to determine this conceptual distance, with no
consideration of node or link characteristics.
Distance is measured as the length of the path
representing the traversal from the first
classification term to the second. The
closeness of terms ranges from 1 (identical
terms) to 0 (which represents that terms are not
semantically close, although it does not mean
that they are disjoint in the classification
schema).

Rocha [26] has suggested a method to
“fuzzify” conversation theory, by calculating
continuously varying conceptual distances
between nodes in an entailment mesh, on the
basis of the number of linked nodes they share.

In psychology, rudimentary associative
networks have been created through
experiments in which subjects were given a
word (say cat), and were asked which other
word first came to mind (e.g. dog, mouse, or
milk). The more often a certain word b is

given in response to the cue word a, the
stronger the association from a to b. Since this
approach usually only finds a small number of
associations for any given word, association
strengths for links between other words are
calculated by taking into account indirect
associations (e.g. knowing the strengths of dog
-> cat and cat -> mouse would allow one to
calculate the strength of dog -> mouse). Note
that such associations are in general
asymmetric. For example, when cued with
penguin the probability that you would say
bird is not so small, whereas the probability to
respond with penguin, when cued with bird is
virtually zero. This methodology, however,
requires a lot of work from designers and
users, and is only useful for simple, well-
known items like common words [14].

Heylighen prefers the metaphor of
bootstrapping [14]. The problem with
correspondence epistemologies is that they
lack grounding: everything is built on top of
the symbols, which constitute the atoms of
meaning; yet, the symbols themselves are not
supported. The advantage of a coherence
epistemology is that there is no need for a
fixed ground or foundation on which to build
models: coherence is a two-way relation. In
other words, coherent concepts support each
other. The dynamic equivalent of this mutual
support relation may be called
"bootstrapping": Model A can be used to help
construct model B, while B is used to help
construct A. It is as if I am pulling myself up
by my own bootstraps: while my arms (A) pull
up my boots (B), my boots at the same time -
through my legs, back and shoulders - push up
my arms. The net effect is that more
(complexity, meaning, quality, ...) is produced
out of less. This is the hallmark of self-
organization: the creation of structure without
need for external intervention.

Associative networks are in principle more
general and more flexible, allowing the
expression of different "fuzzy", "intuitive" or
even "subconscious" relations between
concepts. Such networks have been regularly
suggested as models of how the brain works.
They are similar to the presently popular
"neural" networks, except that the latter are



typically used as directed, information
processing systems, which are given a certain
pattern of stimuli as input and are supposed to
produce the correct response to that pattern as
output. In the present "bootstrapping"
perspective, there is no overall direction or
sequence leading from inputs to outputs; there
are only nodes linked to each other by
associations, in such a way that they are
coherent with each other and with the user’s
understanding of the knowledge domain.
Associative networks could be created by the
same type of knowledge elicitation techniques,
where a user enters a number of concepts and
links and is prompted by the system to add
further links and concepts under the main
constraint of avoiding ambiguity. These links
must then be attributed some variable degree
of strength. However, the very weak
requirement of "associativity" allows virtually
any pair of concepts to be linked, if only with
a very small link strength [14].

In order to measure the distance between
two concepts in a mind, Jorgensen measures a
distance between two concepts, which he calls
psy [15]. It has been suggested to assign an
arbitrary distance of n units to the separation
between two concepts such as "Concept A"
and "Concept B" and then ask a subject to tell
us how far other concepts (C and D) are from
each other in these units. One assumption used
is that our given distance, n units, is a close
enough to the distance one wishes to measure
so as to avoid the errors which are typical of
people trying to deal with very small or very
large numbers. The basic premise that the
relationship of concepts in a mind can and
should be measured as a ratio of a relationship
between two concepts in a mind is as valid as
measuring the distance between two fixed
points on a rigid body as a ratio of the distance
between two given points on that body.
Jorgensen presents one interactive measuring
instrument that uses physical distances on a
computer screen (or more accurately, the
visual angles that is subtended by pairs of
points on a screen) rather than numbers. He
introduces an appropriate Java program as an
interactive visual instrument for measuring the
distance between concepts. Two benefits have

been distinguished: reducing or eliminating the
subliminal baggage that numbers carry along
with them, and eliminating some of the
artifacts that numerical scales can introduce
due to the different ways different people think
about numbers.

Lynch and Chen represent the information
retrieval problem as a search task, where the
goal was to identify the most relevant
descriptors associated with the searcher’s
search terms [19]. The costs to each activated
path on the semantic network have been
assigned that were based on the nodes visited,
the types of links traversed, and the number of
links in the path. Cost was a metric that is used
to indicate the “semantic distance” (relevance)
of terms. A branch-and-bound algorithm
guides the search. This algorithm computed
and ordered costs for each partial path and
expanded the least-cost path. It terminated
when all relevant paths were explored or when
the algorithm ran out of activation levels (2-
links activation for each source term). This
algorithm allows the system to identify most
relevant concepts in a large network of
knowledge. The algorithm acts as the system
control module: selects appropriate knowledge
sources, activates nodes and links, calculates
scores of relevance, and suggests to users the
most relevant topics, concepts, or descriptors.

Access to and navigation through
multimedia material is usually a system that
needs multiple dimensions of classification.
These classification schemas are often
specialized, and therefore a more general user
may not be familiar with the organization of
the classification schema or the terms that are
employed. Supporting all access to the
material through classification schema raises a
number of issues. Tailor and Tudhope [27] has
presented a hypermedia architecture that is
supported by classification schema. Semantic
closeness measures have been developed to
measure the closeness of terms in the schema
which provides a platform for high-level
navigation tools, which can provide flexible
access tools to a collection of material. Two
higher level navigation tools, navigation via
media similarity and best-fit generalization,
have been developed. The similarity



coefficients are extended in that similarity is
judged on the "semantic closeness" of the sets
of classification terms that are attached to the
media nodes. The similarity coefficient
therefore needs to be able to handle sets of
classification terms with varying lengths, with
non-exact matches of terms, where the pairing
of terms between media nodes may not be
immediately obvious.

Brooks reports two experiments that
investigated the semantic distance model
(SDM) of relevance assessment [6]. In the first
experiment graduate students of mathematics
and economics assessed the relevance
relationships between bibliographic records
and hierarchies of terms composed of
classification headings or help-menu terms.
The relevance assessments of the classification
headings, but not the help-menu terms,
exhibited both a semantic distance effect and a
semantic direction effect as predicted by the
SDM. Topical subject expertise enhanced both
these effects. The second experiment
investigated whether the poor performance of
the help-menu terms was an experimental
design artifact reflecting the comparison of
terse help terms with verbose classification
headings. In the second experiment the help-
menu terms were compared to a hierarchy of
single-word terms where they exhibited both a
semantic distance and semantic direction
effect.

Foo at al [10] propose and define a
modification of Sowa’s metric on conceptual
graphs. The metric is computed by locating the
least subtype which subsumes the two given
types, and adding the distance from each given
type to the subsuming type.

Cugini at al [9] uses the nearest neighbor
paradigm as a heuristic to get semantically
similar documents to cluster in the same
spatial region. Each document has a "position"
in semantic space, represented as a vector of
keyword strengths. Since there are at most
three spatial dimensions for visualization but
potentially many more keywords, they cannot
simply map documents directly from
"keyword space" to geometric space. Instead,
they try to find a linear order that keeps
semantically close documents if not adjacent,

then at least nearby. They used a simple
nearest neighbor algorithm to order the
documents: given some initial choice, each
document in the sequence is the nearest (of
those not already in the sequence) neighbor to
its predecessor. The semantic distance between
any two documents is based on each
document’s keyword strength vector and can
be computed in two ways: simple Euclidean
distance, or as the angle between the vectors.

Statistical methods can be used to analyze
database contents in an attempt to group items
according to some measure of their semantic
closeness. For example the contents of a
document store could be grouped
corresponding to matching keywords. Analysis
performed on these information stores
typically result in a number of ‘scores’ for
documents, which can then be used to create a
suitable mapping into Benediktine space. The
closer objects are semantically then the closer
they will be within the data environment.
Systems, which adopt this approach, include
VIBE [24] and BEAD [8], though the original
idea of VIBE has been developed further and
extended into three dimensions to produce
VR-VIBE [2].

Vineta is a prototype information
visualization system developed by Uwe Krohn
[17]. Vineta allows the visualization, browsing
and querying of large bibliographic data
without resorting to typing and revising
keyword based queries. Similar to VR-VIBE
and BEAD visualizations, Vineta presents
documents and terms as graphical objects
within a three dimensional space, the
navigation space. The positioning of these
objects within that space encodes the semantic
relevance between documents, terms and the
user's interests. Vineta is built upon the
premise that navigation through an
information space can be an effective means of
retrieving information of interest. Krohn states
that informational navigation is strongly
connected with the human intuitive
comprehension of abstract facts by means of
analogies with familiar concepts such as
location or motion. Vineta uses spatial
proximity to represent semantic similarity
between objects (i.e. documents).



Instance-based learning techniques
typically handle continuous and linear input
values well, but often do not handle nominal
input attributes appropriately. The Value
Difference Metric (VDM) was designed by
Wilson and Martinez [29] to find reasonable
distance values between nominal attribute
values, but it largely ignores continuous
attributes, requiring discretization to map
continuous values into nominal values. Wilson
and Martinez propose new heterogeneous
distance functions, called the Heterogeneous
Value Difference Metric (HVDM), the
Interpolated Value Difference Metric (IVDM),
and the Windowed Value Difference Metric
(WVDM). These new distance functions are
designed to handle applications with nominal

attributes, continuous attributes, or both. In
experiments on 48 applications the new
distance metrics achieve higher classification
accuracy on average than three previous
distance functions on those datasets that have
both nominal and continuous attributes.

As it was mentioned in the Wilson and
Martinez review [29] there are many learning
systems that depend upon a good distance
function to be successful. A variety of distance
functions are available for such uses, including
the Minkowsky, Mahalanobis, Camberra,
Chebychev, Quadratic, Correlation, and Chi-
square distance metrics; the Context-Similarity
measure; the Contrast Model; hyperrectangle
distance functions and others. Several of these
functions are defined in Fig. 5.
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Q is a problem-specific positive definite mxm
weight matrix

Mahalanobis:

[ ]D x y V x y V x ym T( , ) det ( ) ( )/= − ⋅ −−1 1

V is the covariance matrix
of A Am1 ⋅ , and A j  is the vector of

values for attribute j occurring in
the training set instances 1…n.

Correlation:
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attribute i occurring in the training set.

Chi-square:
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sumi  is the sum of all values for

attribute i occurring in the
training set, and sizex  is the sum

of all values in the vector x.

Kendall’s Rank Correlation:
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Fig. 5: Equations of selected distance functions according to Wilson and Martinez review [29]; x and y are vectors of m
attribute values.



An interval can be considered as a vector
with two attributes, which are the values of its
endpoints. For measuring distance between
two intervals we select a variation of
Chebyshev distance function (Fig. 5).

Definition 2.5:

Let us have two interval estimations

[ ]L a bi i,  and [ ]L a bj j, , i j n, , ... ,=1 .

The distance between these opinions is as
follows:
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2.3 Operating with several intervals

The process of decontextualization with
several intervals was described in the
beginning of this chapter. We describe now
this step-by-step process formally.

Let there be n interval estimations

[ ]L i na bi i, , , ... , = 1 , u u i ni i< = −+1 1 1, ,... , ,

n ≥ 2 . The resulting interval estimation:
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can be calculated recursively as follows:
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An example: Let us suppose that three
knowledge sources 1, 2, and 3 evaluate the
value of the attribute x to be in the following
intervals:

[ ] [ ]L La b1 1 9 12, ,= , [ ] [ ]L La b2 2 6 11, ,= ,

[ ] [ ]L La b3 3 0 10, ,= .

The above intervals are already in
ascending order according to their
uncertainties. The resulting interval is derived
by the recursive procedure above:
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and thus:

[ ] [ ] [ ]L L La b a bres res res res, , . , .= =
3 3

110769 12 6559 .

The resulting interval with the original
ones is shown in Fig. 6.

a2 b2

a3 b3

ares bres

a1 b1

x0 1 2 3 4 5 6 7 8 9 10 11 12 13
Fig. 6: The resulting interval and the original ones in the example

One can see that the resulting interval has
no common points with two of the three
original intervals. This happens because the
decontextualization process takes into account
the trend caused by noise in the estimation
context.

3 A Trend Classification

In this chapter we consider one classification
of trends into seven different groups of trends.
This classification is used to group together
intervals based on the relations of their
endpoints and we prove that the previous step
of decontextualization (Definition 2.4) gives as
a result an interval that belongs to the same

group as the intervals participating into the
decontextualization process.

Definition 3.1:

There are seven groups of trends named as
trends with direction dirk and power powk

(marked Lk
dir powk k 

) as presented in Table 1.

Each pair of interval estimations

[ ] [ ] [ ]L L L i ja b a b a bi i j j, , ,, ,∈ ≠
0 0 , belonging

to the same group Lk
dir powk k  keep the sign of

∆ ∆a b+ , ∆a , and ∆b  where

∆ ∆a a a b b bj i j i= − = −,   .



The direction of a trend group is: left (‘l’),
center (‘c’), or right (‘r’), and it is defined by

the sign of ∆ ∆a b+ :

’’ )0( ldirba k =⇒>∆+∆ ;

( ) ’ ’∆ ∆a b dir ck+ = ⇒ =0  ;

 ( ) ’ ’∆ ∆a b dir rk+ < ⇒ =0  .

The power of a trend group is: slow (‘<’),
medium (‘=’), or fast (‘>’) and it is defined by

the signs of ∆a and ∆b  by the following
way:

(( ) ( )) ’∆ ∆a and b powk< > ⇒ = <0 0   ’ ;

(( ) ( )) ’ ’∆ ∆a or b powk= = ⇒ = =0 0   ;
(( ) ( )) ’ ’∆ ∆a or b powk> < ⇒ = >0 0   .

In Fig. 7 there are three examples of trend
groups with left direction and power: slow (a),
medium (b), and fast (c).

Table 1: Trends of uncertainty

Trend Direction → left central right

Power ↓ Restrictions 0>∆+∆ ba ∆ ∆a b+ = 0 ∆ ∆a b+ < 0

slow )0(

)0(

>∆
<∆
b
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=∆
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Ll = does not exist Lr =

fast
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Fig. 7: Left trend groups L L Ll l l< = >, ,
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Theorem 3.1:
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Proof:
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The Theorem 3.1 shows that the step of
decontextualization gives resulting interval
that belongs to the same group of trends as the
original intervals.

4 Deriving a Resulting Interval from
Several Trends

In a common case it is possible that several
different trends can be derived from the same
set of intervals. In this chapter we discuss one
way of deriving resulting interval when there
exist several trends among the original
intervals.

Each pair of intervals can define a trend.
We require that each pair participate once and
only once in some of trends. This means that
the number m of different trends cannot be
more than the number of different interval
pairs in the set of intervals

[ ]L L i na bi i
= =, , , ... 1  given as opinions by

knowledge sources:

 m Cn≤ 2
.

Each trend can in general case include
more than one interval and each interval can
support several more than one trend.

Definition 4.1:

Let us suppose that the set L of interval

opinions [ ]L i na bi i, , , ... =1  is divided into

m trends L k mk , , ... = 1 .

The support Sk  for the trend Lk  is
calculated as follows:
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Ni is the number of different trends that

includes the opinion [ ]L a bi i, .



As one can see the Definition 4.1 gives
more support for the trend that includes more
intervals and the support of each interval is
divided equally between all the trends that
include this interval.

Definition 4.2:

Let the set of original interval estimations

[ ]L L i na bi i
= =, , , ... , 1  consists of m different

trends L k mk , , ... , = 1  with their resulting

interval opinions [ ]L
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k
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 and support Sk .
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using following formulas:
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Thus the resulting interval is expected to
be closer to the result of those trends that have
more support among the original set of
intervals.

5 Conclusion

This paper discusses one approach to handle
interval uncertainty in estimation of some
domain parameter. The case is considered
when the estimation is made by multiple
knowledge sources in a context of a trend
caused by possible noise. The approach is
based on an assumption that if a knowledge
source guarantees less measurement error
(estimation interval is shorter), then this source
in the same time is more resistant against the
effect of possible noise. In this paper we
discussed one way to decontextualize
knowledge given under misleading noise when
this basic assumption holds. We defined
different groups of trends among estimated
intervals. We introduced one way how to take
into account several trends that exist among
the original intervals when one resulting
interval is produced. One of the most
important messages of this paper is as follows.

If you have several opinions (estimations,
recognition results, solutions etc.) with
different values of uncertainty you can select
and use the most precise one or take weighted
mean value of these opinions. However it
seems more reasonable to order opinions from
the worst to the best one and try to recognize a
trend of uncertainty, which (if exists) helps
you to derive an opinion more precise than the
best one. Further research is needed in
different application areas to evaluate practical
results of such assumption and algorithms of
the decontextualization process.
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